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Application of differential equations in projecting growth 

trajectories 
 

By Ron W. NIELSENa† 
 

Abstract. Mathematical method based on a direct or indirect analysis of growth rates is 
described. It is shown how simple assumptions and a relatively easy analysis can be used to 
describe mathematically complicated trends and to predict growth. Only rudimentary 
knowledge of calculus is required. Projected trajectories based on such simple initial 
assumptions are easier to accept and to understand than alternative complicated projections 
based on more complicated assumptions and on more intricate computational procedures. 
Examples of the growth of population and of the growth of the Gross Domestic Product are 
used to illustrate the application of this method of forecasting. 
Keywords. Forecasting, Differential equations, Analysis of growth rates, Growth trends. 
JEL. C02, C20, C50, C53, C65, Y80. 

 

1. Introduction 
athematical analysis of trends could be either complicated or 
oversimplified. Complicated analysis could be based on Monte Carlo 
simulations (Rubinstein & Croese, 2016) or on statistical modelling 

(Hyndman, & Arthanasopoulos, 2014; Makidakis, Wheelwright & Hyndman, 
1998) while oversimplified analysis is often based on fitting a straight line or some 
other distribution directly to the time-dependent series. Mathematical distributions 
fitted directly to data could be used for the description of data but they have limited 
application in forecasting. In particular, higher-order polynomials are inapplicable 
because their parameters depend strongly on the range of the time-dependent 
series. Complicated analysis based on Monte Carlo calculations or on statistical 
modeling could be considered more reliable but by being more complicated they 
are less accessible and perhaps even less appealing.  

I want to suggest an alternative method of analysis of time-dependent series and 
of forecasting, the method based on the mathematical analysis of growth rates. The 
proposed method is supported by the fundamental observation that fluctuations and 
oscillation in the growth rates have no essential impact on the associated trends 
(Nielsen, 2016a, 2016b). The analysis of growth rates can be significantly 
simplified. They, or their suitably defined substitutions, can be often fitted even by 
a straight line. By using rudimental differential calculus, such simple initial 
description of data can be then translated into mathematically more complicated 
descriptions of trends and used in forecasting.  

In science, descriptions and explanations based on simple assumptions are 
always preferable and more acceptable then explanations based on complicated 
assumptions and on complicated mathematical procedures. Trends could be 
complicated but it does not mean that their description has to be based on 
complicated assumptions. It is easy to introduce a series of complicated 
assumptions and then to derive complicated descriptions of trends. The real 
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challenge is to use the simplest possible assumptions and yet to describe even the 
most complicated trends. The aim of this paper is to show how to do it. 

It is always advisable to reduce the analysis of data to a straight line, for three 
reasons: (1) the straight line is the simplest mathematical function, (2) any 
deviation of data from the straight line can be easily detected, and (3) the 
parameters describing a straight line do not depend critically on the range of data. 
Straight-line description of data includes also exponential representation because 
exponential function can be easily reduced to a linear function by using a logarithm 
of analysed data.  

I am going to show how the analysis of trends can be reduced to such a simple 
representation of time-dependent series and how the parameters based on such a 
simple assumption can be used to describe even mathematically more complicated 
trend trajectories. 

 
2. Mathematical method - fundamentals 
Growth rate is defined by the following equation: 

 
1 dS

R
S dt

          (1) 

 
where  S is the size of the growing entity and t is the time.  

For the direct calculations from data it is:  
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The size S can represent, for instance, the Gross Domestic Product (GDP) or 

the size of the population.  
Application of the analysis of growth rates in predicting growth should be 

obvious, because growth rate determines what we can expect in the future. For 
instance, exponential growth is characterized by a constant growth rate. Such a 
growth is unsustainable over a sufficiently long time. Consequently, if we can see 
that the growth rate describing, for instance, economic growth varies around a 
constant value, we can take such a pattern as a warning sign, because such a 
growth will inevitably because such a growth will inevitably lead to crisis or to a 
slowing-down growth.  

It is obvious, therefore, that if the growth rate is not constant but increases with 
time, then such a growth is even worse, because it will become unsustainable even 
faster.  

The only growth, which can be sustainable over a long time, or even 
indefinitely when properly regulated, is the growth characterized by a decreasing 
growth rate. Such a growth will reach a maximum, if the growth rate is going to 
decrease to zero, or it will approach a certain equilibrium level if the growth rate is 
going to approach asymptotically its zero value. 

Thus, even without carrying out any elaborate calculations we can predict 
whether the growth is likely to be sustainable or not. However, mathematical 
analysis of growth rates can help in more accurate projections of growth. We can 
then tell not only whether growth is likely to be sustainable or unsustainable but 
also to study more closely the predicted trajectories. Such studies can help in 
determining how soon projected trajectory might become unsustainable or how to 
regulate the growth rate to reach a desired maximum or the desired level of 
equilibrium and when.      

Mathematical method, described here, has a general application and can be used 
for any type of data, as long as they are over a sufficiently large range of 
independent variable to allow for the calculations of the growth rate by using the 
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eqn (2). The described method can be used for any type of growth. If we have a 
sufficiently large number of data, we can use them to determine the empirical 
growth rate, analyse it mathematically, use the differential calculus to translate 
results of such analysis into the description of trends and use the mathematically 
determined distributions in forecasting.  

If analysis of data is carried out by using an appropriately-defined distribution
( )F S , rather than S, then the starting point is to calculate the growth rate of ( )F S : 

 
1 ( ) 1 ( )

( ) ( )

dF S F S
R

F S dt F S t


 


.       (3) 

 
Again, we can use eqn (2) to calculate the growth rate R but now we shall be 

using ( )F S  rather than S in this equation. Whether we are using S or ( )F S in such 
calculations, they will usually produce strong fluctuations of R. If the data are of 
exceptionally good quality, fluctuations will be small or negligible. However, in 
general they will be significantly large and they will be obscuring the general trend 
of the growth rate. We can still fit a straight line to such fluctuating growth rate and 
use it to predict growth, but if we want to unravel the general trend of the growth 
rate we would have to eliminated the obscuring effects of local gradients  /S t  or 

/F t  by polynomial interpolation.  
Growth rate can be presented as a function of time or as a function of the size of 

growing entity. We shall now discuss these two possibilities. Fundamental 
application of differential equations in the description of trends and in forecasting 
is summarized in Table 1. 

If the empirically-determined growth rate can be described by a certain time-
dependent function ( )f t , i.e. if 

 
1

( )
dS

f t
S dt

 ,          (4) 

 
then to find the mathematical representation of data we have to solve the following 
differential equation:  

 

( )
dS

f t dt
S

 .          (5) 

 
Its solution is 

 

( ) exp ( )S t f t dt 
   .         (6) 

 
If  

 
( )f t r const  ,         (7) 

 
the solution of the eqn (4) is given by the exponential function, 

 

( ) rtS t Ce ,          (8) 
 

where C is related to the constant of integration. The eqn (8) describes exponential 
increase, if 0r  or decrease if 0r  .  
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If the empirically-determined growth rate can be represented by a straight line, 
i.e. if 

 
( )f t a bt  ,          (9) 
 

where a and b are constants, then 
 

2( ) exp 0.5S t C at bt    .                  (10) 

 
In this case, the gradient of ( )S t is 
 

2( )
( )exp 0.5

dS t
C a bt at bt

dt
     .                 (11) 

  
For a suitable combination of parameters ɑ and b, the distribution given by the 

eqn (10) will reach a maximum when 0a bt  , i.e. at /t a b  .  
If the empirically-determined growth rate can be described by a certain size-

dependent function ( )f S , i.e. if 
 

1
( )

dS
f S

S dt
 ,                    (12)

  
we can express this equation as 

   

( )

dS
dt

S f S



.                    (13) 

 
We now have a mathematically more complicated problem, because there is no 

single prescription for the solution of such differential equations. 
In the simplest case when ( )f S r const  the solution is again represented by an 

exponential function. If we take the next least complicated step and assume that 
( )f S is represented by a straight line, i.e. if 

 
( )f S a bS  ,                   (14) 

 
then we have the following differential equation: 
 

 
dS

dt
S a bS




.                   (15) 

 
To find how to integrate the left-hand side of this equation let us consider a 

general case: 
 

( )( )

dx

a bx c ex 
 ,                   (16) 

 
where ɑ, b, c and e are constants. 

To integrate this fraction, we split it into two fractions: 
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1

( )( ) ( ) ( )

A B

a bx c ex a bx c ex
 

   
,                 (17) 

 
where A and B are certain constants, which we now have to determine. 

The right-hand side of the eqn (17) can be expressed as 
 

( ) ( )

( ) ( ) ( )( )

A B c ex A a bx B

a bx c ex a bx c ex

  
 

   
.                (18) 

 
By comparing eqns (17) and (18) we can see that 
 

( ) ( ) 1c ex A a bx B    ,                  (19) 
 

which gives us a set of two equations: 
 

1cA aB  ,                  (20a) 
0eA bB  .                              (20b) 

 
Their solution is 
 

b
A 


,                                 (21a) 

e
B  


,                      (21b) 

 
where 
 

cb ae   .                    (22) 
 
So now, the eqn (17) can be replaced by 
 

1 1 1

( )( ) ( ) ( )

b e

a bx c ex a bx c ex
 

     
.                (23) 

 
Integration of the left-hand side of this equation is replaced by the integration of 

two simpler fractions. Their integration can be done by substitutions. Thus, for 
instance if we use u a bx   we get 

 
1 1 1 1

ln ln( )
du

dx u a bx
a bx b u b b

   
  .                (24) 

 
Consequently, 
 

1
ln

( )( )

dx a bx

a bx c ex c ex




    .                 (25) 

 
We have derived a useful general formula of integration. In particular, we can 

see now that 
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1
ln

( )

dx a bx

x a bx a x


 

 ,                  (26)

  
because 0c  , 1e  and consequently a   . 

We are now ready to solve the eqn (15). The integration of both sides of the 
equation 

 

 
dS

dt
S a bS


                    (27) 

 
gives 
 

1
ln

a bS
t C

a S


   ,                   (28) 

 
where C is the constant of integration. 

Simple arithmetical manipulations lead to the following solution of the eqn 
(15): 

 
1

at b
S Ce

a



 
  
 

.                   (29) 

 
The constant C can be determined by normalising calculated S to data at a 

certain time 0t  

 

0

0

1 atb
C e

S a

 
  
 

,                   (30) 

 
where 0S is the empirical size of the growing entity (e.g. the GDP) at a selected 

time 0t . 

If a bS r const   , i.e. if the growth rate is constant, the eqn (29) gives 
exponential growth. 

If a bS const  we have two possibilities: the growth rate represented by a bS

can either increase or decrease with the size of the growing entity: 
 

1 dS
a bS

S dt
  .                   (31) 

 
If 0b  , the eqn (29) represents the logistic-type of growth. The characteristic 

signature of this type of growth is its linearly decreasing growth rate. The 
corresponding size S of the growing entity approaches asymptotically a maximum 
value of 

 
a

S
b

  .                    (32) 

 
The eqn (32) defines the mathematical limit to growth, which is often described 

incorrectly as the carrying capacity but it is only the carrying capacity if parameters 
ɑ and b are clearly and convincingly related to the well-defined and well-explored 
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ecological limits; otherwise, the calculated limit S is just the calculated limit to 
growth, which may or may not represent the carrying capacity.  

For instance, if we consider the growth of the GDP and if we determine 
empirically the parameters ɑ and b using the empirical values of the growth rate it 
would be incorrect to claim that the calculated S represents the empirically 
determined carrying capacity because the past economic growth might be 
following an unsafe trajectory and the economic collapse might happen even 
before reaching the calculated limit S . For this reason, describing the logistic 
limit as the carrying capacity may be misleading and it would be perhaps better to 
avoid such descriptions.  

The same comment applies also to the calculated maximum when using the eqn 
(10). The calculated maximum, even if based on using the empirically-determined 
parameters ɑ and b, is just the calculated maximum. It also does not describe the 
carrying capacity. With limited resources, the growth might be terminated even 
before reaching the maximum calculated using the empirically-determined 
parameters. 

If 0b  then, according to the eqn (29), the growth approaches singularity 
(escapes to infinity) at the time 

 
1

lns

b
t t

a aC
   .                   (33) 

 
This type of growth resembles hyperbolic growth, which characterises the 

historical economic growth and the growth of human population (von Foerster, 
Mora & Amiot, 1960; Nielsen, 2014, 2016c, 2016d, 2016e). Hyperbolic growth (or 
to be more precise, the first-order hyperbolic growth) is given by the following 
simple equation: 

 
 

1( )S C bt   ,                    (34) 
 
where 0b  . 
Hyperbolic growth escapes to infinity when 
 

s

C
t t

b
  .                    (35) 

 

Table 1. Fundamental equations for using linear approximations for the growth rates in 
forecasting of trends. 

Linear Approximation The Corresponding Distribution  Comments 

1 dS
a bt

S dt
   

 
2exp 0.5S C at bt  

  
 S reaches a maximum when 0a bt   

1 dS
bS

S dt
  1( )S C bt    

If 0b  , hyperbolic growth. Singularity at 

/st C b . Reciprocal values, 1/ S , decrease 

linearly with time. 

1 dS
a bS

S dt
   

1
at b

S Ce
a


 

  
 

 

If 0b  : pseudo-hyperbolic growth. Singularity 

at 1
lns

b
t

a aC
  . Reciprocal values decrease 

non-linearly to /b a  when t t . 

If 0b  : logistic growth. S increases 

asymptotically to /a b  when t t . 
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Hyperbolic distribution is a solution of the following differential equation: 
 

1 dS
bS

S dt
 .                    (36) 

If we compare this equation with the eqn (31) we can see that they are similar. 
In both cases, for 0b  , growth rate increases linearly with the size of the growing 
entity. However, while for the hyperbolic growth [eqn (36) with 0b  ] the growth 
rate is directly proportional to S, for the growth described by the eqn (31) the 
linearly-increasing growth rate is displaced by the parameter ɑ. It is a small 
difference but with significant consequences for the reciprocal values.  

For the distribution described by the differential eqn (36) and by its solution 
(34), reciprocal values decrease linearly with time and they can be used as an 
uniquely identifying feature of hyperbolic distributions (Nielsen, 2014).  

For the distribution described by the differential equation (31) and its solution 
(29), and for 0b  , reciprocal values of the size of the growing entity do not 
decrease linearly with time. They approach asymptotically the limit of /b a  .  

However, graphically, solutions given by the eqns (29) and (34) look similar. 
They both increase slowly over a long time and fast over a short time and they both 
increase to infinity at a fixed time. Consequently, the solution given by the eqn (29) 
could be called a pseudo-hyperbolic distribution.   

The curious difference between the respective differential equations, (31) and 
(36), is that the eqn (31) cannot be treated as the generalisation of the eqn (36). The 
two equations have to be solved independently. The solution to the eqn (31) cannot 
be used to derive the solution to the eqn (36). While solving the eqn (31) is 
difficult, solving the eqn (36) is simple. Its solution can be obtained by substitution 

1S Z .  
 
3. Mathematical method - substitutions 
Fitting data and projecting growth can be also carried out by replacing S or the 

growth rate R by a suitably defined function and then checking whether such 
substitutions can be described by a linear approximation.  A few examples are 
shown in Table 2. 

The aim here is again to look for the simplest mathematical descriptions of 
growth rates. If the mathematical description of the growth rate of S is 
complicated, it might be possible that the mathematical description of the growth 
rate of ( )F S  could be simpler. Analysis of data can be simplified by looking for 
their alternative representations and the general idea is to try to reduce the analysis, 
if possible, to the simplest mathematical expression – the straight line. 

Thus, for instance, if lnF S , where S represents the empirically-determined 
size of the growing entity, and if 

 
1 dF

a bt
F dt

  ,                   (37) 

 
then 

 
2exp( 0.5 )F C at bt  ,                  (38) 

 
and  

 
2exp exp( 0.5 )S C at bt    .                  (39) 
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The new constant C is now different than in the eqn (38) but it does not matter. 
It is a normalisation constant, which is determined by comparing calculated 
distribution with data.  

 
If lnF S and if 
 

1 dF
a bF

F dt
  ,                   (40) 

 
then  

 
1

at b
F Ce

a



 
  
 

,                   (41) 

and 
 

1

exp at b
S Ce

a




  

   
   

.                  (42) 

Mathematical representations of S given by the eqns (39) and (42) are not 
simple but they are acceptable because they are based on reducing mathematical 
analysis of data to the simplest representation given by a straight line for the 
growth rate of F. 

We can also extend these alternative representations by replacing the growth 
rate R by a suitably defined function ( )F R . If the mathematical description of the 
growth rate of S turns out to be complicated it might be possible that a suitably-
defined function ( )F R  could simplify the analysis. 

Thus, for instance, visual examination of the empirical growth rate of S might 
suggest that it depends hyperbolically on time. We might try to fit hyperbolic 
distribution to the empirically-determined growth rate but it is also a good idea to 
check whether the distribution is indeed hyperbolic by examining the reciprocal 
values of R because if 1/ R should follow a straight line, then the distribution is 
hyperbolic (Nielsen, 2014). So, if  

 
1

( )F R a bt
R

   ,                  (43) 

 
then  

 
1 1dS

R
S dt a bt

 


.                  (44) 

 
Hyperbolic distribution is not as simple as a straight line but it can be reduced to 

a straight line, which is easier to accept and understand. Such an exercise increases 
confidence that the distribution is indeed hyperbolic or at least that it can be well 
approximated by a hyperbolic distribution.  

The differential equation (44) can be presented as 
 

dS dt

S a bt



,                   (45) 

 
which, when integrated, gives 
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1
ln ln( )S a bt C

b
   .                  (46) 

 
Consequently, 
 

1/( ) bS C a bt                                (47) 
 
because exp(ln )z z . The constants C are different in these last two equations 

but again it does not matter because they are just normalisation constants, which 
have to be determined by comparing calculated S with its corresponding empirical 
value. 

The eqn (47) is not simple but it has been obtained by reducing mathematical 
analysis to the simplest mathematical expression given by the eqn (43), which 
identifies hyperbolic distribution of R. The fundamental starting step is simple and 
the derived expression for S, even if complicated, can be accepted with a high 
degree of confidence.  

If a visual examination of the empirical growth rate R suggests that it follows an 
exponential distribution, we can try to fit an exponential function to R or to display 
it using the semilogarithmic scales of reference. If 

 
ln R a bt  ,                   (48) 

 
then  

 
1

exp( )
dS

a bt
S dt

                    (49) 

 
and the solution to this equation is 

 

exp
a

bte
S C e

b

 
  

 

                  (50) 

 
Again, it is not a simple description of S but this complicated expression has 

been derived using the simplest representation of R via ln R . 
All mathematical descriptions of S presented here [eqns (10), (29), (34), (39), 

(42), (47) and (50)] are not simple but all of them were derived using the simplest 
mathematical representations of related quantities. It is easy to construct 
complicated but dubious formulae but even complicated formulae are acceptable if 
they are derived using simple and acceptable assumptions.   

If the growth rate of S is represented directly by an exponential distribution, i.e. 
if 

 
1 btdS

ae
S dt

 ,                   (51) 

 
then, using the general eqn (6), we can find that 

 

exp bta
S C e

b

 
  

 
.                  (52) 

 
Solutions given by eqns (50) and (52) are the same. The difference is only in the 

way parameters ɑ and b are defined. The advantage of using the linear 
representation given by the eqn (48) is that it allows for a clear demonstration 
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whether growth rates follow exponential distribution or not. Exponential 
description of data applies, for instance, to the growth rate between 1963 and 2017 
describing the growth of the world population (see the next section). 

 
Table 2. Examples of extended applications of linear approximations to describe 
complicated distributions. 

Linear Approximation The Corresponding Distribution 

lnF S ;
1 dF

a bt
F dt

   

 

2exp exp( 0.5 )S C at bt  
  

 

lnF S ;
1 dF

a bF
F dt

   

 

1

exp at b
S Ce

a




 
 
   
  
 

 

1
F a bt

R
   ;

1 dS
R

S dt
  

 

1/( ) bS C a bt   

ln R a bt  ;
1 dS

R
S dt

  

 

exp
a

bte
S e

b

 
 
  

 

 
We could also have other examples of growth rates, whose description could be 

reduced to linear approximations. For instance, analysis of the world Gross 
Domestic Product indicated that the growth rate followed a familiar mathematical 
distribution (Nielsen, 2015a).  

 

11
( )rtdS

R a be
S dt

                     (53) 

 
This distribution can be also reduced to a linear distribution by using the 

following equation 
 

1
ln lnF a b rt

R

 
    

 
.                 (54) 

 
This might sound like making it more complicated but it is not because, as 

mentioned before, deviations of data from a straight line can be easily detected and 
using straight lines could be used as a convenient test whether our mathematical 
interpretation of growth rate data is correct. In the case of global economic growth, 
the assumption that the growth rate should be described by the eqn (53) is correct 
has been confirmed by the linear distribution given by the eqn (54).  

The solution of the differential eqn (53) is 
 

 
1

( ) exp ln rtt
S t C a be

a ra

 
   

 
.                (55) 

 
This distributions changes asymptotically into exponential distribution with the 

growth rate of 1/ a . 
 
4. Examples 
It is important to understand that only general trends of growth rates determine 

the general trends of the corresponding growth trajectories. Thus, only general 
trends of growth rates should be used in projecting growth. Fine structures, such as 
moderate oscillations or fluctuations can be ignored because they have no impact 
on the general trends of growth.  

Furthermore, in reproducing the general trends of growth rates it is essential to 
use functions, which do not depend critically on the range of data. Suitable 
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functions are straight line, exponential function or any other function that can be 
reduced to a straight line, such as the function described by the eqn (53). Higher 
order polynomials should not be used. They are suitable for reproducing growth 
trajectories or for using them in polynomial interpolations of gradients but they are 
not suitable in forecasting because their shape depends strongly on the range of 
data.   

Application of differential equations in the analysis of trends and in forecasting 
is explained in Figures 1-3.  

 
 

Figure 1. Two sets of calculations of the growth rate of the Gross Domestic Product per 
capita (GDP/cap) in the United Kingdom, based on using data of Maddison (2010), are 

presented.  R(Direct) is the growth rate calculated directly from the GDP/cap data using the 
eqn (2). R(Refined) is calculated using data for the GDP/cap and a smoothed-out gradient. 

It shows the fine structure, which was obscured by fluctuations of R(Direct). 
 
Figure 1 shows the growth rate of the Gross Domestic Product per capita 

(GDP/cap) in the United Kingdom between 1830 and 2008 calculated using 
Maddison’s data (Maddison, 2010). There are two sets of calculations in this 
figure, identified as R(Direct) and R(Refined). 

R(Direct) is the growth rate calculated directly from data using the eqn (2). 
Results of such calculations are influenced strongly by local gradients. Small 
deviations in the empirical values of the GDP/cap can produce large differences in 
the calculated growth rate. Conversely, large fluctuations in the growth rate can be 
expected to be reflected in only small variations in the data describing growth 
trajectory.   

R(Refined) is the growth rate calculated using gradients smoothed out by 
polynomial interpolation. The noise created by random local gradients is then 
filtered out and a clear trend is revealed. We can see now that the growth rate was 
in fact gently oscillating. These gentle oscillations were obscured by strong 
fluctuations of R(Direct). 

Our first step now is to use the discrete values of the growth rate, calculated 
from data, either directly or by using interpolated gradient, and to calculate the 
growth trajectory of the growing entity, which in our case is the GDP/cap. To this 
end, we have to carry out numerical integration of the following differential 
equation: 

 
1

e

dS
R

S dt
 ,                    (56) 

 
where eR is represented by the discrete values of either R(Direct) or R(Refined). 

Results of these calculations are shown in Figure 2. The top section of these 
figure presents the full range of data compared with the results of the numerical 
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integration of the eqn (56). Unfortunately, results of calculation are obscured by 
data. To see them better we have to display a smaller section of data as shown in 
the lower part of Figure 2. We can see now that small ripples in the growth 
trajectory of the GDP/cap are associated with large fluctuations in the growth rate 
R(Direct) calculated directly from data. The general trend of the GDP/cap is well 
reproduced by the gently varying growth rate, R(Refined).  

 

 
Figure 2. Results of numerical integration of the eqn (56) using growth rates R(Direct) and 

R(Refined) shown in Figure 1. The Gross Domestic Product per capita (GDP/cap) is 
expressed in the 1990 International Geary-Khamis dollars. Results of calculations are 

obscured by data. To see them more clearly, a smaller section of the range of data is shown 
in the lower part of this figure. The green line represents the calculated curve using the 

fluctuating values of R(Direct). It is not a line drawn through the data.  
 

Our next step is to see how the analytical representations of the growth rate are 
reflected in the growth trajectory of the GDP/cap. To this end, we have to solve 
analytically the following differential equation: 

 
1

( )
dS

f t
S dt

 ,                    (57) 

 
where, in our case, ( )f t is either a straight line fitted to R(Refined), as shown in the 
top part of Figure 3, or the sixth order polynomial reproducing gentle oscillations 
of R(Refined). The best linear fit to R(Direct) is virtually the same as the best 
linear fit to R(Refined).These distributions are given by the following equations:  

 
( )f t a bt                     (58) 

 
and 

6

0

( ) i
i

i

f t a t



 .                   (59) 
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Their parameters are: 28.964 10a    , 55.459 10b   , 6
0 1.4 1012a   , 

3
1 4.33 18 0a   , 0

2 5.5 1051a   , 3
3 3.78 17 0a   , 6

4 1.45 103a   , 
10

5 2.974 10a   and 14
6 2.53 15 0a  .  

 

 
Figure 3. Analytical solutions of the eqn (57) are shown in the lower part of this figure, 
with ( )f t represented either by a straight line or by the sixth-order polynomial fitted to 

R(Refined), as shown in the top part. The straight-line fit to R(Direct) is virtually the same 
as the straight-line fit to R(Refined). To display the difference between these two analytical 

solutions, data in the lower section are shown in steps of 10 years. While the solution 
corresponding to the sixth-order polynomial reproduces gentle oscillations in the growth 

trajectory of the GDP/cap, the solution corresponding to the straight-line representation of 
the growth rate reproduces the general trend of the economic growth and thus is perfectly 

suitable for predicting the growth trajectory. 
 

Solutions of the eqn (57) are given by the eqn (6). They are shown in the lower 
part of Figure 3. The solution corresponding to the sixth-order polynomial follows 
the data precisely and reproduces the small oscillations in the growth trajectory. 
Unfortunately, this solution cannot be used in forecasting because the calculated 
trajectory depends strongly on the range of data, as we can see in the top part of 
Figure 3. The growth rate described by the sixth-order polynomial is only realistic 
strictly within the range of the growth rate data.  

So, we are left with only one solution, which does not depend critically on the 
range of the growth rate data, the solution corresponding to the straight line 
describing the growth rate (see the top part of Figure 3). As we can see in the lower 
part of Figure 3, this solution gives excellent description of the growth trajectory 
and can be used in forecasting.  

In general, as long as R(Refined) oscillates gently around, or follows closely, a 
straight line, or some other function, which does not depend critically on the range 



Journal of Economics Bibliography 

JEB, 4(3), R.W. Nielsen, p.203-221. 

217 

of data, such simplified representations of R(Refined) can be used successfully not 
only in the description of the time-dependent series but also in the reliable 
forecasting. However, for large oscillations projections of trends are unreliable. A 
trend has to display a certain degree of stability to be predictable.  

Now that we understand which features of the growth rate are important in 
forecasting, we can use an example of the growth of the world population. The 
advantage of using this example is that we can compare our calculation with the 
independent calculations carried out recently by the United Nations (2015).  

The top part in Figure 4 shows the growth rate for the growth of the world 
population calculated directly from the population data (US Census Bureau, 2017). 
In this case, the data were of such good quality that the interpolation of gradients 
was unnecessary.  

In order to project growth, we seem to have two obvious options: (1) to use the 
wide range of growth rate data between 1963 and 2016, which can be well 
described by exponential function or (2) to assume that from around 2000 the 
growth rate is now settling along a linearly decreasing trajectory. The projection of 
growth of the world population based on fitting exponential distribution to the 
growth rate could be considered as more reliable because it is based on a wide 
range of data but it is still possible that the growth rate will now follow a linearly 
decreasing trajectory.   

Results of calculations are shown in the lower part of Figure 4. The trajectory 
corresponding to the exponentially decreasing growth rate is given by the eqn (52). 
It is a pseudo-logistic trajectory because it increases asymptotically to a constant 

value given by the normalization constant C. Its parameters are: 102.179 10a  and 
21.406 10b   and its asymptotic value is 15.6 billion. 

The trajectory corresponding to the linear fit to the growth rate is given by the 

eqn (10). Its parameters are: 12.520 10a  and 41.197 10b   . It reaches a 
maximum of 12.4 billion in 2106. 

Calculations shown in Figure 4 are in good agreement with projections of the 
United Nations (2015). According to this source “The world population is 
projected to increase by more than one billion people within the next 15 years, 
reaching 8.5 billion in 2030, and to increase further to 9.7 billion in 2050 and 11.2 
billion by 2100” (United Nations, 2015, p. 2). My prognosis is 8.4 billion in 2030, 
9.8 billion in 2050 and 11.8 billion in 2100 for the trajectory leading to the 
localized maximum. If the growth of the world population is going to follow the 
trajectory leading to the asymptotic maximum, then it will also reach 8.4 billion in 
2030 and 9.8 billion in 2050 but only a slightly larger size of 12.4 billion in 2100. 
The difference between predicted values in 2100 is so small that we shall not know 
until the next century whether we are likely to reach a localized maximum of 
around 12 billion or to have the population continually increasing to the asymptotic 
size of around 15.6 billion, if such a large size can be supported by the accessible 
resources.  

A summary of all these predictions is presented in Table 3. The UN projection 
gives no information about the expected size of the population in the 22nd century. 
For the 21st century, the agreement between these two independent calculations is 
remarkably close. 
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Figure 4. Forecasting of the growth of the world population. Two representations 
(exponential and linear) of the growth rate based on the data of the US Census Bureau 
(2017), are used to generate growth trajectories for the growth of the world population. 

These calculations are in good agreement with projections of the United Nation (2015). The 
UN publication gives no information about the growth of the population in the 22nd 

century. 
 

Table 3. Predicted growth of the world population 
Source 2030 2050 2100 Smax Sa 

UN 8.5 9.7 11.2 NI NI 
CA 8.4 9.8 11.8 11.9 NA 
CA 8.4 9.8 12.4 NA 15.6 

Note: UN – United Nations, 2015; CA – current analysis; NI – no information; NA – not applicable; 
Smax – maximum value; Sa – asymptotic value 

 
These calculations should be taken as the prediction of the most likely future, 

which can be still changed. The future depends on our actions and a safer future 
would be in a lower size of the projected population. It is in our power to do it but 
we would have to work harder on reducing the growth of global population. The 
obvious place of our attention should be in poorer countries, and the way to do it is 
to improve their standard of living (Nielsen, 2016f).  

Another good example of the application of the mathematical method of 
forecasting described in the presented here document is the economic growth in 
Japan because, as we shall soon see, the future is already here and thus we can use 
data to see how reliable is our forecasting.  

Figure 5 presents the growth rate of the GDP in Japan as the function of time. 
We can see that the growth rate, as described by R(Refined) was decreasing but 
then, around 2007, it started to increase. However, between 1975 and 2007, it 
followed an approximately linearly decreasing trajectory. We can ask, therefore, 
what would have happened if the growth rate in Japan continued to follow this 
linearly decreasing trajectory and the answer is that it would have reached a 
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maximum because the straight line crosses the horizontal axis around 2007. From 
around that time, the GDP in Japan would start to decrease. However, the growth 
rate came close to zero and started to increase indicating that rather than reaching a 
maximum, the growth of the GDP in Japan continued to increase, which is hardly 
surprising because whenever possible, negative growth rate is always avoided.    

 

 
Figure 5.Growth rate of the GDP in Japan as a function of time. The data are from the 

World Bank (2017). 
 

 
Figure 6.Growth rate of the GDP in Japan as a function of the size of the GDP. The data are 
from the World Bank (2017). When the growth rate decreased to 1.4% it became unstable. 
The same process occurred in Greece (Nielsen, 2015b). Japan should not make the same 

mistake as it was made in Greece by trying to boost its growth rate. For the safe economic 
growth, the growth rate of the GDP in Japan should be maintained between zero and 1%. 

 
We can also check whether the growth rate of the GDP followed a logistic 

trajectory by plotting it as the function of the size of the GDP. Such a plot is 
presented in Figure 6, which shows that the growth rate was indeed decreasing 
linearly over a long time and thus that the growth of the GDP might have been 
logistic. We should understand that the distinction between alternative trajectories 
is not immediately obvious. Growth trajectories corresponding to different 
representations of the growth rate are indistinguishable over a long time. Only 
when the growth reaches a maximum or approaches it asymptotic value we might 
see distinction between two alternative trajectories. We can see this feature inthe 
lower part of Figure 4 and we shall soon see the same feature for the growth of the 
GDP. 

It is important to notice that when the growth rate reaches a low value, economic 
growth is likely to be unstable. If it approaches a maximum, then it should soon 
change to a negative value, but no country in the world would be happy to have a 
consistently negative growth. Consequently, it can be expected that all efforts will 
be made to keep the growth rate positive. If the growth of the GDP approaches its 
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asymptotic value, then it should decrease asymptotically to zero. Such a fine tuning 
is practically impossible and the growth rate might vary randomly around a small 
positive value or it might be forced to increase substantially and thus to depart from 
its logistic trajectory. Such a situation happened in Greece (Nielsen, 2015b). Their 
growth rate was decreasing fast along a size-dependent linear trajectory, reached a 
low value, became unstable, was forced to increase along a linear trajectory and 
inevitably led to the economic collapse. 

We can now use the straight-line trajectories presented in Figures 5 and 6 to 
project the economic growth in Japan. Results are shown in Figure 7. 

 
Figure 7. Growth of the GDP in Japan. Projected growth is compared with data. The GDP 
values are close to the predicted logistic trajectory. Economic growth in Japan will remain 
sustainable as long the growth rate is going to be kept above zero but below around 1%. 

 
We can see that, as mentioned earlier, for a long time there is no distinction 

between the logistic trajectory and the trajectory leading to a localized maxim. It is 
only when the growth is close to the localized maximum that the distinction 
between the two trajectories becomes clear.  

The logistic trajectory is described by the eqn (29) with parameters 
28.411 10a   and 21.279 10b    . Its asymptotic value is 12$6.573 10 (2010 

US$). The trajectory leading to a localized maximum is described by the eqn (10) 
with parameters 03.452 10a   and 31.726 10b    . Its maximum was 12$5.469 10

in 2006. Figure 7 shows that the forecasting of growth based on the described 
method gives again reliable results. Not only does it describe the growth when 
alternative trajectories are indistinguishable but also projects reliably the growth 
when the distinction is well pronounced. Economic growth in Japan follows now 
closely the logistic trajectory. As mentioned earlier, it is difficult to follow 
precisely this trajectory because fine tuning of the growth rate is required. 
However, to follow it precisely is not critical. What is critical, as indicated by these 
calculations, is to keep the growth rate at a low level. A small constant value would 
give a slow exponential growth, which might be, for a long time, close enough to 
the logistic trajectory. On no account, the growth rate should be forced to increase 
above 1%, unless only temporarily. 

 
5. Summary 
I have described mathematical method of analysis of growth rates and of 

predicting growth trajectories. Growth rate can be presented either as a function of 
time or as a function of the size of the growing entity. The general aim is to find a 
linear representation of the growth rate and then use differential equations to 
translate the linearly represented growth rate into mathematically more 
complicated descriptions of growth trajectories, which in turn can be used in 
forecasting. Other representation, which do not depend critically on the range of 
data can be also used. The simplest of these alternative representation is the 
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exponential function. Another example is a function described by the eqn (53). 
Polynomial descriptions of growth rates should not be used because they depend 
strongly on the range of data. They are unsuitable in forecasting of trends but they 
are suitable for more refined representations of growth rates. The method described 
in this document is illustrated by numerous examples listed in Tables I and II and 
in Figures 1-7. It is a simple method, which is easy to use.  

 Forecasting of trends can be used as the essential tool in shaping the future. It 
can show what steps should be taken to control growth and how to avoid 
undesirable outcomes. Not all critical trends can be successfully altered but if we 
can understand their dynamics we might be better equipped to search for successful 
solutions.  
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