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Abstract. Fundamental law of growth is used to explain the mechanism of hyperbolic 

growth of human population and of the Gross Domestic Product (GDP). Hyperbolic growth 

is described by a simple mathematical formula and the explanation of its mechanism turns 

out to be also simple. Historical economic growth was prompted by the familiar net market 

force, which was on average directly proportional to the existing wealth expressed usually 

as the GDP. The larger was the GDP, the stronger was the driving force and the faster was 

the economic growth. It is shown that this simple force generates hyperbolic growth. No 

other force is required. Hyperbolic growth is not assumed but derived when using this 

force. Historical growth of population was prompted by the biologically driven force of 

procreation, which was on average approximately constant per person. This force includes 

the natural, familiar, biologically controlled process of births, aging and dying. Here again, 

hyperbolic growth is not assumed but derived when using this force. Explanation of two 

demographic transitions in the past 12,000 years in the growth of population and of the 

currently experienced transition is also proposed. Currently, economic growth and the 

growth of population are no longer unconstrained. Other additional forces contribute 

significantly to the growth process and the growth is no longer hyperbolic.  

Keywords. Hyperbolic growth, Mechanism of growth, Population growth, Economic 

growth. 
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1. Introduction 
yperbolic growth gives a remarkably good description of population and 

economic data (Nielsen, 2014, 2016a, 2016b, 2016c). It describes 

historical growth of the Gross Domestic Product (GDP) and of population, 

global and regional and even in individual countries. This conclusion is based on 

the analysis of the extensive data published by Maddison (2010). They describe the 

economic growth and the growth of population during the AD era, starting from 

AD 1 and extending to 2008. Hyperbolic growth describes also remarkably well 

the growth of global population in the past 12,000 years (Nielsen, 2016a). This 

analysis is supported by population data coming from a wide range of sources 

(Biraben, 1980; Clark, 1968; Cook, 1960; Durand, 1974; Gallant, 1990; Haub, 

1995; Livi-Bacci, 1997; Maddison, 2010; McEvedy & Jones, 1978; Taeuber & 

Taeuber, 1949; Thomlinson, 1975; Trager, 1994, United Nations, 1973, 1999, 

2013).    

Hyperbolic growth of population was first noticed by von Foerster, Mora & 

Amiot (1960) close to 60 years ago and it was soon confirmed and accepted by 

other authors (Kapitza, 2006; Kremer, 1993; Podlazov, 2002; Shklovskii, 1962, 

 
a
† Griffith University, Environmental Futures Research Institute, Gold Coast Campus, Qld, 4222, 

Australia. 

. +61407201175 

. r.nielsen@griffith.edu.au or ronwnielsen@gmail.com 

H 



Journal of Economics Library 

JEL, 3(4), R.W. Nielsen, p.603-620. 

604 

2002; von Hoerner, 1975). Hyperbolic growth turns out to be exceptionally stable 

and generally undisturbed. Many driving forces might be considered as influencing 

growth. For the growth of human population, and as pointed out by Kapitza (2006), 

all these forces can be arranged in such categories as industrial, economic, cultural, 

social and biological. However, he also pointed out that the simple formula 

describing the growth of the world population suggests that many of these forces 

must have been ―suppressed by the process of averaging‖ (Kapitza 2006, p. 77). 

Economic growth is also described by the simple hyperbolic formula and in 

general it has been also stable over a long time in the past suggesting a simple 

explanation of the mechanism of growth and indicating that the growth must have 

been also controlled by single net force. It is the aim of this publication to identify 

these dominating forces of growth and to explain the mechanism of the historical 

hyperbolic growth of population and of the GDP.  
 

2. Mechanism of growth 
2.1. Mechanism of the historical economic growth 
Gross profit may depend on many factors but it obviously depends on the size 

of investment. ―Money makes money. And the money that makes money makes 

more money‖ (Benjamin Franklin). Economic growth is directly related to the size 

of our investments. With the sufficiently high investment, we can build more retail 

stores, or larger retail outlets, we can buy more goods for sale, employ more people 

in our business, buy more tools and machinery, invest in a better equipment to 

increase production, build more houses either for sale or for rent, build more 

factories, improve agriculture, improve our services, pay for advertising, pay for 

the transportation and distribution of goods and support all other necessary 

activities aimed at generating profit. According to the well-known theory of Cobb 

& Douglas (1928), production yield can be described by the following simple 

equation: 

 

Y aL K  .        (1) 

 

Where Y is the production yield, a is the so-called total factor productivity, L is 

labour expressed as person-hours during a given time, e.g. during one year, K is 

capital input (the money invested in the equipment, buildings or anything else to 

support production),  and  are constants, 1   , 0 1  and 0 1  . 

In this equation, wealth generates wealth or money makes money not only 

through the investment K, which could be passed from one year to another, but also 

through the ongoing costs of labour.  

In essence, therefore, the right-hand side of the eqn (1) represents the 

investment of a certain amount of money to produce profit. The left-hand side does 

not represent the total wealth but the increase in wealth, which could be the annual 

increase. This increase is proportional to the money locked as K and to the annual 

investment of money expressed as L. We need money to make money. We need 

wealth to generate wealth.  

In order to explain the mechanism of economic growth we shall look at it from 

the point of view of a driving force, because driving force represents the 

mechanism of growth. For the economic growth, it is the net market force. We can 

have many market forces but in order to explain the mechanism of growth it is best 

to start with the simplest assumption and make it complicated only if necessary. 

This is the fundamental principle in scientific research, known as the Occam‘s 
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razor or the law of parsimony: Entia non sunt multiplicanda praeter 

necessitatem. 
The simplest way to describe mathematically the driving force of economic 

growth is to assume that it is directly proportional to the invested wealth. The 

larger is the circulated wealth, the greater wealth can be produced. 

 

F cW ,         (2) 

 

where W is the total existing wealth and c is a constant. 

It is essential to understand that we are dealing here with average quantities. In 

explaining economic growth of a country or region or of the world we are not 

dealing with individual economic units but with the whole assembly of these units. 

The eqn (2) describes the average force of economic growth. The quantity W 

represents the total wealth of a country, a group of countries or of the whole world, 

expressed usually as the GDP and c could represent the average fraction of this 

wealth used to drive economic growth. The larger is the already generated wealth, 

the larger is the driving force of economic growth when this wealth is invested to 

produce more wealth. Wealth generates wealth. This principle and this process 

appears to be well known and universally accepted. However, this principle has 

been never expressed in mathematical form, which could be compared directly 

with data.It was never used to describe economic growth trajectories. It was never 

used to describe and explain the mechanism of the historical growth of the GDP. 

In our earlier publication (Nielsen, 2016d), we have formulated a general law of 

growth: 

 

F rG ,          (3) 

 

where G is the growth rate and r is the resistance to growth. 

The advantage of using this simple law of growth is that it links the force of 

growth with trajectories of a growing entity. The force of growth represents the 

mechanism of growth and the law of growth allows for defining this force, i.e. for 

defining the expected or postulated mechanism, and to compare it with data as 

described by growth trajectories. This simple law allows for a mathematical 

formulation of postulated mechanism and for translating this mechanism into 

growth trajectories, which can be readily tested by data. Thus, this law allows for 

testing various mechanisms of growth by data. 

The growth rate G is defined as 

 

1 dW
G

W dt
  ,         (4) 

 

where t is time.  

If we now insert the postulated driving force of economic growth defined by the 

eqn (2) into the eqn (3), we shall get the following equation describing economic 

growth. 

 

1 dW
kW

W dt
 ,         (5) 

 

where /k c r . 
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We have now linked the driving force with economic growth trajectory. The 

parameter k is inversely proportional to the resistance to growth r and could be 

called the compliance factor or simply the compliance. In the formulation of the 

general law of growth (Nielsen, 2016d) we have defined 1/ r as compliance. 

However, k differs only by a constant c so it plays the same role as 1/ r . The larger 

is the parameter k, the more efficient is the generation of wealth and the faster is 

the growth of W. We could easily extend this model by considering that c or r or 

both of them depend on time, but at this stage it is preferable to use the simplest 

possible assumption.  

The eqn (5) does not describe the growth of an individual economic unit but the 

average economic growth of a country, region or globally. Economic growth of a 

single unit might be affected by many random forces but for a large assembly of 

such units, random forces might be averaging out. If they are not or if there is some 

other strong force not included in our simple assumption, then our predictions of 

growth will be contradicted by data and we shall have to modify our assumed 

mechanism of growth. We can check whether our assumption is correct by 

comparing the calculated trajectory with data.  

The eqn (5) can be solved using the substitution 
1W Z  . Its solution is 

 

1
W

C kt



.         (6) 

 

This is hyperbolic growth. Data describing historical economic growth 

(Maddison, 2010) and their analysis (Nielsen, 2016b) show that our choice of the 

driving force was correct and that there is no need to assume the presence of any 

other type of forces. An example of comparing calculations with data is presented 

in Figure 1. 

 

Figure 1. World economic growth as described by the Gross Domestic Product (Maddison, 

2010) compared with hyperbolic distribution. Single and simple driving force explains the 

mechanism of growth. This force was so strong that even the Industrial Revolution had no 

impact on changing the growth trajectory. 

 
Data and their analysis show that the historical economic growth was indeed 

hyperbolic and now we can understand why. Historical economic growth was 

prompted by a single dominant force directly proportional to the existing volume of 

wealth, expressed usually as the GDP. Hyperbolic economic growth describes the 

net historical growth of a large number of economic units. The larger was the 
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existing wealth of a country or a region or globally, the larger was the driving force 

of economic growth. Currently, economic growth is no longer hyperbolic. It is no 

longer controlled by the simple force given by the eqn (2). Driving forces appear 

now to be now more complicated. 

It should be noted that the growth described by compound interest is of a 

different kind. It is not a spontaneous and unconstrained growth controlled by the 

net driving force proportional to the size of the existing wealth. The force 

controlling the growth described by compound interest is constrained. It is dictated 

by human-imposed regulations. No bank in the world would pay interest increasing 

in the direct proportion to the balance of our deposits. For the money deposited in 

the bank, interest varies within a small range of values and consequently it is 

approximately constant. This type of growth is described by a constant or 

approximately constant force of growth, which generates exponential growth, the 

growth described by compound interest. Likewise, no bank in the world would give 

a loan with interest decreasing with the decreasing balance. These two types of 

transactions are controlled by man-made regulations. They are not controlled by 

the assumed by us, and confirmed by data, force describing the spontaneous and 

unconstrained historical economic growth. However, it does not mean that the 

current economic growth cannot be exponential. It can and it often is because, as 

indicated by data, the current economic growth is no longer prompted by the 

historically prevailing single force.  

2.2. Mechanism of the historical growth of population 
The most obvious and essential force, which has to be considered to explain the 

mechanism of the growth of population is obviously the biologically-controlled or 

prompted force of procreation, which is defined here as the difference between 

biologically controlled birth and death rates. Other forces might be included, if 

necessary, but this force is indispensable.  

Let us assume that on average, the biologically controlled force of procreation 

is constant per person. Biologically controlled birth and death rates may vary over 

time but we assume that on average and per person the difference remains the 

same. This is a very simple assumption but again in science it is always advisable 

to use the simplest possible assumptions and make them more complicated only if 

necessary. Under this assumption, 

 

F
c

S
 ,          (7) 

 

where F is the biologically controlled force of procreation, S is the size of the 

population and c is certain average constant. It describes how, on average, each 

person contributes to the growth of population. 

If we use this force in the general law of growth given by the eqn (3) we shall 

get 

 

cS rG ,          (8) 

 

where G is now given by 

 

1 dS
G

S dt
 ,          (9) 
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which leads to the following differential equation describing the growth of 

population  

 

1 dS
kS

S dt
 .                   (10) 

 

Solution to this equation is 

 

1
S

C kt



.                   (11) 

 

It is also a hyperbolic distribution, which gives excellent description of data 

(Nielsen, 2016a, 2016c). Example is shown in Figure 2. 

 

 

Figure 2. Growth of the world population (Maddison, 2010) compared with hyperbolic 

distribution. Single and simple driving force explains the mechanism of growth. This force 

was so strong that even the Industrial Revolution had no impact on changing the growth 

trajectory. 

 
The mechanism of historical hyperbolic growth of population is explained as an 

unconstrained growth prompted solely by the biologically controlled force of 

procreation. This force is given by the average difference between biologically 

controlled birth and death rates and is assumed to be constant per person. This 

simple mechanism explains global and regional historical growth of population 

(Nielsen, 2016a, 2016c). 

2.3. Mechanism of demographic transitions 
If we include in our analysis a wider range of data describing the growth of the 

world population (Biraben, 1980; Clark, 1968; Cook, 1960; Durand, 1974; Gallant, 

1990; Haub, 1995; Livi-Bacci, 1997; Maddison, 2010; McEvedy & Jones, 1978; 

Taeuber & Taeuber, 1949; Thomlinson, 1975; Trager, 1994, United Nations, 1973, 

1999, 2013) we shall soon discover certain interesting details showing two 

demographic transitions in the past and the current ongoing transition (Nielsen, 

2016a). 

As we have shown earlier (Nielsen, 2016a), growth of the world population was 

hyperbolic between 10,000 BC and 500 BC, between AD 500 and 1200, and 

between AD 1400 and 1950. During these large sections of time, taking 

approximately 90% of the past 12,000 years, the mechanism of growth of 

population can be explained as being prompted by the simple, biologically 
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controlled, force of procreation, which was on average constant per person. All 

other forces, even if present, had no influence on the growth of global population. 

They were either too weak or they were averaged out.  

The time when the prevailing hyperbolic growth was significantly disturbed in 

the past 12,000 years was only between 500 BC and AD 500, between and AD 

1200 and 1400 and now after around 1950. These are the only recorded 

demographic transitions in the past 12,000 years. The first transition was from a 

fast to a slow hyperbolic trajectory. The second transition was from a slow to a 

slightly faster trajectory and the current transition is to a yet unknown trajectory. 

The first transition appears to coincide with the massive and widespread 

changes in the style of living associated with the intensified changes in the political 

landscape in various parts of the world, graphically and comprehensively explained 

by Teeple (2002). It is also probably not without significance that this transition 

coincides with the rise and fall of Roman Empire, the longest lasting political 

system in history, which by the first century BC ruled already over vast areas of 

land surrounding Mare Nostrum (the Mediterranean). After its fast expansion and 

after subjugating many independently-living societies under its rule, this powerful 

and seemingly unconquerable political structure disintegrated into many fragments 

of independent countries. However, during that long time, significant changes in 

the political landscape were also occurring outside the realm of the Roman Empire.  

Between 10,000 and 500 BC, growth of population is described by a fast-

increasing hyperbolic trajectory, as defined by the parameter k. After the BC/AD 

transition, the growth was directed to a significantly slower trajectory characterised 

now by the parameter k, which was about 6.4 times smaller. (The resistance to 

growth was now significantly larger.) Thus, the proposed explanation of the 

BC/AD transition is that it was caused by strong exogenous forces of political 

nature, forces causing the wide-spread and profound changes in the style of living. 

During that time, the resistance to growth was changing and eventually settled 

along a significantly larger value. 

Demographic transition between AD 1200 and 1400 is much easier to explain. 

During that time, there was a temporary delay in the growth of human population. 

When closely inspected, it can be found that this delay coincides with themost 

unusual convergence of demographic catastrophes. It appears to have been caused 

by a combined impact of five large demographic catastrophes (Nielsen, 2016a):  

Mongolian Conquest (1260-1295) with the total estimated death toll of 40 million; 

Great European Famine (1315-1318), 7.5 million; the 15-year Famine in China 

(1333-1348), 9 million; Black Death (1343-1352), 25 million; and the Fall of Yuan 

Dynasty (1351-1369), 7.5 million.  

During this transition, hyperbolic growth changed to a slightly faster trajectory, 

characterised by k only about 30% higher. This is the only available evidence that 

the growth of human population might have been affected by demographic 

catastrophes. However, their combined impact was small. The transition to a faster 

trajectory quickly compensated for the loss of time in the growth of population. 

This quick process of recovery could be explained by the regenerating impacts of 

Malthusian positive checks (Malthus, 1798; Nielsen, 2016f). 

Currently, after a minor boosting around 1950, the growth of human population 

is slowing down. The possible explanation of the current diversion to a slower 

trajectory appears to be of endogenous nature associated with human choices and 

motivations, voluntary or enforced. While in many countries there is an increasing 

tendency to opt for smaller families, in China, small families have been enforced 

by legislation. This additional force appears to be the force of preventive checks 

(Malthus, 1798). They may have been active in the past but they were too weak to 

shape the growth trajectories.  
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So, the three demographic transitions in the past 12,000 years, including the 

ongoing transition, can be probably explained by three different forces: political 

forces active during the first transition, which lasted for about 1000 years; forces of 

demographic catastrophes, which were active for about 200 years; and the 

endogenous forces of personal choices, either voluntary or enforced by law during 

the current transition. 

It would be difficult to describe mathematically all these complex forces. 

However, as already mentioned, the first two transitions were between hyperbolic 

trajectories characterised by different k factors. During these transitions, the k 

factor was changing. During the first transition, k factor dramatically decreased, 

which means that the resistance to growth dramatically increased. It increased by a 

massive factor of about 6.4. During the second transition, k factor slightly 

increased. The resistance to growth decreased by about 30%. Thedescription of the 

past and present demographic transitions can be reduced to the description of 

changes in the compliance factor or in the corresponding resistance to growth. 

Resistance to growth was changing and we can study how it was changing. Such a 

study will not give a complete mathematical explanation of the mechanism of 

demographic transitions but will reduce this explanation to a single parameter: to 

changes in the compliance factor k or in the corresponding resistance to growth.   

We can study these changes using a slightly modified eqn (8). If we assume that 

the resistance to growth was dependent on time (or equivalently that k depended on 

time), then we shall have the following equation describing growth trajectories 

during demographic transitions:  

 

1 ( )
( ) ( )

( )

dS t
k t S t

S t dt
 .                  (12) 

 

Now, for better clarity, we are showing explicitly the dependence on time. 

Solution of this equation is 

 
1

( ) ( )S t k t dt


  
  .                  (13) 

 

If we assume that ( )k t is represented by an n-order polynomial,  

 

0

( )
n

i

i

i

k t a t


 ,                   (14) 

 

then 

 
1

1

0

( )
n

j

j

j

S t b t






 
  
 
 ,                   (15) 

 

where 1 /j jb a j  for 0j  and 0b is the constant of integration. 

Even though we cannot describe mathematically the mechanism of growth 

during the demographic transitions, we can understand them a little better by 

studying changes in the growth factor ( )k t , whose reciprocal values represent 

resistance to growth. Results are shown in Figure 3. The corresponding parameters 

are listed in Table 1. These calculations do not explain why the resistance to growth 
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was changing (they do not explain the mechanism of the demographic transitions) 

but at least they are describing how the resistance to growth (or the compliance 

factor) was changing. 

In the lower section of Figure 3, we show the growth trajectory during the AD 

era. It is made of two hyperbolic trajectories, between AD 500 and 1200 and 

between AD 1400 and 1950. The remaining segments of time represent 

demographic transitions described by the reciprocal values of polynomials, as 

given by the eqn (15). This section shows also one of the projected trajectories. 

In the middle section, we show the overall fit to the data, which is represented 

by hyperbolic trajectories between 10,000 BC and 500 BC, between AD 500 and 

1200 and between AD 1400 and 1950. The remaining segments of time represent 

demographic transitions described by the reciprocal values of polynomials [see eqn 

(15)]. 

In the top section, we show time dependence of the compliance factor ( )k t , 

which can be calculated using the fitted ( )S t . As we can see from the eqn (13) 

 

( )
( )

dZ t
k t

dt
  ,                   (16) 

 

where 
1( ) ( )Z t S t . 

In Figure 3, we show the compliance factor ( )k t only down to 2000 BC. 

However, this factor was constant between 10,000 BC and 500 BC but then started 

to decrease. The compliance was decreasing, the resistance to growth was 

increasing and the growth of population was slowing down. Around 80 BC, the 

compliance factor decreased to zero, the resistance to growth increased to infinity 

and the growth of population reached its maximum. The compliance factor 

continued to decrease and the size of population was decreasing. When the 

compliance factor reached its minimum, around AD 200, there was a turning point 

in the growth of population. The compliance factor was still negative but now it 

was increasing. Slowly, the deceleration in the growth of population was 

decreasing. Around AD 450 the compliance factor reached its second value of zero. 

The size of the population reached a minimum value and started to increase. By 

around AD 500, this demographic transition was over and the growth of population 

settled again along an unconstrained hyperbolic trajectory, but now is was a 

significantly slower trajectory characterised by a significantly smaller compliance 

factor or equivalently by the significantly larger resistance to growth. 
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Figure 3. Growth of the world population in the past 12,000 including mathematical 

description of the past two demographic transitions between hyperbolic trajectories and the 

ongoing transition to a yet unknown trajectory.  

 
Table 1. Parameters describing the growth trajectory of the world population in the past 

12,000 years. 

Unconstrained, hyperbolic growth 

(~89% of the total combined time) 

k const  

 

Demographic transitions 

(~11% of the total combined time) 

0

( )

n
i

i

i

k t a t



  

10,000 BC – 500 BC 

2.282a   ; 
22.210 10k    

500 BC – AD 500 
3

0 2.347 10a    , 
5

1 2.659 10a    , 

8
2 7.479 10a    

AD 500 – 1200 

6.940a  ; 
33.448 10k    

AD 1200 – 1400 

0 1.022a   , 
3

1 2.618 10a   , 

6
2 2.198 10a    , 

10
3 6.068 10a    

 

AD 1400 – 1950 

9.123a  ; 
34.478 10k    

1950 – present 

0 1.820a   , 
3

1 1.891 10a   , 

7
2 4.899 10a    
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The onset of the second demographic transition occurred around AD 1200. 

Again, the compliance factor started to decrease and the growth of population 

started to slow down and even briefly decline. However, the growth quickly 

recovered and by around AD 1400 this short-lasting transition was over. Growth of 

population resumed its spontaneous and preferred hyperbolic trajectory, which was 

even a little faster than before, as indicated by the slightly larger k factor.  

Around 1950, the compliance factor was boosted but only for a short time. The 

growth of population started to be a little faster than before, but very soon this 

temporary boosting was halted and the growth of population started to slow down 

as expressed in the continually decreasing compliance factor k.  

 

3. Characteristic properties of hyperbolic growth   
Hyperbolic growth might be more common than we think. In order to 

understand this type of growth it is useful to compare it with other processes and 

particularly with the more familiar exponential growth. 

For the exponential growth, the size added per fixed unit of time is directly 

proportional to the total size of the growing entity, e.g. to the size of the population 

or the GDP (if they are assumed to increase exponentially). If the total size 

doubles, then the added size per unit of time also doubles. For the hyperbolic 

growth, to size added per fixed unit of time depends quadratically on the total size 

of the growing entity. If the size of the growing entity doubles, the added size per 

fixed unit of time quadruples. If the size triples, the added size per fixed unit of 

time increases nine-folds. 

For the exponential growth, the doubling time is constant. For the hyperbolic 

growth, it decreases linearly with time. As the size of the growing entity increases, 

the doubling time decreases. Each consecutive doubling time is twice as small as 

the immediately preceding doubling time. So, for instance, if at a certain stage of 

growth, the doubling time is 24 years, then after 24 years it will be reduced to 14 

years, after 14 years to 7 years, and so on. That is why, hyperbolic growth, or any 

other type of growth, but exponential, should never be characterised by the 

doubling time. Constant doubling time applies exclusively to the exponential 

growth.  

For the exponential growth, the total driving force is constant. No matter how 

large is the growing entity, the force remains unchanged. Driving force per single 

unit decreases exponentially. If exponential growth were to describe economic 

growth then the driving force per unit of invested wealth, e.g. the driving force per 

invested dollar, would decrease exponentially with the size of the investment. The 

potential to generate economic growth per dollar would be decreasing 

exponentially with the size of the GDP. If exponential growth were to describe the 

growth of population, then the biologically driven force of procreation (the 

difference between the biologically generated or controlled birth and death rates) 

per person would be decreasing exponentially. 

For the hyperbolic growth, the total driving force increases hyperbolically, i.e. 

in the direct proportion with the size of the growing entity, which means that the 

driving force per unit or per element of the whole assembly of hyperbolically 

growing entity, e.g. per person or per dollar, is constant. Each unit, on average and 

for a large assembly of growing units, contributes equally to support growth. For 

the hyperbolic growth, the potential of each invested unit of wealth, e.g. the 

potential of each dollar to create more wealth is constant. It does not depend on the 

size of invested wealth; it does not depend on the size of the GDP. For the 
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hyperbolic growth of human population, the force of procreation per person 

remains constant; it does not decrease with the size of population.  

For the hyperbolic growth, each element, each added component, makes on 

average, a fixed contribution to the overall driving force. Individual contributions 

may vary, but on average the contribution of each component is constant over time. 

The larger is the size of the growing entity the larger is the combined force pushing 

the growth forward. It is the growth that propels itself in a very specific way. In the 

unconstrained hyperbolic growth, the growth is propelled by the approximately 

equal contribution of all individual members of the growing entity. It is an 

interesting and distinct process where growth generates growth in a very specific 

way, i.e. where the driving force of growth per person or per unit of the growing 

entity is constant. In contrast, for the exponential growth, the combined driving 

force is constant but the driving force per unit of the growing entity decreases 

exponentially.  

Now, we can see that there might be more examples of hyperbolic growth. 

Take, for instance, technology or knowledge. Knowledge generates knowledge by 

stimulating new ideas. Technology generates technology by stimulating new 

solutions to technological problems. This is the well-known process, which even a 

single person can experience. The more we learn, the easier it is to learn more. The 

more problems we solve, the easier it is to solve new problems. Ideas create new 

ideas, solutions create new solutions, and knowledge creates new knowledge. It is, 

therefore, not surprising that knowledge and technological innovations appear to 

have been increasing hyperbolically (Kurzweil, 2006; Vinge, 1993). There is a 

close correlation between the growth of population and technology (Kremer, 1993). 

The two processes are similar but they are prompted by different kind of forces.  

Technology is certainly not prompted by the force of procreation (the 

biologically prompted sex drive and the biologically prompted process of aging 

and dying). The growth of population is obviously controlled by these processes. It 

could be also controlled by some additional forces but the historical growth of 

population shows that these other forces were either too weak or that they were 

averaging out.  

Technology is prompted by concepts, solutions and by research activities. 

Growth of population is definitely not prompted by technological concepts, 

solutions and by research activities but by the force of procreation. Economic 

growth is similar to the growth of population but it is obvious that economic 

growth is not prompted by the biologically controlled force of procreation. 

Another example of hyperbolic growth could be the growth of biodiversity. We 

could expect that biodiversity should generate greater biodiversity through 

competition, adaptation and biological solutions based on life-supporting 

mutations. We can also expect that the force driving the growth of biodiversity is 

proportional to the existing biodiversity. If it is directly proportional, then the 

growth of biodiversity is hyperbolic. Even if we consider minor or major 

extinctions of species one might expect that over a sufficiently long time the 

prevailing trend might be hyperbolic. If we think in terms of driving forces, we 

could probably identify other examples of hyperbolic growth. We can also 

understand easier the distinctions between various types of growth. 

For processes described by hyperbolic trajectories, each system will be 

prompted by its own mechanism reflected in a specific driving force, but each 

system will be prompted by the same type of force. In each case, the force per unit 

of the growing entity will be constant. Hyperbolic similarities and close 

correlations between hyperbolic systems should never be interpreted as necessarily 

reflecting precisely the same mechanism of growth represented by precisely the 

same driving force. In general, each hyperbolic process will be expected to be 
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propelled by a distinctly different force reflecting a distinctly different mechanism, 

but all these forces will be of the same type: their intensity will increase in the 

direct proportion to the size of the growing entity; their intensity per person, per 

biological object, per unit of measurement (such a dollar, for instance) will be 

always constant during the entire time of the unconstrained growth.  

Hyperbolic growth is characterised by singularity where the growth escapes to 

infinity at a fixed time. Such a growth might be deemed impossible. However, 

historical economic growth and historical growth of populations were hyperbolic 

so obviously, they were possible. Growth trajectories can change and there is 

nothing unusual about that. A new force may be added to the existing force or the 

previously active force might be replaced by a new force. In the growth of global 

population there were only two instances in the past 12,000 years when a new force 

of growth was added temporarily to the force of procreation. First time, this 

additional force appears to be of political nature changing radically and on a large 

scale the style of living. Second time, it was in the form of demographic 

catastrophes, the only known case when demographic catastrophes were reflected 

in the trajectory describing the growth of population. Currently, there is also a 

diversion to a new trajectory. The force of procreation continues to be active but 

the new and significant force added to the force of procreation appears to be the 

force of preventive checks (Malthus, 1798). 

It is also absolutely not necessary to imagine that in order to avoid the problem 

of singularity we have to find some mathematically-described force, which over a 

certain time would mimic hyperbolic growth but at around a certain time would 

gradually become non-hyperbolic, and that this unusual and yet unknown 

mathematical distributions would also reproduce the growth of human population. 

It is absolutely not necessary ―to eliminate the unrealistic ‗demographic explosion‘ 

from the model‖ (Karev & Kareva, 2014, p. 76), because it is not at all unusual for 

a trajectory to remain undisturbed over a certain time but then to be diverted to a 

new trajectory. The mechanisms of growth can change or can be modified by 

adding new type of force to the already existing force. We do not have to imagine 

that we should have a single force, which over a long time would describe 

hyperbolic growth and then would also describe a diversion to a new, non-

hyperbolic growth. Karev attempted to find such a force but failed (Karev, 2005). 

He tried two such forces but they did not explain the mechanism of growth because 

they were incomprehensibly complicated (Nielsen, 2016g). They were also 

unsuccessful in describing the growth of population. A single and easy to 

understand force of procreation results in a far better description of data.   

Current growth of population and economic growth is no longer described so 

consistently by a single type of force. For instance, economic growth in Greece 

was logistic over a certain time but then it changed to a pseudo-hyperbolic growth 

with singularity in 2017 (Nielsen, 2016h). This fast growth could not have been 

supported in any way and it collapsed. The current global economic growth is 

exponential (Nielsen, 2016i). Such a growth is insecure because it does not lead to 

a maximum or to a safe and sustainable level of the GDP. It continues to grow until 

it can be no longer supported.  

The current global growth of population is less clearly defined and its 

projections are less certain. Analysis of the growth rate shows that growth of 

population may reach a certain maximum but it may also continue to increase for 

as long as it can be supported by the availability of natural resources (Nielsen, 

2006). 
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4. Summary and conclusions   
Historical economic growth and historical growth of population were 

hyperbolic (Nielsen, 2016a, 2016b, 2016c). We have explained their mechanism by 

postulating simple forces of growth. Hyperbolic growth is mathematically simple 

and its mechanism of growth is also simple.  

For the economic growth, the mechanism of the historical hyperbolic growth is 

explained by the net market force, which on average was directly proportional to 

the invested wealth usually expressed as the Gross Domestic Product. For the 

growth of population, the mechanism of the historical hyperbolic growth is 

explained by the biologically prompted force of procreation defined as the 

difference between the biologically prompted birth rate and the biologically 

controlled process of aging and dying. It is assumed that this force was on average 

constant per person. 

We do not explain the net market force and neither do we explain the biological 

force of procreation. We do not dissect these processes, isolate their components, 

study minute interactions between the mand then put them together to derive the 

net driving force. We only describe these forces in the simplest possible way using 

simple mathematical expressions based on simple and readily acceptable 

assumptions. We then use these simplified forces to explain the mechanisms of 

growth.  

This type of approach is common in scientific investigations. For instance, we 

do not understand the force of gravity. We do not really know what it is. However, 

we can representthis force using a simple mathematical expression (Newton, 1687) 

and then use it to explain the mechanism of the movement of celestial by, we can 

land a man on the Moon and bring him back to Earth, explore our solar system, 

land our probes on Mars, detect the presence of the invisible matter and in general 

explain the dynamics of the Universe.   

We do not understand nuclear forces but we can describe them mathematically 

and use this description to study, for instance, the mechanism of nuclear reactions 

and nuclear structure (Nielsen, 2016). Nobody understands quantum mechanics 

(Feynman, 1967) but this does not stop us from describing mathematically various 

quantum phenomena, explain them and even use the acquired knowledge to apply 

it, for instance, in quantum computing or cryptography. We do not understand the 

weak force and yet we can explain the process of radioactive decay and use 

radioactive isotopes in many applications, primarily in medicine but also industry 

and agriculture.  

We do not understand why matter reveals itself as mass or energy. We do not 

understand the intricate details of this peculiar phenomenon but we can describe it 

by a simple and well-known equation (Einstein, 1905a). We can then use this 

simple equation to calculate how much energy will be released if a certain amount 

of mass manifests itself as energy. We can use this knowledge, combined with our 

fundamental knowledge of nuclear processes, to explain the mechanism of fusion 

and fission reactions. We can then go a step further and construct (unfortunately) a 

nuclear bomb and (maybe similarly unfortunately) to construct a controversial 

nuclear reactor to produce energy. However, we can also explore how this huge 

amount of energy locked in the mass could be used in a controlled fusion reaction 

and maybe at last to construct a clean and practically inexhaustible source of 

energy. We can also use this simple mass-energy relation to explain the mechanism 

of the production of energy in our Sun and in the distant stars. We do not know 

everything but what we already know can be useful. 

We do not understand why electromagnetic radiation reveals itself as waves or 

particles, the property, which turns out to apply not only to electromagnetic 
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radiation but also to all matter, but we can describe this relationship by simple 

mathematical expressions (Einstein, 1905b; de Broglie, 1924) and explain not only 

why the rainbow looks so nice but also the strange phenomenon of photoelectricity 

(Einstein, 1905b). Einstein is well known for his theory of relatively and for his 

mass-energy equation but he received his Nobel Prize for explaining 

photoelectricity, which demonstrates that light can manifest itself as being made of 

tiny particle.  

We may not know all the details how nature works but we can still explain 

many phenomena we observe and even represent our explanations by useful and 

often simple mathematical expressions. We might not be able to explain 

everything. We might not answer every single question but we can still explain 

many phenomena in a satisfactory manner and answer many questions. A deeper 

understanding might come much later but only if we make sure that our current 

knowledge is not based on illusions and impressions but on the methodically 

checked interpretations of observed phenomena. 

The fundamental principle in scientific research is to look for the simplest 

explanations of observed phenomena. These few examples from physics show that 

even complicated processes can be often represented by simple mathematical 

descriptions and that the interpretation of their mechanism can be significantly 

simplified. 

Distributions describing historical growth of population and the historical 

economic growth look complicated, so complicated that they are routinely 

interpreted as being made of two distinctly different components, slow and fast, 

stagnant and explosive, each component governed by distinctly different and 

complicated mechanisms. The illusion is so persuasive that even most prominent 

researchers are easily misguided, particularly if the data are not properly analysed 

or if they are presented in a grossly distorted way (Ashraf, 2009; Galor, 2005a, 

2005b, 2007, 2008a, 2008b, 2008c, 2010, 2011, 2012a, 2012b, 2012c; Galor & 

Moav, 2002; Snowdon & Galor, 2008). 

The first indication that these distributions are not complicated is demonstrated 

when they are mathematically analysed. The analysis is trivially simple (Nielsen, 

2014) and it shows that these distributions are hyperbolic (Nielsen, 2016a, 2016b, 

2016c). Hyperbolic distributions look complicated but they are described by an 

exceptionally simple mathematical formula: a reciprocal of a linear function 

containing just two adjustable parameters.  

This remarkable simplicity of hyperbolic distributions representing the 

historical growth of population and the historical economic growth suggests a 

simple mechanism of growth. We have now demonstrated that the mechanism of 

these two processes is indeed remarkably simple. They were prompted by the well-

known and simple forces. 

Data describing the growth of global population allow for a study of growth 

over an exceptionally long time. They show that for the most part of the past 

12,000 years, growth of global population was hyperbolic: between 10,000 BC and 

around 500 BC, between around AD 500 and 1200 and between around AD 1400 

and 1950. The remaining time of the past 12,000 years was taken by demographic 

transitions: between around 500 BC and AD 500, between around AD 1200 and 

1400, and from around 1950.  

We have proposed the explanation of the mechanism of these transitions. The 

first transition is explained by the dramatic and wide-spread changes in the style of 

living associated with significant changes in the political landscape. The second 

transition is explained as being caused by the combined impact of five major 

demographic catastrophes. This is the only example when demographic 

catastrophes appear to have had impact on shaping the population growth 
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trajectory. However, this impact was insignificant. The slight delay in the growth 

of population was soon compensated because the growth of population was 

diverted to a slightly faster trajectory. We can explain the mechanism of this quick 

recovery by the regenerating effects of the Malthusian positive checks (Malthus, 

1798; Nielsen, 2016f). The mechanism of the ongoing transition is explained by the 

Malthusian preventive checks.  

A partial mathematical explanation of these transitions is by assuming that the 

growth of human population was still prompted by the biologically controlled force 

of procreation but that the resistance to growth (or equivalently the compliance 

factor) was changing. This simple assumption does not allow us to predict growth 

trajectories during demographic transitions but only to determine how the 

resistance to growth (or compliance factor) was changing during each transition. 

Currently, neither the growth of population nor the economic growth can be 

described by the historically simple driving force. Generally, we have to use 

different descriptions for each specific case. For instance, current global economic 

growth can be described by a relatively simple but non-hyperbolic trajectory, 

which is now converging into the exponential growth (Nielsen, 2016i). Economic 

growth in Greece was logistic but then it was converted to a fast-increasing 

pseudo-hyperbolic growth, which inevitably resulted in the economic collapse 

because it came too close to the point of singularity (Nielsen, 2016h). Global 

growth of population can be described using different trajectories, each trajectory 

giving different prediction of growth (Nielsen, 2006). 

  The general law of growth (Nielsen, 2016d) helps to understand mechanisms 

of growth because it links growth trajectories with driving forces, which are 

usually easier to visualise and to understand. We have used this general law of 

growth and the simplest driving forces to explain the mechanism of the historical 

growth of population and the historical economic growth.  
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