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Abstract. In this paper, which presents a simplified behavioral finance model, we 
incorporate regret into the decision-making process of a pension fund and derive the 
optimal asset allocation of a final-wealth-maximizing pension fund in the accumulation and 
decumulation phases. We find that the optimal allocation must be congruent in both phases 
if and only if the pension fund is upside regret averse. In particular, our results suggest that 
allocation to risky assets must increase through time in the accumulation and decumulation 
phases so that the pension fund can realize gains from any upsides in the risky asset market, 
thereby maximizing final wealth and limiting the feeling of regret ex-post. Although 
decisions in both phases are congruent, we find that the optimal asset allocation generally 
depends on wealth levels. This evidence implies that separate management of the 
accumulation and decumulation phases of a pension fund decreases available wealth levels 
and is not an optimal strategy.  
Keywords. Financial markets, Asset allocation, Log-logistic, Modified utility, Mortality, 
Pension fund, Regret aversion. 
JEL. G23, G11, C61. 

 

1. Introduction 
he major contribution of this paper lies in the use of regret theory to analyze 
the optimal asset allocation of a pension fund that aims to maximize the 
expected modified utility of its final wealth. Unlike in the standard expected 

utility framework wherein a pension fund independently considers only the 
investment choices it makes and performs expected utility maximization based on 
these choices, without recourse to other potential choices that could have been 
made, regret theory gives room for the pension fund to account for its favoured 
investment choices as well as other feasible investment choices that could be made. 
In essence, the pension fund experiences regret if the outcome of its investment 
choices is worse than the outcome of at least one of the forgone investment 
choices, and it rejoices if otherwise. Thus, because of the possibility of future 
regret, the objective function -the expected modified utility of the pension fund’s 
final wealth- is set up in such a way as to incorporate a function that captures 
feelings of potential regret. This way, we are able to develop a set-up aimed at 
examining the extent to which the anticipation of future regret influences current 
investment choices and optimal asset allocation of a pension fund. The presence of 
a regret function distinguishes our framework, the regret theory framework, from 
traditional expected utility framework and serves as a novel contribution to the 
literature. 

Accessible literature on asset allocation problems and optimal portfolio 
strategies for pension funds largely neglects regret theory and widely favors 
traditional expected utility maximization.  In addition to the many documented 
limitations and violations of the traditional expected utility theory so elegantly 
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demonstrated in the behavioral economics literature, our major discontent with the 
theory is that it assumes economic agents consider each outcome independently 
and disregard other possible outcomes. This can be interpreted to mean that 
pension fund managers, for example, care only about the investment choices they 
make. However, in practice, fund managers do experience a feeling of regret 
whenever forgone investment choices yield better returns ex-post than the choices 
they made ex-ante. This causes them to incorporate the possibility of regret in their 
subsequent investment decisions and asset allocation. As a simple illustration, 
consider a fund manager who can receive a $5 return on investment for each dollar 
invested in the debt capital market and either a $7.5 or $1.5 return on investment 
for each dollar invested in the equity capital market. If he takes a huge position in 
the equity capital market and finally receives a $1.5 return on investment for each 
dollar invested, he almost surely will experience a feeling of regret for getting less 
than he could have gotten had he taken most positions in the debt capital market. 
Next time, this experience will shape his investment decisions and therefore make 
him averse to regret, and this aversion will induce him to incorporate regret into his 
decision-making process. Despite this intuitive perspective on regret, to the best of 
our knowledge, nowhere has this common human behavioral tendency been 
incorporated into the investment decision making process to analyze the optimal 
asset allocation of a pension fund. It is therefore in this area that this paper fills a 
void in the literature. 

Generally speaking, the concept of regret, developed by Bell, Loomes & 
Sugden (1982), is intuitive and proposes a normative theory of choice under 
uncertainty that explains many observed violations of the axioms upon which the 
traditional expected utility theory is built. Regret is a cognitively mediated emotion 
of pain and anger when people observe ex-poste that they took a bad decision ex-
ante and could have taken an alternative decision with a better outcome. In capital 
markets, people experience regret when their investments give a worse 
performance than an alternative investment they could have easily chosen a priori. 
This, for instance, is in contrast with disappointment, which is experienced when a 
negative outcome happens relative to prior expectations. Regret, which is a 
powerful negative emotion, is strongly associated with a feeling of responsibility 
for a choice made and is known to influence decision-making under uncertainty. It 
involves the regret/rejoice that a person feels when he gets outcome 𝑥 instead of 
outcome 𝑦. The theory assumes people are rational but base their decisions not 
only on expected payoffs or utility but also on expected regret, so that they try to 
anticipate future regret and consistently incorporate it into their investment 
decision making process. The incorporation of regret yields a modified utility and 
people reach their investment decisions by maximizing the expected value of this 
modified utility. This makes regret theory suitable for analyzing the optimal asset 
allocation of a pension fund.    

The anticipation of future regret is so strong that it forces even Harry 
Markowitz to relook his very own Nobel winning asset allocation theory when 
confronted with a financial decision on his pension plan. His quote: ‘I should have 
computed the historical covariance of the asset classes and drawn an efficient 
frontier. Instead I visualized my grief if the stock market went way up and I wasn’t 
in it—or if it went way down and I was completely in it. My intention was to 
minimize future regret, so I split my pension scheme contributions 50-50 between 
bonds and equities.’ ‘Harry Markowitz, as quoted in Zweig (1998), America’s top 
pension fund’, Money, 27, page 114. This gives further support and credibility to 
the claim that regret does influence optimal investment decision of a pension fund. 
Anticipation of future experience of regret may lead individuals to make certain 
decisions that contrast with expected utility paradigm. This assertion will be 
investigated in the context of the optimal asset allocation of a pension fund in this 
paper.  

Meanwhile, unlike other fund managers, the case of pension funds requires the 
introduction of two characteristics: (i) the different behaviors of the managed funds 
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during the accumulation (Ac) and decumulation (Dc) phases, and (ii) mortality 
risk. In addition, we must take cognizance of regret risk because we aim to work in 
a regret theoretic framework. So, this paper considers three dimensions of risk: 
traditional risk (volatility of final wealth), regret risk and mortality risk. To the best 
of our knowledge, no work on optimal asset allocation has simultaneously 
considered these risks. The only work, at least to our knowledge, which considers 
these risks in asset allocation theory, does not consider them simultaneously. For 
instance, Bajeux-Besnainou & Jordan (2001) consider only volatility risk, 
Michenaud & Solnik (2008) consider volatility risk and regret risk and Battocchio, 
Menoncin & Scaillet (2007) consider volatility risk and mortality risk. While the 
intuition of applying regret theory to asset allocation is not new, this is the first 
time that a formal regret theoretic approach is applied to the optimal asset 
allocation of a pension fund facing the aforementioned risks.  

As we have motivated above, regret is a major factor when making investment 
choices because institutional investors, more often than not, care about their 
choices relative to other strategies they could have employed. Although evidence 
favoring the influence of regret on decision-making exists instinctively, it is 
surprising that the theory has caught only little attention in the field of finance. In 
the few available studies, Muermann, Mitchell & Volkman (2006) apply regret 
theory to asset allocation in defined contribution pension schemes. They find that 
an investor who takes regret into account will hold more risky assets (stocks) when 
the equity premium is low but less risky assets when the equity premium is high. 
Braun & Muermann (2003) apply regret theory to demand for insurance. Dodonova 
& Khoroshilov (2005) apply a pseudo regret theory to asset pricing. Heybati, 
Rahnamay & Moosavi (2011) apply regret theory to portfolio optimization. 
Michenaud & Solnik (2008) study currency hedging techniques for foreign assets 
in a regret theoretic framework and derive some interesting implications for long 
and short hedging positions when a foreign currency appreciates or depreciates ex-
post. However, all these models offer approximate explicit investment rules outside 
the context of a pension fund.  

In this paper, instead, we provide explicit optimal solutions for investment rules 
within the context of a pension fund which manages employees’ contributions 
towards retirement. Our methodology allows the derivation of approximate closed-
form solutions for optimal investment choices available to a pension fund. In 
particular, during the active years of the employees, the fund wealth increases 
because of the contributions that the employees make towards retirement while, 
after retirement, the fund wealth decreases because of the pension payments that 
the pension fund makes to the retired employees.  Following Battocchio, Menoncin 
& Scaillet (2007), we suppose that a representative employee has no other choice at 
the retirement date than to receive a pension until the death time  𝜏, which is 
assumed to be a random variable. The pension fund then maximizes the expected 
modified utility of its final wealth, in anticipation of future regret.  In our model, 
the contribution and pension rates are constant and linked by a feasibility condition 
that guarantees the convenience of both the pension fund and the representative 
employee to amicably enter the pension contract. We argue why this feasibility 
condition must hold and derive its approximate closed-form expression under the 
assumption that the death time 𝜏 follows a log-logistic distribution. We emphasize 
that our result is quite different from the closed-form expressions obtained under 
the assumption of both a Gompertz-Makeham and a Weibull distributed death time 
𝜏 as in Battocchio, Menoncin & Scaillet (2003; 2007). We also remark that the 
motivation for our choice of distribution for the death time 𝜏 stems from the fact 
that death-survival analyses for a random death time are best done under the 
assumption of a log-logistic distribution.  

Furthermore, we consider that a pension fund does not only manage retirement 
funds preretirement when contributions towards future pensions are made, but also 
manages the remaining wealth postretirement when pensions are being paid. 
Therefore, since management of the remaining wealth postretirement is also the 
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duty of a pension fund, we set up the required optimization problem for the optimal 
asset allocation during the entire life of the representative subscriber in such a way 
that the final date of the optimization problem coincides with the death time of the 
subscriber. After solving this optimization problem in a regret theoretic framework, 
we find that the optimal portfolio compositions of the pension fund are identical 
during the accumulation and decumulation phases. In particular, we show that the 
amount of wealth invested in the risky-asset class increases through time during the 
accumulation phase and also increases through time after the retirement date, 
during the decumulation phase. We claim that this behavior is borne out of regret 
aversion. Regret averse pension funds would increasingly retain their positions in 
the risky-asset class for fear of the potential regret of missing out on any boom or 
upside in the risky-asset market.  

To summarize, in addition to other important results, our major contribution in 
this paper is systematic. We integrate regret into a well-defined objective function 
and this allows us to derive optimal investment strategies that reflect the risk and 
regret aversion of a pension fund. We find that the optimal asset allocation must be 
congruent in both phases if and only if the pension fund is upside regret averse. In 
particular, our results suggest that allocation to risky assets must increase through 
time in both accumulation and decumulation phases, so that the pension fund can 
realize large gains from the upside potential of the risky-asset market, thereby 
maximizing final wealth and limiting the feeling of regret ex-post. Although 
decisions in both phases are congruent, we find that the optimal asset allocation 
generally depends on wealth levels. This evidence implies that separate 
management of the accumulation and decumulation phases of a pension fund 
decreases available wealth levels and is not a robust strategy.  

  The rest of the paper flows as follows. Section 2 explains some important 
concepts that will aid the understanding of other ideas in subsequent sections, 
presents and discusses the financial model, and elaborates on the computation of 
feasibility condition on contribution and pension rates when the death time 𝜏 
follows a log-logistic distribution. Section 3 presents the regret theoretic 
framework for the pension fund maximization problem, discusses regret theory and 
its importance for decision making under uncertainty and describes our modeling 
framework. Section 4 develops the objective function, applies regret theory to a 
pension fund which seeks to maximize its expected modified utility of final wealth, 
and computes the optimal allocation rule. Section 5 discusses the theoretical results 
in relation to the effective management of a pension fund and concludes with 
directions for future research. 

 
2. The Financial Markets Pension Fund Model 
We follow Brennan, Schwartz & Lagnado (1997) and Battocchio, Menoncin & 

Scaillet (2007) and consider a financial market with one risky-asset class (common 

stock) and one riskless-asset class (T-bills) having rates of return 
𝑑𝑆

𝑆
 and 

𝑑𝐺

𝐺
 

respectively, and where 𝑟 is a constant term interest rate. If we assume also that the 
dividend  𝛿 on common stocks is constant and influences returns on the risky-asset, 
then the joint price process follows, 

 

 
 
 

 
                           

𝑑𝑆

𝑆
= 𝜇𝑆𝑑𝑡 +  𝜎𝑆𝑑𝑧𝑆 ,     𝑆 𝑡0 = 𝑆0

        
𝑑𝐺

𝐺
= 𝑟𝑑𝑡,     𝐺 𝑡0 = 𝐺0

                   𝑑𝑟 = 𝜇𝑟𝑑𝑡 + 𝜎𝑟𝑑𝑧𝑟 = 0,   𝑟𝜖ℝ
                           𝑑𝛿 = 𝜇𝛿𝑑𝑡 + 𝜎𝛿𝑑𝑧𝛿 = 0, 𝛿𝜖ℝ

                                                  (1) 

 
where the parameters μ

i
, σi   𝑖 = r, δ, S  are at most functions of the variables 

r, δ, S, and 𝑑𝑧𝑖  are increments due to Weiner process. 𝑆0 and  𝐺0 are deterministic, 
positive and represent the initial prices of the risky and riskless-asset classes 
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respectively, while S and 𝐺 are their prices at time  𝑡 > 0. It should be noted that 

the dependence of the return 
𝑑𝑆

𝑆
 on 𝑟 and 𝛿 is completely straightforward. Indeed,  

𝑑𝑆

𝑆
 depends on 𝑟 and 𝛿 through the dependence of at least one of 𝜇𝑆 and 𝜎𝑆 on at 

most r, δ, S. This process may be estimated and tested statistically to ascertain the 
level of statistical significance of the effect of the state variables on stock returns, 
but that is not the focus of this paper. 
 

2.1. The Contributions and Pensions Payments 
If 𝑈 𝑡  denotes the total amount of contributions to the fund and 𝑉 𝑡  denotes 

the total amount of pensions paid by the fund, then 𝑈 𝑡  and 𝑉 𝑡  follow the 
ordinary linear differential equations 

 
𝑑𝑈 𝑡 = 𝑢𝑑𝑡,  𝑡0 ≤ 𝑡 < 𝑇                                                                                     (2a) 
𝑑𝑉 𝑡 = 𝑣𝑑𝑡,𝑇 ≤ 𝑡 < 𝜏                                                                                        (2b) 

 
where 𝑢 > 0  and 𝑣 > 0  are constant and do not vary with time and both 

equations are valid for the death time 𝜏 occurring some periods after retirement1 𝑇, 
i.e. 𝜏 > 𝑇. The pensions are paid until the death time of the subscriber and do not 
depend on the investment performance of the fund. 

 
2.2. The Feasibility Condition 
This is the condition that has to be satisfied before the subscriber and pension 

fund enter a pension contract in the first place. For this reason, the pension fund 
cannot freely dictate the contributions and pensions while the subscriber cannot 
solely dictate the pensions. The contributions and pensions cannot be chosen 
separately. The subscriber and the pension fund have to reach an agreement on the 
contributions and pensions simultaneously. 

When the subscriber enters the fund, he anticipates that the expected present 
value of all pensions cannot be lower than the expected present value of all 
contributions. Similarly, the pension fund formalizes the contract with the 
subscriber when it is convinced that the expected present value of all pensions 
cannot be more than the expected present value of all contributions. 

Money enters and leaves the pension fund according to the rate, 
 

𝑚 𝑡 =
𝑑𝑈(𝑡)

𝑑𝑡
𝕀𝑡<𝑇 −

𝑑𝑉(𝑡)

𝑑𝑡
𝕀𝑡≥𝑇                                                                               (3a) 

or 
𝑚 𝑡 = 𝑢𝕀𝑡<𝑇 − 𝑣 1 − 𝕀𝑡<𝑇 , 

where  

𝕀𝑡<𝑇 =  
1, if  𝑡 < 𝑇
0, if 𝑡 ≥ 𝑇

  

 
If 𝑢  represents the constant contribution rate to the pension fund and 𝑣 

represents the constant pension rate paid to a representative subscriber, then the 
feasibility condition holds for the pair  𝑢, 𝑣 , 𝑢 > 0 and 𝑣 > 0 if 

 

𝔼   𝑚 𝑡 𝑒−𝑟𝑡𝑑𝑡

𝜏

0

 = 0, and the resulting expression for the feasibility condition is 

𝑢

𝑣
= −1 +

1−𝔼 𝑒−𝑟𝜏  

1−𝔼 𝑒−𝑟𝜏 𝕀𝜏<𝑇  −𝑒
𝑟𝑇ℙ(𝜏≥𝑇)

,                                                                   (3b) 

 
1 We agree that the death time 𝜏 may plausibly happen before the retirement date 𝑇, but we do not 

model this scenario in this paper. Nonetheless, we are grateful to an anonymous referee who 
graciously drew our attention to this.  
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where 𝜏  is the random death time. The proof is in Appendix 1 and the 
computation of the closed form approximations for the feasibility condition is in 
Appendix 2. 

 
3. Pension Fund Maximization Problem in a Regret Theoretic 

Framework 
In this section we approach the problem of a pension fund from a 

regret/rejoicing point of view. Since pension funds are largely connected with 
collecting, pooling and investing funds contributed by sponsors and beneficiaries in 
order to provide means for the beneficiaries to accumulate savings over their active 
working years so as to finance their consumption needs in retirement, we shall 
assume that the main problem of a pension fund is to maximize the expected 
modified utility of its final wealth at the death time of its subscribers.  

Contrary to the traditional choiceless utility function which is defined on 
outcomes of actual investment choices that a pension fund makes, the modified 
utility function does not only consider outcomes of actual investment choices, but 
it also includes a comparison of these outcomes with the outcomes of other 
investment choices that a pension fund could have made, but has not made. This 
makes it possible to incorporate regret into the modified utility function for the 
purpose of decision making. Regret-conscious pension funds do not only care 
about the expected return and volatility of their invested funds, but they also care 
about the deviations of the outcomes of their actual choices from the outcomes of 
their forgone choices. So, they face both volatility risk and regret risk. Volatility 
risk is linked to deviations of the invested fund’s return from its expected value. 
Regret risk is the risk that the pension funds are going to experience a feeling of 
regret in the future. That is, the risk that the outcomes of their actual investment 
choices will be worse than the outcomes of their forgone investment choices. There 
is also mortality risk, which is the risk of death of a subscriber and it enters the 
problem through the feasibility condition. 

In our work, we suppose that a pension fund can make two choices. The first is 
to invest/allocate a strictly positive amount 0 < 𝛼 < 1 to a risky-asset class and the 
remaining to a riskless-asset class while the second is to allocate nothing 𝛼 = 0 to 
the risky-asset class and allocate all to the riskless-asset class. We suppose that the 
pension fund is unsure of the performance of the risky-asset class, but always 
knows beforehand the performance of the riskless-asset class, so that this 
performance serves as a benchmark with which the pension fund compares the 
outcome of its actual investment strategy. The pension fund is assumed to 
experience a feeling of regret or rejoicing on the outcome of its choice. If we 
suppose that the pension fund makes or prefers the first choice (of taking a huge 
position in the risky-asset class) knowing full well that it may later regret its action 
or decision if it so happens that the outcome (performance) of the second choice (of 
taking no position in the risky-asset class) turns out much better than the outcome 
of his first choice, how would its optimal allocation choice/decision be today in 
order to maximize the expected modified utility of its final wealth, improve its 
feeling of rejoicing and lessen its feeling of regret that may occur in the future/ex-
post after it has exited it position to evaluate its proceeds? This is one of the 
questions we shall answer in this part of our research.  

 
3.1. The Maximization Problem Setup 
As we have motivated in the previous section, regret theory rests on two 

fundamental assumptions. The first is that agents experience the sensations of 
regret and rejoicing, and the second is that agents try to anticipate and take account 
of these ex-post sensations when making ex-ante decisions under uncertainty. The 
modified utility function is therefore defined over the ex-post (final) outcomes of 
choices and rational investors would make choices ex-ante by maximizing the 
expected value of this modified utility. This allows agents to take the anticipation 
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of regret into account in an axiomatic fashion. The modified utility function is not 
only defined over the outcome of the choice an agent makes, but it also includes a 
comparison with the outcome of another choice that could have been made in the 
same state of the world.    

If we define the expected value of the modified utility of a rational regret averse 
agent faced with two choices by 

 

 𝔼 𝜓 𝑥,𝑦  = 𝔼 𝑈 𝑥 + 𝑓 𝑈 𝑥 − 𝑈 𝑦                                                          (4a) 

 
then the agent will seek to make a choice ex-ante that will give a final outcome 

𝑥 which will maximize his expected modified utility, i.e. 
 

max
                  𝑥

𝔼 𝜓 𝑥,𝑦  = ∇   

with 

∇= max𝑥 𝔼 𝑈 𝑥 + 𝑓 𝑈 𝑥 − 𝑈 𝑦   . 

 
It is important to note that if agents experience no regret or rejoicing at all, or if 

the regret function 𝑓  is linear, then the above formulation collapses to the 
conventional expected utility paradigm. Details on the properties of 𝑓 are included 
in Appendix 3. 

Now that we have discussed the relevant aspects of regret theory that will aid 
our work on pension funds, we will proceed to how we can apply it in a pension 
fund context. Therefore, in what follows, we shall study the investment behavior of 
a pension fund in a regret theoretic framework. 

 
3.2. The Managed Wealth of the Pension Fund 
In the preceding section, we stated that the pension fund is assumed to have two 

choices—either it invests a strictly positive amount in the risky-asset class or it 
invests nothing in the risky-asset class. We further suppose that the pension fund 
does not prefer the choice of taking no position in the risky-asset class. This is the 
choice or decision of the pension fund. If 𝜃 (𝑡) represents the number of units of the 
risky-asset class and ∅(𝑡) represents the number of units of the riskless-asset class, 
then the apportioned wealth to the risky-asset class is 𝜃  𝑡 𝑆(𝑡) and the allotted 
wealth to the riskless-asst class is ∅ 𝑡 𝐺(𝑡). Therefore, the total wealth process 
𝑊 𝑡  of the pension fund, which we shall call the outcome of its choice of taking a 
positive position in the risky-asset class, evolves according to 

 
𝑊 𝑡 = 𝜃  𝑡 𝑆 𝑡 + ∅ 𝑡 𝐺 𝑡                                                                                (5a) 

 
The associated stochastic differential equation is  
 

𝑑𝑊 = 𝜃 𝑑𝑆 + ∅𝑑𝐺 +  𝑆 + 𝑑𝑆 𝑑𝜃 + 𝐺𝑑∅                                                            (5b) 
 
Introducing the self-financing condition suggests that changes in portfolio 

composition are only due to variations in the prices of assets constituting the 
portfolio. Therefore, the term   𝑆 + 𝑑𝑆 𝑑𝜃 + 𝐺𝑑∅ should normally be nonexistent 
or zero. However, since we are considering the case of a pension fund, then, 
without any loss of generality, we can argue that the self financing condition 
ensures that the additional term  𝑆 + 𝑑𝑆 𝑑𝜃 + 𝐺𝑑∅ comes from the contributions 
𝑢 made by the subscriber during the accumulation phase and it is used to finance 
the pension payments 𝑣 during the decumulation period. Accordingly, therefore,  

 
 𝑆 + 𝑑𝑆 𝑑𝜃 + 𝐺𝑑∅ = 𝑚𝑑𝑡                                                                             (6𝑎) 
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where 𝑚 is the rate at which money enters and leaves the fund, and so 
 

𝑑𝑊 =  𝑊𝑟 + ɸ 𝜇𝑆 − 𝑟 + 𝑚 𝑑𝑡 + ɸ𝜎𝑆𝑑𝑧𝑆                                                        (6b) 
 
where ɸ = 𝜃 𝑆 = 𝛼𝑊 is the amount of wealth apportioned to the risky-asset 

class, 𝑑𝑆 = 𝑆 𝜇𝑆𝑑𝑡 +  𝜎𝑆𝑑𝑧𝑆  and 𝑑𝐺 = 𝐺𝑟𝑑𝑡 represent the price process for the 
risky-asset class and the riskless-asset class respectively. 

Now, since we want to perform the analysis of a pension fund in a regret 
theoretic framework, we will not only consider the outcome of the decision/choice 
made by the pension fund, but we shall also consider the outcome of another 
choice that the pension fund could have made. In particular, we consider a case in 
which the pension fund could have made a choice of taking no position in the 
risky-asset class, i.e. investing solely in the riskless-asset class. The wealth process 
or outcome of such a choice/decision would be 
 
𝑊𝑜 𝑡 = ∅ 𝑡 𝐺 𝑡                                                                                                 (7a) 
 
and its associated stochastic differential equation would be  
 
 𝑑𝑊𝑜 = ∅𝑑𝐺 + 𝐺𝑑∅                                                                                             (7b) 
 
Self-financing condition would then imply that 
 
𝐺𝑑∅ = 𝑚𝑑𝑡                                                                                                           (8a) 
 
where 𝑚 is as before, and so 
 
𝑑𝑊𝑜 =  𝑊𝑜𝑟 + 𝑚 𝑑𝑡                                                                                        (8b) 

 
Equations (5a) –8(b) explicitly show the outcome of the actual investment 

choice made by the pension fund as well as the outcome of a forgone investment 
choice that the pension fund could have made. In what follows, we will now 
proceed and write down the objective function of the pension fund in a regret 
theoretic framework. 

 
4. The Objective Function of the Pension Fund 
The objective of the pension fund is to maximize the expected modified utility 

of its final wealth/final outcome at the death time 𝜏 of its subscriber, under the 
assumption that the pension fund anticipates to experience a feeling of regret if the 
outcome of its investment choice is less than the outcome of a forgone investment 
choice and that the pension fund takes this feeling into account when making its 
decision under uncertainty with the sole aim of curtailing future regrets. The 
forgone investment choice is taken as a full investment in the riskless-asset class. 
Following (4a), we can write the modified utility function of the pension fund as  

 

𝜓 𝑊,𝑊𝑜 =  𝑈 𝑊 + 𝑓 𝑈 𝑊 − 𝑈 𝑊𝑜   =  𝑈 𝜃 𝑆 + ∅𝐺 + 𝑓  𝑈 𝜃 𝑆 +

∅𝐺−𝑈∅𝐺                                                                                                     (9a) 

 
Thus, the objective function of the pension fund is  
 

    max                  ɸ 𝔼𝑡0

𝜏   𝜓 𝑊 𝜏 ,𝑊𝑜 𝜏   = ∇                                                        (9b) 

where  



Journal of Economics Library 

JEL, 4(2), O. Ibhagui, p.130-159. 

138 

∇= max
ɸ

𝔼𝑡0

𝜏   𝑈 𝜃 𝑆 + ∅𝐺 + 𝑓  𝑈 𝜃 𝑆 + ∅𝐺 − 𝑈 ∅𝐺    

 
i.e. finding the right allocation to the risky-asset class that will help maximize 

the expected modified utility of the pension fund’s final wealth.  Following  4  
and  9 , we assume the death time 𝜏 is independent of all other sources of risk. 
With this assumption, we can rewrite the above expected value as  

 

𝔼𝑡0

𝜏   𝜓 𝑊 𝜏 ,𝑊𝑜 𝜏   = 𝔼𝑡0
 ∫ 𝑔(𝑡)𝜓 𝑊 𝑡 ,𝑊𝑜 𝑡  𝑑𝑡

∞

𝑡0
                              (10) 

 
where 𝑔 𝑡 = 𝑛 𝑡 𝑝𝑡0

𝑒−𝜌 𝑡−𝑡0  is the actuarial discount factor, 𝑛 𝑡  is the 
instantaneous mortality rate (known as mortality force), 𝑝𝑡0

 is the survival 
probability and 𝜌 is the positive intertemporal discount rate (Battochio, Menoncin, 
& Scaillet, 2007).  

Now, we need to define the utility function 𝑈 ∗  and the regret function 𝑓 ∗  
that we shall use in the course of our analysis. The one most widely used utility 
function in the literature is the constant relative risk aversion utility function of the 

form 𝑈 𝑋 = 
𝑋1−𝜗

1−𝜗
 with 1 − 𝜗 < 1. Here, we shall use a slight modification of this 

utility function. Now, we know that a pension function derives utility from its 
wealth after all contributions have been made and pensions have been paid. 
Therefore, if we let 𝑀(𝑡) represent all contributions and payments up to the present 
time, where 𝑀 𝑡  can be written as  4 . 

 

𝑀 𝑡 =  𝑚 𝑠 𝑒−𝑟 𝑠−𝑡 𝑑𝑠

𝑡

𝑡0

 

 
then the pension fund will derive some utility from 𝑊 𝑡 − 𝑀 𝑡 , and so the 

utility function must be defined on this argument, i.e. 𝑈(𝑊 𝑡 − 𝑀 𝑡 ). This is our 
slight modification of the utility function. For the regret function 𝑓 ∗ , we assume 
that it is of the form 𝑓 𝑌 =  𝑌 + 𝑎 𝜌 ,  with 𝑎 > 0 and 𝜌 > 0, both of which are 
positive and less than 1 (Mhiri, & Prigent, 2010). Accordingly, therefore, the 
modified utility function can be written as  

 

𝜓 𝑊,𝑊𝑜 =
 𝑊 𝑡 −𝑀 𝑡  

1−𝜗

1−𝜗
+  

1

1−𝜗
  𝑊 𝑡 − 𝑀 𝑡  

1−𝜗
−  𝑊𝑜 𝑡 −

𝑀𝑡1−𝜗+𝑎𝜌                                                                                                  (11) 

 
where all variables are as previously defined.  
 
4.1. The Optimization Problem of the Pension Fund 
The previous sections set the ground for formulating the optimization problem 

of the pension fund. As we assume that the pension fund seeks to maximize the 
expected modified utility of its terminal wealth after all contributions have been 
made and pensions have been made, we write the regret theoretic asset allocation 
problem as 

 

 
  
 

  
 maxɸ𝔼𝑡0

 ∫ 𝑔 𝑡  
 𝑊 𝑡 −𝑀 𝑡  

1−𝜗

1−𝜗
+  

1

1−𝜗
  𝑊 𝑡 − 𝑀 𝑡  

1−𝜗
−  𝑊𝑜 𝑡 − 𝑀 𝑡  

1−𝜗
 + 𝑎 

𝜌

  𝑑𝑡
∞

𝑡0
 

                                                          𝑑𝑊 =  𝑊𝑟 + ɸ 𝜇𝑆 − 𝑟 + 𝑚 𝑑𝑡 + ɸ𝜎𝑆𝑑𝑧𝑆
                   𝑑𝑊𝑜 =  𝑊𝑜𝑟 + 𝑚 𝑑𝑡

 𝑊 𝑡0 = 𝑊0

     𝑊𝑜 𝑡0 = 𝑊0
𝑜

            (12) 
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where 𝑔 𝑡  is the actuarial discount factor.  
Following  4 , let us define the function  
 

 𝑉 𝑡,𝑊,𝑊0,ɸ =   𝑔 𝑠  
 𝑊 𝑠 − 𝑀 𝑠  

1−𝜗

1 − 𝜗
+  

1

1 − 𝜗
  𝑊 𝑠 − 𝑀 𝑠  

1−𝜗
−  𝑊𝑜 𝑠 −𝑀 𝑠  

1−𝜗
 + 𝑎 

𝜌

 𝑑𝑠

∞

𝑡

  

.

  

 
then the value function can be written as 
 

𝐽 𝑡,𝑊,𝑊0 = max
ɸ

 𝑉 𝑡,𝑊,𝑊0 ,ɸ  

 
This value function satisfies the HJB Hamilton-Jacobi-Bellman equation 
 

𝐽𝑡 + max
ɸ

 
 
 
 

 
 

 𝑔 𝑡  
 𝑊 𝑡 −𝑀 𝑡  

1−𝜗

1−𝜗
+  

1

1−𝜗
  𝑊 𝑡 − 𝑀 𝑡  

1−𝜗
−  𝑊𝑜 𝑡 − 𝑀 𝑡  

1−𝜗
 + 𝑎 

𝜌

 

+

𝐽𝑊 𝑊𝑟 + ɸ 𝜇𝑆 − 𝑟 + 𝑚 +
1

2
𝐽𝑊𝑊ɸ

2𝜎𝑆
2 + 𝐽𝑊0 𝑊𝑜𝑟 + 𝑚 

 

 
 
 
 

= 0   

 
From this equation, the first order condition for the maximization yields 
 

 
 
 
 

 
 

 𝑔 𝑡  𝑊 𝑡 − 𝑀 𝑡  
−𝜗
 1 + 𝜌  

1

1 − 𝜗
  𝑊 𝑡 − 𝑀 𝑡  

1−𝜗
−  𝑊𝑜 𝑡 − 𝑀 𝑡  

1−𝜗
 + 𝑎 

𝜌−1

 

+
𝐽𝑊𝜇𝑆 + 𝐽𝑊𝑊𝜎𝑆

2ɸ

 

 
 
 
 

= 0 

⇒ ɸ∗ = −
ℵ

𝐽𝑊𝑊 𝜎𝑆
2                                                                                              (13) 

 
where the subscripts indicate the partial derivatives with respect to 𝐽 and 
  

ℵ =

 
 

 𝑔 𝑡  𝑊 𝑡 − 𝑀 𝑡  
−𝜗
 1 + 𝜌  

1

1 − 𝜗
  𝑊 𝑡 − 𝑀 𝑡  

1−𝜗
−  𝑊𝑜 𝑡 − 𝑀 𝑡  

1−𝜗
 + 𝑎 

𝜌−1

 

+
𝐽𝑊𝜇𝑆

  

 
The first order conditions are necessary and sufficient for optimality because the 

modified utility is concave in 𝑊 and hence in ɸ, since ɸ is linked to 𝑊 through 
ɸ = 𝜃 𝑆 = 𝛼𝑊 by comparing equations 5b and 6b. In fact, under all the suitably 
stated conditions that must hold for the optimization problem of the pension fund, 
the modified utility function, and hence the value function, is increasing and 
concave in 𝑊. The proof is given in the last Appendix. 

After substituting the expression of ɸ∗ , we obtain the resulting Hamilton-
Jacobi-Bellman equation, 

 

 
 
 
 
 
 

 
 
 

 
 𝐽𝑡 + 𝑔 𝑡  

 𝑊 𝑡 −𝑀 𝑡  
1−𝜗

1 − 𝜗
+  

1

1 − 𝜗
  𝑊 𝑡 −𝑀 𝑡  

1−𝜗
−  𝑊𝑜 𝑡 −𝑀 𝑡  

1−𝜗
 + 𝑎 

𝜌

 

+

𝐽𝑊 𝑊𝑟 + 𝑚 +
ℵ

𝐽𝑊𝑊𝜎𝑆
2  

1

2
ℵ − 𝐽𝑊 𝜇𝑆 − 𝑟  + 𝐽𝑊0 𝑊𝑜𝑟 + 𝑚 

 

 
 
 
 
 
 

= 0 

 
For the value function, we can try the 

substitution  𝐽 𝑡,𝑊,𝑊0 = 𝑕 𝑡 𝑔(𝑡) 𝜓 𝑊,𝑊𝑜 , where 𝑕 𝑡  is a function that 
needs to be determined  4 .  From this substitution, we have  

 

𝐽𝑡 = 𝑔 𝑡 𝜓 𝑊,𝑊𝑜  
𝜕𝑕 𝑡 

𝜕𝑡
+  𝑕 𝑡 𝜓 𝑊,𝑊𝑜 

𝜕𝑔 𝑡 

𝜕𝑡
+ 𝑕 𝑡 𝑔(𝑡) 

𝜕𝜓 𝑊,𝑊𝑜 

𝜕𝑡
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𝐽𝑊 = 𝑕 𝑡 𝑔 𝑡 
𝜕𝜓 𝑊,𝑊𝑜 

𝜕𝑊
,   𝐽𝑊𝑊 = 𝑕 𝑡 𝑔 𝑡 

𝜕

𝜕𝑊

𝜕𝜓 𝑊,𝑊𝑜 

𝜕𝑊
, 𝐽𝑊𝑜

= 𝑕 𝑡 𝑔(𝑡)
𝜕𝜓 𝑊,𝑊𝑜 

𝜕𝑊𝑜
  

 
Plugging these expressions into the Hamilton Jacobi Bellman equation and 

simplifying terms, we obtain that 𝑕 𝑡  satisfies 
 

𝜕𝑕(𝑡)

𝜕𝑡
+  

1

𝑔 𝑡 

𝜕𝑔 𝑡 

𝜕𝑡
+ 𝑟  1 +

1

2𝜎𝑆
2

𝑟

 1 − 𝜗  𝜌 − 1 
𝑔 𝑡  

+
1

2𝜎𝑆
2

𝑔 𝑡 

𝑕 𝑡 

1

 𝜌 − 1 
 𝑕 𝑡 + 𝐴 𝑊,𝑊𝑜 = 0 

 
Where 
 

𝐴 𝑊,𝑊𝑜 =
1

2

ℵ2

𝐽𝑊𝑊𝜎𝑆
2 −

𝐽𝑊
𝐽𝑊𝑊

ℵ 𝜇𝑆 − 𝑟 

𝜎𝑆
2  

 
The precise form of the function 𝑕(𝑡)  is not important for computing the 

optimal portfolio composition of the pension fund since the Arrow-Pratt risk 
aversion index computed on 𝐽 𝑊,𝑊𝑜  does not depend on 𝑕(𝑡). This makes it 
possible for us to obtain the composition of the optimal asset allocation of the 
pension fund. Thus, given a pair  𝑢, 𝑣  of constant contribution and pension rates 
satisfying the feasibility condition, the composition of the optimal asset allocation 
of a pension fund which maximizes the expected modified utility of its final wealth 
is given by  

 

ɸ∗ =
𝐸

 𝐿−𝐻 𝜎𝑆
2                                                                                                         (14) 

 
Where 
 

 

 
 
 

 
             𝐸 =  

1

𝑔 𝑡 
+ 𝜇𝑆  1 +

𝜌 𝜌−1 

1−𝜗
 𝑊1−𝜗 −𝑊𝑜1−𝜗

 + 𝜌 𝜌 − 1  𝑊𝑜−𝜗 −𝑊−𝜗 𝑀 + 𝑎𝜌 𝜌 − 1  

𝐿 =   𝜗  −1 +
𝜌 𝜌−1 

1−𝜗
 𝑊1−𝜗 −𝑊𝑜1−𝜗

 + 𝜌 𝜌 − 1  𝑊𝑜−𝜗 −𝑊−𝜗 𝑀 + 𝑎𝜌 𝜌 − 1  

𝐻 = 𝜌(𝜌 − 1)  
1

𝑊𝜗
+

𝑀𝜗

𝑊𝜗+1
  1 +

𝜌 𝜌−2 

1−𝜗
 𝑊1−𝜗 −𝑊𝑜1−𝜗

 + 𝜌 𝜌 − 2  𝑊𝑜−𝜗 −𝑊−𝜗 𝑀 + 𝑎𝜌 𝜌 − 2  

  

 
Without any loss of generality, and for simplicity, we can disregard the last term 

(set 𝑎 to zero) in each of the above expressions, replace 𝑀 with its value and then 
break each expression into two parts to get 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

             𝐸𝑢 =  
1

𝑔 𝑡 
+ 𝜇𝑆  1 +

𝜌 𝜌 − 1 

1 − 𝜗
 𝑊1−𝜗 −𝑊𝑜1−𝜗

 + 𝜌 𝜌 − 1  𝑊𝑜−𝜗 −𝑊−𝜗  𝑢

𝑡

0

𝕀𝑡<𝑇𝑒
−𝑟 𝑠−𝑡 𝑑𝑠 

𝐿𝑢 = 𝜗  −1 +
𝜌 𝜌 − 1 

1 − 𝜗
 𝑊1−𝜗 −𝑊𝑜1−𝜗

 + 𝜌 𝜌 − 1  𝑊𝑜−𝜗 −𝑊−𝜗  𝑢

𝑡

0

𝕀𝑡<𝑇𝑒
−𝑟 𝑠−𝑡 𝑑𝑠 

                 𝐻𝑢 = 𝜌 𝜌 − 1  
1

𝑊𝜗
+

𝜗

𝑊𝜗+1
 𝑢

𝑡

0

𝕀𝑡<𝑇𝑒
−𝑟 𝑠−𝑡 𝑑𝑠 

 
 
 
 
 
 1 +

𝜌 𝜌 − 2 

1 − 𝜗
 𝑊1−𝜗 −𝑊𝑜1−𝜗

 +

𝜌 𝜌 − 2  𝑊𝑜−𝜗 −𝑊−𝜗   𝑢

𝑡

0

𝕀𝑡<𝑇𝑒
−𝑟 𝑠−𝑡 𝑑𝑠 

 
 
 
 
 
 

  

 

ɸ𝑢
∗ =

𝐸𝑢
 𝐿−𝐻 𝜎𝑆

2                                                                                                  (14a) 
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and  

 
 
 
 
 

 
 
 
 

𝐸𝑣 =  
1

𝑔 𝑡 
+ 𝜇𝑆 𝜌 1 − 𝜌  𝑊𝑜−𝜗 −𝑊−𝜗  𝑣(1 −

𝑡

0

𝕀𝑡<𝑇)𝑒−𝑟 𝑠−𝑡 𝑑𝑠

𝐿𝑣 = 𝜗𝜌 1 − 𝜌  𝑊𝑜−𝜗 −𝑊−𝜗  𝑣(1 −

𝑡

0

𝕀𝑡<𝑇)𝑒−𝑟 𝑠−𝑡 𝑑𝑠

𝐻𝑣 = 𝜌2 1− 𝜌  𝜌 − 2 
𝜗

𝑊𝜗+1
  𝑣(1 −

𝑡

0

𝕀𝑡<𝑇)𝑒−𝑟 𝑠−𝑡 𝑑𝑠 

2

 𝑊𝑜−𝜗 −𝑊−𝜗 

  

 

 ɸ𝑣
∗ =

𝐸𝑣
 𝐿−𝐻 𝜎𝑆

2                                                                                                 (14b) 

 
so that  
 

ɸ∗ = ɸ𝑢
∗ + ɸ𝑣

∗  
 
where 𝑢  and 𝑣  are linked by the feasibility condition and 𝐿 = 𝐿𝑢 + 𝐿𝑣  and 

𝐻 = 𝐻𝑢 + 𝐻𝑣.  
The first set of equations depends explicitly on the contribution rate 𝑢 and the 

wealth level of the pension fund as a result of its actual investment choice, i.e. 
investing a positive amount in the risky- asset class. It also depends on the wealth 
level of a forgone investment choice, i.e. the investment choice that could have 
been made, which would involve taking no position in the risky-asset class. The 
wealth level of the forgone investment decision is a benchmark with which to 
compare the outcome or wealth level of the pension fund’s actual investment 
choice. The second set of equations also depends on the two wealth levels as well 
as on the pension rate 𝑣. Furthermore, the mortality risk 𝜏 enters the maximization 
problem through the link that exists between the contribution rate 𝑢   and the 
pension rate 𝑣 in the feasible condition derived in Appendix 1.  It is very pertinent 
to further stress that 𝑢 and 𝑣  must satisfy this feasibility condition as we have 
already demonstrated. As noted in (Heybati, Roodposhti, & Moosavi, 2011), if this 
link between 𝑢  and 𝑣  is completely not considered through the feasibility 
condition, then the composition of the optimal asset allocation of a pension fund is 
independent of mortality risk. Such an optimal asset allocation strategy for a 
pension fund can produce very shallow and extremely restricted results in practice.  

A very important deduction from the two sets of equations is that the optimal 
allocation of the pension fund does explicitly depend on the wealth levels. This 
becomes evident since the equations themselves depend on the wealth levels and 
when we substitute the expressions of the equations into the composition of the 
optimal asset allocation of the pension fund, we get that it also depends on the 
wealth levels. From this, therefore, we can deduce that it is suboptimal for a 
pension fund to manage the accumulation phase, when contributions are made, and 
the decumulation phase, when pensions are paid, separately. Hence our model 
prohibits the pension fund from outsourcing any of the phases of the pension fund 
management to a second or third party. This means that the idea of outsourcing, 
commonly employed by large pension funds in emerging economies, is not 
effective and does not conform to an optimal strategy in a regret theoretic 
framework. Ideally, a firm should commit the entire management of its employees’ 
retirement plan to the same pension fund and the pension fund itself must not 
outsource any of the phases of the pension management process. If it does, its 
action will be suboptimal and may have undesirable consequences. We now 
investigate what happens at the two phases involved in the management of a 
pension fund – accumulation and decumulation phases.  
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4.2. Accumulation Phase 
When 𝑡 ≤ 𝑇, the pension fund is in the accumulation phase and the optimal 

allocation strategy in this phase can be written as  
 

 𝐸𝑢 =  
1

𝑔 𝑡 
+ 𝜇𝑆  1 +

𝜌 𝜌 − 1 

1 − 𝜗
 𝑊1−𝜗 −𝑊𝑜1−𝜗

 

+ 𝜌 𝜌 − 1  𝑊𝑜−𝜗 −𝑊−𝜗 
𝑢

𝑟
 𝑒𝑟𝑡 − 1   

𝐿𝑢 = 𝜗  −1 +
𝜌 𝜌 − 1 

1 − 𝜗
 𝑊1−𝜗 −𝑊𝑜1−𝜗

 

+ 𝜌 𝜌 − 1  𝑊𝑜−𝜗 −𝑊−𝜗 
𝑢

𝑟
 𝑒𝑟𝑡 − 1   

𝐻𝑢 = 𝜌(𝜌 − 1) 
1

𝑊𝜗
+
𝑢

𝑟

𝜗

𝑊𝜗+1
 𝑒𝑟𝑡 − 1   1 +

𝜌 𝜌 − 2 

1 − 𝜗
 𝑊1−𝜗 −𝑊𝑜1−𝜗

 

+ 𝜌 𝜌 − 2  𝑊𝑜−𝜗 −𝑊−𝜗 
𝑢

𝑟
 𝑒𝑟𝑡 − 1   

ɸ𝑢
∗ =

𝐸𝑢
 𝐿 − 𝐻 𝜎𝑆

2  and ɸ𝑣
∗ = 0 since 𝑡 ≤ 𝑇 ⇒    𝑣(1 −

𝑡

0

𝕀𝑡<𝑇)𝑒−𝑟 𝑠−𝑡 𝑑𝑠 = 0 

 

We first recall that 𝜇𝑆  can be positive, negative or zero and  
1

𝑔 𝑡 
+ 𝜇𝑆  >0 

since 𝑔 is a discount factor whose value is positive and less than 1. Suppose now 
that the pension fund is not regret averse. During the accumulation phase, and in 
the absence of regret aversion, i.e. 𝜌=0, the optimal allocation to the risky-asset 
class assumes negative values and thus contains a decreasing proportion of the 
risky-asset class with respect to time. This means that, in the absence of regret 
aversion, the optimal allocation to risky assets during the accumulation phase 
decreases through time in order for the pension fund to meet payments of future 
pensions to its subscribers. This property is not difficult to check. For instance, 
when we set the regret coefficient to zero and differentiate the resulting 
expression with respect to time, we obtain  

 
𝑑ɸ𝑢

∗

𝑑𝑡
=

1

𝑔2

𝑑𝑔

𝑑𝑡
< 0 ∀  

𝑑𝑔

𝑑𝑡
< 0 

 
as previously noted. The graphical illustration is shown as below 

 
Figure 4. Behavior of the optimal asset allocation with time 
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This behavior during the accumulation phase substantiates the implications of 
the results documented in Battocio, Menoncin & Scaillet (2003; 2007). However, 
in the presence of regret, as in our case, the conclusion is not always the same. 
Indeed, we notice that, depending on the level of aversion and the choice of the 
underlying variables, the optimal asset allocation to the risky-asset class takes 
positive values and thus contains a non-decreasing proportion of the risky-asset 
class with regard to time. This means that, in the presence of regret aversion, 
regret averse pension funds have an optimal risky-asset allocation strategy that 
increases through time during the accumulation phase. In our view, the intuition 
behind this is pragmatically clear. Regret averse pension funds invest more in 
risky assets as time passes so as not to miss the upside potential of the risky-asset 
market, especially in bullish times. Thus a regret averse pension fund invests an 
increasing amount of wealth in the risky asset class. This is done in order to have 
a higher return on the managed wealth and on the contributions made by the 
subscribers.  
 

4.3. Decumulation Phase 
When 𝑡 > 𝑇, the pension fund is in the decumulation phase and the optimal 

asset allocation strategy in this phase can be written as  
 

𝐸𝑣 =
𝑣

𝑟
 

1

𝑔 𝑡 
+ 𝜇𝑆 𝜌 1 − 𝜌  𝑊𝑜−𝜗 −𝑊−𝜗  𝑒𝑟 𝑡−𝑇 − 1  

                                             𝐿𝑣 =
𝑣

𝑟
𝜗𝜌 1 − 𝜌  𝑊𝑜−𝜗 −𝑊−𝜗  𝑒𝑟 𝑡−𝑇 − 1  

                                             𝐻𝑣

=  
𝑣

𝑟
 

2

𝜌(1

− 𝜌)
𝜗

𝑊𝜗+1
 𝑒𝑟 𝑡−𝑇 

− 1  𝜌 𝜌 − 2  𝑊𝑜−𝜗 −𝑊−𝜗  𝑒𝑟 𝑡−𝑇 − 1   

                                             ɸ𝑣
∗ =

 
1

𝑔 𝑡 
+ 𝜇𝑆 

 𝜗 −
𝑣

𝑟
𝜌 𝜌 − 2 

𝜗

𝑊𝜗+1
 𝑒𝑟 𝑡−𝑇 − 1  𝜎𝑆

2
 

 
During the decumulation phase, and in the absence of regret aversion, i.e. 𝜌=0, 

the optimal allocation to the risky-asset class takes positive values and therefore 
increases through time when the actuarial discount factor decreases with time. 
This property is very easy to check. Indeed, if we set the coefficient of regret 
aversion to zero, we obtain 

 

ɸ𝑣
∗ =

 
1

𝑔 𝑡 
+ 𝜇𝑆 

𝜗
> 0 

 
which shows that the risky-asset class takes positive values. Furthermore, if 

we take the time derivative of this expression, we see that 
 

𝑑ɸ𝑣
∗

𝑑𝑡
=
−1

𝑔2

𝑑𝑔

𝑑𝑡
> 0 ∀  

𝑑𝑔

𝑑𝑡
< 0 

 
which shows that the optimal allocation to the risky-asset class increases 

through time. Again, this conforms to the deductions made in Battocio, Menoncin 
& Scaillet (2003; 2007). This behavior is depicted below.  
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Figure 5. Behavior of the optimal asset allocation with time 

 
In the presence of regret, as in our case, the situation is somewhat similar. 

Indeed, for all admissible levels of regret aversion, the optimal allocation to the 
risky-asset class takes only positive values during the decumulation phase and 
increases through time. The optimal allocation is skewed in favor of the risky-
asset class in the decumulation phase. In fact when the retirement date 𝑇 is still 
far away, the pension fund can afford to invest in the risky-asset class because of 
the belief that the risky-asset class may provide a better opportunity for it to 
accumulate more wealth before the retirement date. This behavior is borne out of 
regret aversion. The pension fund is averse to regret because it does not want to 
experience the feeling of regret that comes when the risky-asset appreciates over 
time and the pension fund does not have a high position in it. We recall from the 
formulation of our problem that the pension fund feels regret or rejoicing with 
respect to the risky-asset class. Therefore, if the pension fund anticipates an ex-
post feeling of regret and factors this feeling into its decision making process, 
then to maximize its portfolio value, increase its final wealth level and minimize 
its future regret the pension fund’s optimal strategy would be to take an 
increasing position in the risky-asst class during both the accumulation and 
decumulation phases.  

We must emphasize that this result contrasts the behavior of a pension fund in 
the traditional expected utility (EU) framework. In the EU framework, the 
optimal allocation to risky assets decreases through time in the accumulation 
phase so that the pension fund would be able to make a sure and substantial 
pension payment in the decumulation phase, while the optimal asset allocation to 
risky assets increases through time in the decumulation phase. In our case, 
however, the allocation to the risky-asset class soars with time during both 
phases. In particular, this is so in the decumulation phase because after retirement 
and during the payment of pensions, the higher the number of pension 
installments paid, the fewer remaining pensions left to be paid, and as the death 
time approaches, the probability that the pension subscriber would die increases, 
so the pension fund can accept to take much risk with less feeling of regret ex-
post. The pension fund can afford to invest more and more in the risky-asset class 
in order to have a high return on the received contributions from the subscribers 
(which are then reinvested for the purpose of growing the contributed funds) and 
on the total managed wealth. This behavior is borne out of regret. Regret aversion 
forces the pension fund to behave this way so as to minimize the feeling of regret 
that would occur if the risky-asset goes up and the pension fund is not there.  

When the pension fund starts paying pensions, the higher the number of 
pension installments paid, the lower the probability to pay another pension 
installment since the death probability increases through time. Thus, after the 
retirement date 𝑇 when 𝑡  increases, the pension fund can afford to invest 
increasingly in the risky-asset class because it has fewer pensions to pay and thus 
would deem it optimal to increase the allocation to risky assets because of the 
upside potential they are capable of generating. Thus, for a pension fund which 
seeks to maximize the expected modified utility of its final wealth, the optimal 
asset allocation rule is such that the amount allocated to risky-asset class 
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increases through time during both phases- the accumulation phase and the 
decumulation phase.  

 
5. Conclusion  
Battocchio et al., (2007) use the theory of expected utility-maximization, 

applied to the management of two phases of a pension fund -the accumulation 
and decumulation phases – to conclude that the optimal asset allocation to risky 
assets in both phases must be different- it must decrease through time in the 
accumulation phase and increase through time in the decumulation phase. 
Instead, in this paper, we have considered the problem of finding the optimal 
asset allocation of a pension fund in a regret theoretic framework, where our 
intuition is motivated by studies that find support for the feelings of regret in 
asset allocation and investment decision making. Accordingly, we incorporate 
regret into the decision-making process of a pension fund and derive the optimal 
asset allocation of a pension fund in a regret theoretic framework. We focus on 
the composition of the optimal asset allocation strategy in the accumulation and 
decumulation phases of the pension fund management. The configuration of the 
financial market is such that there is a risky-asset class whose price follows a 
geometric Brownian motion, a riskless-asset class paying a non trivial interest 
rate and we assume the market is not necessarily complete. Furthermore, it is 
assumed the pension fund possesses a power utility function and a regret/rejoice 
function which satisfies all the usual properties of a standard regret function. 
With an emphasis on regret, we derive approximated closed-form solutions for 
the pension fund and analyze the optimal asset allocation in the accumulation and 
decumulation phases. We consider a random death time of the representative 
subscriber which we assume to follow a Log-logistic distribution. Under this 
assumption, we derive the feasibility condition connecting the constant 
contribution rate 𝑢, constant pension rate 𝑣, and the random death time 𝜏. This is 
a major area of contribution in this paper. There are three risk attributes in our 
objective function. The first is the traditional volatility, the second is the regret 
risk, embedded in the regret function, and the third is the mortality risk that 
comes in through the feasibility condition.  

We show that the optimal asset allocation strategy for a representative regret 
averse pension fund in the accumulation phase is not different from the strategy 
in the decumulation phase. This is another major area of contribution in this 
paper. This particular result contrasts sharply with that obtained in the expected 
utility framework in which the optimal asset allocation in the accumulation phase 
is completely different from the optimal asset allocation in the decumulation 
phase. In particular, under the expected utility framework, the optimal allocation 
to risky assets decreases with time in the accumulation phase so as to make it 
possible for the pension fund to guarantee the payment of pensions to the 
representative subscriber after retirement while, in the decumulation phase when 
pensions are being paid, the optimal allocation to risky assets increases with time. 
Instead, in this paper, and under the regret theory framework, we find that the 
optimal allocation to risky-asset class increases during both accumulation and 
decumulation phases. The intuition to support this behavior is that when pensions 
are paid, the probability of paying more pensions decreases as time passes 
because of the subscriber’s inevitable closeness to death after the retirement date. 
This makes it possible for the pension fund to invest the remaining available 
wealth in more and more risky assets and so the allocation to risky assets 
increases with time. The pension fund is confident to take higher positions in 
risky assets because of its reducing level of obligations and desire to benefit from 
the upside potential of the risky-asset market. We observe that the optimal asset 
allocation of the pension fund jointly depends on its global wealth levels in both 
accumulation and decumulation phases. Therefore, it is suboptimal for a pension 
fund to manage the accumulation and decumulation phases separately, a result 
which is standard in the literature. Outsourcing the management of just a phase of 
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a pension fund is therefore not an optimal strategy. A pension fund that manages 
the accumulation phase should ideally manage the decumulation phase. 

Future research would be an extension of our model to cater to the optimal 
asset allocation rule of a pension fund that manages the retirement proceeds of 
immortal subscribers in a regret theoretic framework. Although humans are not 
immortal and such extensions would be largely theoretical, with little practical 
implications and distorted real-life consequences, yet we believe the outcome 
would be inspiring to theoretical analysts and researchers who are interested in 
immortality bias in survival analysis as regards the management of pension funds, 
especially given that many countries globally have begun to significantly increase 
employee retirement age because medical breakthrough has, over the last 
decades, led to unprecedented improvements in life expectancy.  
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Appendices 
Appendix 1: Derivation of the Feasibility Condition 
If 𝑢 represents the constant contribution rate to a pension fund and 𝑣 represents the constant 

pension rate paid to a subscriber, then the feasibility condition holds for the pair  𝑢, 𝑣 , 𝑢 > 0 and 
𝑣 > 0 if 

𝔼   𝑚 𝑡 𝑒−𝑟𝑡𝑑𝑡

𝜏

0

 = 0, and the resulting expression for the feasibility condition is 

𝑢

𝑣
= −1 +

1 − 𝔼 𝑒−𝑟𝜏  

1 − 𝔼 𝑒−𝑟𝜏𝕀𝜏<𝑇 − 𝑒𝑟𝑇ℙ(𝜏 ≥ 𝑇)
 

where 𝜏 is the random death time. 
Proof 
Given that 𝑇 is the retirement date: 

* When 𝑡 < 𝑇, we have 𝕀𝑡<𝑇 = 1 and 𝑚 𝑡 =
𝑑𝑈(𝑡)

𝑑𝑡
= 𝑢 > 0 ⇒ contributions are made, money 

enters the fund and so we are in the accumulation phase. 
 

* When 𝑡 ≥ 𝑇, we have 𝕀𝑡<𝑇 = 0 and 𝑚 𝑡 = −
𝑑𝑉(𝑡)

𝑑𝑡
= −𝑣 < 0 ⇒ pensions are paid, money 

leaves the fund and so we are in the decumulation phase. 
If we denote the expected present value of all pensions by 𝔼𝑃𝑉𝑃, where 

       𝔼𝑃𝑉𝑃 = 𝔼 𝑣 1 − 𝕀𝑡<𝑇 

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 

and the expected present value of all contributions by 𝔼𝑃𝑉𝐶, where  

𝔼𝑃𝑉𝐶 =  𝔼 𝑢𝕀𝑡<𝑇

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 

then from the point of view of the subscriber, 𝔼𝑃𝑉𝑃 ≥ 𝔼𝑃𝑉𝐶, i.e. 

𝐴: 𝔼 𝑣 1 − 𝕀𝑡<𝑇 

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 ≥ 𝔼 𝑢𝕀𝑡<𝑇

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 

and from the point of view of the pension fund, 𝔼𝑃𝑉𝑃 ≤ 𝔼𝑃𝑉𝐶, i. e 

𝐵: 𝔼 𝑣 1 − 𝕀𝑡<𝑇 

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 ≤ 𝔼 𝑢𝕀𝑡<𝑇

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 

Accordingly, therefore, both parties reach an agreement when 𝐴 ∩ 𝐵 ≠ ∅, i. e.  

𝔼 𝑣 1 − 𝕀𝑡<𝑇 

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 ≥ 𝔼 𝑢𝕀𝑡<𝑇

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 ∩   𝔼 𝑣 1 − 𝕀𝑡<𝑇 

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 ≤ 𝔼 𝑢𝕀𝑡<𝑇

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 ≠ ∅ 

         ⇒ 𝔼 𝑢𝕀𝑡<𝑇

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 = 𝔼 𝑣 1 − 𝕀𝑡<𝑇 

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 

        ⇒ 𝔼  𝑢𝕀𝑡<𝑇 − 𝑣 1 − 𝕀𝑡<𝑇  

𝜏

0

𝑒−𝑟𝑡𝑑𝑡 = 0, i. e. 

𝔼   𝑚 𝑡 𝑒−𝑟𝑡𝑑𝑡

𝜏

0

 = 0, 

where  𝑚 𝑡 = 𝑢𝕀𝑡<𝑇 − 𝑣 1 − 𝕀𝑡<𝑇 ,  𝑒−𝑟𝑡  is the discount factor and 𝜏 is the random death time 
of the subscriber. This is the feasibility condition that has to be satisfied before the subscriber and the 
pension fund can accept the pair  𝑢, 𝑣 . It guarantees that neither the pension fund nor the subscriber 
feels cheated. 

We next prove the feasibility condition 
𝑢

𝑣
= −1 +

1 − 𝔼 𝑒−𝑟𝜏  

1 − 𝔼 𝑒−𝑟𝜏𝕀𝜏<𝑇 − 𝑒𝑟𝑇ℙ(𝜏 ≥ 𝑇)
 

Eliminating 𝑚 𝑡  from 𝔼 ∫ 𝑚 𝑡 𝑒−𝑟𝑡𝑑𝑡
𝜏

0
 = 0 and 𝑚 𝑡 = 𝑢𝕀𝑡<𝑇 − 𝑣 1 − 𝕀𝑡<𝑇  yields 

                   
𝑢

 𝑣
=
𝔼 ∫ 𝑒−𝑟𝑡𝑑𝑡

𝜏

0
 − 𝔼 ∫ 𝕀𝑡<𝑇𝑒

−𝑟𝑡𝑑𝑡
𝜏

0
 

𝔼 ∫ 𝕀𝑡<𝑇𝑒
−𝑟𝑡𝑑𝑡

𝜏

0
 

 

𝑢

𝑣
=

𝔼 ∫ 𝑒−𝑟𝑡𝑑𝑡
𝜏

0
 

𝔼 ∫ 𝕀𝑡<𝑇𝑒
−𝑟𝑡𝑑𝑡

𝜏

0
 
− 1 

Now, since we can write 
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 𝑒−𝑟𝑡𝑑𝑡

𝜏

0

=
1

𝑟
−
𝑒−𝑟𝜏

𝑟
 

and  

 𝕀𝑡<𝑇𝑒
−𝑟𝑡𝑑𝑡

𝜏

0

=

 
 

 
1 − 𝑒−𝑟𝜏

𝑟
 for 𝜏 < 𝑇

1 − 𝑒−𝑟𝑇

𝑟
 for 𝜏 ≥ 𝑇

  

then we have 

                               𝔼   𝑒−𝑟𝑡𝑑𝑡

𝜏

0

 =
1

𝑟
−
𝔼 𝑒−𝑟𝜏  

𝑟
=

1

𝑟
 1 − 𝔼 𝑒−𝑟𝜏   

and  

                                                𝔼  𝕀𝑡<𝑇𝑒
−𝑟𝑡𝑑𝑡

𝜏

0

 =  
1 − 𝑒−𝑟𝜏

𝑟

𝑇

0

𝑓 𝜏 +  
1 − 𝑒−𝑟𝑇

𝑟
𝑓(𝜏)

∞

𝑇

 

where 𝑓(𝜏) is the density of the random death time 𝜏. 
Complete integration by parts yields 

𝔼   𝕀𝑡<𝑇𝑒
−𝑟𝑡𝑑𝑡

𝜏

0

 =
1

𝑟
 ℙ 𝜏 < 𝑇 + ℙ 𝜏 ≥ 𝑇  −

1

𝑟
 𝑒−𝑟𝜏𝑓 𝜏 𝑑𝜏 −

1

𝑟

𝑇

0

𝑒−𝑟𝑇ℙ 𝜏 ≥ 𝑇  

or  

𝔼   𝕀𝑡<𝑇𝑒
−𝑟𝑡𝑑𝑡

𝜏

0

 =
1

𝑟
 1 − 𝔼 𝑒−𝑟𝜏𝕀𝜏<𝑇 − 𝑒−𝑟𝑇ℙ 𝜏 ≥ 𝑇   

Thus 
𝑢

𝑣
= −1 +

 1 − 𝔼 𝑒−𝑟𝜏  

1 − 𝔼 𝑒−𝑟𝜏 𝕀𝜏<𝑇 − 𝑒−𝑟𝑇ℙ 𝜏 ≥ 𝑇 
 

as required to prove. 
Remarks 
The proposition shows that pensions are proportional to contributions. This is exactly what is 

observed in practice; the higher the contributions towards retirement, the higher the pensions at 
retirement.  

 
Appendix 2: Computation of the Feasibility Condition 

Battocchio, Menoncin and Scaillet (2003, 2007) assume death time 𝜏  follows a Gompertz-
Makeham distribution and a Weibull distribution and they compute the feasibility condition based on 
these assumptions. Here, we explicitly compute the feasibility condition by supposing that the death 
time 𝜏 follows a log-logistic distribution. Besides giving a concrete view of the feasibility condition, 
the log-logistic distribution takes only positive arguments, provides a good characterization of the 
death time and is most widely used in death/survival analysis. These are some of its desirable 
properties which explain why we favor it in our work. 

The log-logistic distribution density function of the death time 𝜏 is given by 

𝑓 𝜏 =

𝛽

𝛼
 
𝜏

𝛼
 
𝛽−1

 1 +  
𝜏

𝛼
 
𝛽
 

2  where 𝜏 > 0,𝛼 > 0,𝛽 > 0 

𝛼 and 𝛽 are the scaling and shaping factor respectively. 

 
Figure 1: Log-logistic distribution of death time 𝜏 with 𝛼 = 1.7, 𝛽 = 1.3 
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The expected time of death is given by 

 𝜏𝑓 𝜏 𝑑𝜏 = 𝛼B  1 −
1

𝛽
, 1 +

1

𝛽
 = 𝛼𝛤  1 −

1

𝛽
 𝛤  1 +

1

𝛽
 , 𝛽 > 1 

∞

0

 

where B and 𝛤 are the Beta and Gamma functions respectively. The behavior of the expected 
death time is shown in Figure 2 where we have set 𝛼 ∈  2, 10  and 𝛽 ∈  1.10, 1.50 . We see that the 
expected time of death soars to roughly 100 years when the parameters take the set values above.  

 
Figure 2: Expected time of death for the log-logistic distribution 

Before we compute the feasibility condition, we need to first obtain  ℙ 𝜏 ≥ 𝑇 , 𝔼 𝑒−𝑟𝜏  and 
𝔼 𝑒−𝑟𝜏𝕀𝜏<𝑇  under our assumption of a log-logistic death time 𝜏 distribution.  

 
ℙ 𝜏 ≥ 𝑇  

The probability that the death time 𝜏 would occur on or after the obligatory retirement date 𝑇 is 
given by 

ℙ 𝜏 ≥ 𝑇 =
𝛽

𝛼
 

 
𝜏

𝛼
 
𝛽−1

 1 +   
𝜏

𝛼
 
𝛽
 

2 𝑑𝜏

∞

𝑇

 

If we apply the change of variable 𝑢 = 1 +  
𝜏

𝛼
 
𝛽

, where 𝑢 → 0 𝑎𝑠 𝜏 → ∞, we will obtain  

ℙ 𝜏 ≥ 𝑇 =
1

1 +  
𝑇

𝛼
 
𝛽

 

We remark that if the retirement date is very far into the future, the probability of death time 
occurring after the retirement date tends to zero. This means that the death time is most likely to occur 
before the retirement date and thus there is a risk that the employee may die in active service before 
retirement. This explains why more countries are increasingly favoring earlier retirement dates. 

𝔼 𝑒−𝑟𝜏   
This is the expected value of the discounting factor over the death time of the subscriber.  An 

advantage of the log-logic distribution is that it takes only positive death time, unlike a Normal 
distribution which can assume an undesirable negative death time. Considering this, we have 

𝔼 𝑒−𝑟𝜏  =
𝛽

𝛼
 𝑒−𝑟𝜏
∞

0

 
𝜏

𝛼
 
𝛽−1

 1 +   
𝜏

𝛼
 
𝛽
 

2 𝑑𝜏 =  𝑢−2𝑒−𝑟𝛼  𝑢−1 
1
𝛽

∞

1

𝑑𝑢    

where we have used the change of variable 𝜏 = 𝛼 𝑢 − 1 
1

𝛽  . Since this integral does not admit an 
elementary algebraic solution, we may propose an approximation as in the Proposition  below. 

Proposition  1 

Under the assumption that   𝑢 − 1 
1

𝛽 < 1 for 𝛽 > 0,  𝔼 𝑒−𝑟𝜏  approximates to  

  𝔼 𝑒−𝑟𝜏  ≅
β

rα
  

1

rα
 
β−1

Γ β − 2  
1

rα
 

2β−1

Γ 2β    

where  Γ is the complete gamma function defined as 

Γ s =  ts−1

∞

0

e−tdt =  s − 1 ! 

Proof                                                                                                                                                                                 

Set 𝑡 = 𝑟𝛼 𝑢 − 1 
1

𝛽   and use negative binomial theorem to expand  1 +  
𝑡

𝑟𝛼
 
𝛽
 
−2

after which the 

result follows. 

2

8

0

50

100

1 1,2 1,3 1,4 1,5

𝛼

𝔼(𝛕)

𝛽
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* Computing 𝔼 𝑒−𝑟𝜏 𝕀𝜏<𝑇   is akin to computing 𝔼 𝑒−𝑟𝜏  but with an added restriction that the 
death time must occur before the retirement date, i.e. given that the subscriber dies before the 
retirement date. Arguments similar to Proposition 2 give 

𝔼 𝑒−𝑟𝜏𝕀𝜏<𝑇 ≅
𝛽

𝑟𝛼
  

1

𝑟𝛼
 
𝛽−1

 𝑡𝛽−1𝑒−𝑡𝑑𝑡 − 2  
1

𝑟𝛼
 

2𝛽−1
𝑇

0

 𝑡2𝛽−1𝑒−𝑡𝑑𝑡

𝑇

0

   

If we define the lower incomplete gamma function as   

𝛾 𝑠, 𝑥 =  𝑡𝑠−1𝑒−𝑡𝑑𝑡 

𝑥

0

 

then we will have  

𝔼 𝑒−𝑟𝜏𝕀𝜏<𝑇 ≅
𝛽

𝑟𝛼
  

1

𝑟𝛼
 
𝛽−1

𝛾 𝛽,𝑇 − 2  
1

𝑟𝛼
 

2𝛽−1

𝛾 2𝛽,𝑇    

Accordingly, we plug these closed-form approximations for ℙ 𝜏 ≥ 𝑇 , 𝔼 𝑒−𝑟𝜏  and 𝔼 𝑒−𝑟𝜏 𝕀𝜏<𝑇  
into the feasibility condition to get 

𝑢

𝑣
≅

𝛽   
1

𝑟𝛼
 
𝛽−1

Γ β, T − 2  
1

𝑟𝛼
 

2𝛽−1
Γ 2β, T  + 𝑟𝛼

𝑒−𝑟𝑇

 1+ 
𝑇

𝛼
 
𝛽
 

𝑟𝛼 − 𝛽   
1

𝑟𝛼
 
𝛽−1

𝛾 𝛽,𝑇 − 2  
1

𝑟𝛼
 

2𝛽−1
𝛾 2𝛽,𝑇  − 𝑟𝛼

𝑒−𝑟𝑇

 1+ 
𝑇

𝛼
 
𝛽
 

 

where Γ 𝑠, 𝑥  is the upper incomplete gamma function defined as  

Γ 𝑠, 𝑥 =  𝑡𝑠−1𝑒−𝑡𝑑𝑡 

∞

𝑥

 

and  

𝛾 𝑠,𝑥 + Γ 𝑠, 𝑥 = Γ s =  𝑡𝑠−1𝑒−𝑡𝑑𝑡 

∞

0

=  𝑠 − 1 ! 

This is the condition that has to be satisfied for the pension fund and the subscriber to agree on a 
pension contract when the death time of the subscriber is assumed to follow a log-logistic distribution. 
We present the results of the feasibility condition for several values of 𝛼,𝛽,𝑇 and 𝑟 in Table 1 below. 
Table 1: Approximation for the feasible ratio 

𝑟 𝛼 𝛽 𝑇 𝑢

𝑣
 

0.05 
0.05 
0.05 

20 
20 
20 

1.1 
1.1 
1.1 

30 
20 
10 

 0.0074 
  0.0936 
  0.1322 

0.05 
0.05 
0.05 

20 
20 
20 

1.05 
1,15 
1.20 

30 
30 
30 

0.2201 
0.0651 
0.0602 

0.05 
0.05 
0.05 

10 
15 
25 

1.1 
1.1 
1.1 

30 
30 
30 

0.0095 
0.0311 
0.0721 

0.04 
0.05 
0.06 

20 
20 
20 

1.1 
1.1 
1.1 

30 
30 
30 

0.0458 
0.0987 
0.1245 

  
From Table 1 it is clear that, given the age of a subscriber, when the retirement date 𝑇 increases, 

the feasible ratio 
𝑢

𝑣
  decreases and so the pension fund can afford to pay a higher pension rate to the 

subscriber. In fact, the pension fund can demand lower contribution rates when the contributions are 
made for a long period of time. Furthermore, when the retirement date 𝑇 is sufficiently far away, the 
feasible ratio 

𝑢

𝑣
  is decreasing with respect to 𝛽 and increasing with respect to 𝛼. Our result contrasts 

with Battocchio, Menoncin and Scaillet (2003, 2007) who find a decreasing relationship between  
𝑢

𝑣
   

and both 𝛼 and 𝛽 for a sufficiently large retirement date 𝑇.  
Table 1 also shows that the higher the short term interest rate 𝑟 the higher the feasible ratio and 

therefore the lower the pension rate the pension fund can afford to pay. In fact, when the interest rate 
increases it becomes more difficult for the pension fund to meet future payments. This will 
consequently force the pension fund to demand higher contribution rates. Again our result contrasts 
sharply with Battocchio, Menoncin and Scaillet (2003, 2007) who find an inverse relationship 
between the feasible ratio 

𝑢

𝑣
 and the short term interest rate.  We also find that, as the retirement date 

𝑇 increases, the probability that the death time will occur after the retirement date decreases. This 
means that more and more, it gets more and more likely that the subscriber will die before retirement 
or while in service. 

Using the derived approximated ratio, we can graphically depict the behavior of the ratio 
𝑢

𝑣
 with 

respect to the parameters 𝛼 and 𝛽. These graphs are shown in Figure 3, where three different values 
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of 𝑇 and 𝑟 are chosen. In particular,  𝑇 = 10, 20, 30 and 𝑟 = 0.05, 0.06, 0.07 and the values of 𝛼 and 
𝛽 belong to  10, 20  and  1.05, 1.15  respectively.  

Figure 3: Feasible ratio 
𝒖

𝒗
 

 
𝑇 = 30, 𝑟 = 0.045                            𝑇 = 30, 𝑟 = 0.05 

 
𝑇 = 20, 𝑟 = 0.045                                                                 𝑇 = 30, 𝑟 = 0.06 

 
𝑇 = 10, 𝑟 = 0.045                                                                    𝑇 = 30, 𝑟 = 0.07 

 
The first column of Figure 3 shows the behavior of the feasible ratio 

𝑢

𝑣
 for 𝑇∈  10, 20, 30 , while the 

second column analyzes how  
𝑢

𝑣
 changes for 𝑟∈  0.05, 0.06, 0.07 . We notice from the second column of 

Figure 3 that changes in 𝑟 does not markedly affect the shape of  
𝑢

𝑣
 . As such, the interest rate 𝑟 only 

affects the magnitude or level of  
𝑢

𝑣
 without concomitantly altering its behavior with respect to other 

parameters.  
 

Appendix 3. (a) The Modified Utility Function 
Contrary to other decision criteria such as the minimax and maximin criteria, regret theory takes 

account of occurrence probabilities of different events and this aids the modification of utility functions. 
Loomes and Sugden (1982) propose a regret/rejoice function for pairs of lotteries involving different 
events and their occurrence probabilities.   

Let 𝐿𝑥 =   𝑥1,𝑝1 ,… ,  𝑥𝑛 ,𝑝𝑛   and 𝐿𝑦 =   𝑦1 ,𝑝1 ,… ,  𝑦𝑛 ,𝑝𝑛   be two lotteries such that 𝐿𝑥  is chosen. Let 

𝑥 and 𝑦, with utility functions 𝑈 𝑥  and 𝑈 𝑦 , be the outcomes generated by 𝐿𝑥   and 𝐿𝑦  respectively. The 

difference between the utility functions of these two outcomes quantifies regret or rejoicing. Thus, if we 
define this difference by 𝜗 𝑥,𝑦 , then 

𝜗 𝑥, 𝑦 = 𝑈 𝑥 − 𝑈(𝑦) 
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If 𝑥 < 𝑦 so that 𝑈 𝑥 < 𝑈(𝑦), then 𝑈 𝑥 − 𝑈 𝑦 < 0 and 𝜗 𝑥,𝑦  is negative, which implies that an agent 
experiences a feeling of regret because the outcome 𝑦 of a forgone choice dominates the outcome 𝑥 of his 
choice. Conversely, if 𝑥 > 𝑦  so that 𝑈 𝑥 > 𝑈(𝑦), then 𝑈 𝑥 − 𝑈 𝑦 > 0 and 𝜗 𝑥,𝑦  is positive, which 
implies that the agent rejoices because the outcome 𝑥 of his choice dominates the outcome 𝑦 of an 
alternative choice. Thus, regret theory assumes that not only does an agent experience regret, but also that 
the anticipation of experiencing regret is factored into the decision making process.  If the agent is 
indifferent between both choices, then he is indifferent between their outcomes and so 𝑥~𝑦 or  𝑥 =
𝑈 𝑦  or  𝜗 𝑥, 𝑦 = 0, which implies that the agent experiences no regret or rejoicing. Essentially, therefore, 
we assume that the agent is not indifferent between outcomes.  

The modified utility function of an outcome 𝑥 resulting from a given choice 𝐿𝑥  in a particular state of the 
world 𝑠 in the presence of another outcome 𝑦 resulting from an alternative choice 𝐿𝑦  in the same state of 

the world, is given by  
                                      𝜓 𝑥, 𝑦 = 𝑈 𝑥 + 𝑓 𝑈 𝑥 − 𝑈 𝑦                                                    

where 𝜓 𝑥, 𝑦  is the modified utility of achieving 𝑥, knowing that 𝑦 could have been achieved by making 
a different choice in the same state of the world, 𝑈 𝑥  is the traditional choiceless utility function that an 
agent would derive from outcome 𝑥 if he experienced it without having to choose or make a choice. That is, 
the utility derived from the outcome of a choice without considering the outcome of a different choice that 
could have been made in the same state of the world. It is essentially the utility function in the traditional 
expected utility theory that concerns only the outcome of an agent’s choice. Furthermore, 𝑈 𝑥  is 
increasingly monotone and concave, i.e. 𝑈′ 𝑥 > 0 and 𝑈′′  𝑥 < 0, showing that agents prefer more to less 
and exhibit risk aversion. The difference 𝑈 𝑥 − 𝑈(𝑦) is the utility loss or gain of having outcome 𝑥 rather 
than a forgone outcome 𝑦, while 𝑓 𝑈 𝑥 − 𝑈 𝑦   specifies the regret of having outcome 𝑥 rather than a 

forgone outcome 𝑦 . The regret function 𝑓 𝜗 𝑥, 𝑦   is monotonically increasing, so that  𝑓 𝜗 𝑥, 𝑦  >

𝑓 0  whenever 𝜗 𝑥,𝑦 > 0 and 𝑓 𝜗 𝑥, 𝑦  < 𝑓 0  whenever 𝜗 𝑥, 𝑦 < 0; it is decreasingly concave and 

thrice differentiable, so that 𝑓 ′′  𝜗 𝑥, 𝑦  < 0 (regret aversion) whenever 𝜗 𝑥, 𝑦 < 0  and 𝑓 ′′′  𝜗 𝑥, 𝑦  > 0; 

it assumes a value of zero when an agent is indifferent between outcomes 𝑥 and 𝑦, so that 𝑓 𝜗 𝑥,𝑦  = 0 

whenever 𝜗 𝑥, 𝑦 = 0. Regret theory assumes that the degree of regret or rejoicing that an agent 
experiences depends only on the difference between the choiceless utility of ‘what is’ and the choiceless 
utility of ‘what might have been if another choice had been made or if another course of action had been 
taken’. This is why we have 𝑓 defined on 𝜗 𝑥, 𝑦 . The regret-rejoice function 𝑓 𝜗 𝑥,𝑦   assigns a real-valued 

number to every possible increase or decrease of choiceless utility. Notice that, an agent who does not feel 
regret or rejoicing, i.e. when 𝑓 𝜗 𝑥, 𝑦   is zero, constant or linear, will simply maximize his expected 

choiceless utility. This special case of regret theory corresponds to the traditional expected utility theory. To 
assume that agents maximize expected modified utility is to generalize the traditional expected utility 
theory in an intuitively natural way, since the agent who does experience regret and rejoicing can be 
expected to try to anticipate those feelings and take them into account in his objective function when 
making a decision under uncertainty.  

We now provide some intuitive explanations behind these assumptions.  
= 0 whenever 𝜗 𝑥, 𝑦 = 0 

We know, from the preceding argument, that 𝜗 𝑥,𝑦 = 0 ⇔ 𝑈 𝑥 = 𝑈(𝑦) ⇔ 𝑥~𝑦. Therefore, the 
assumption implies that an agent experiences no regret when he is indifferent between two choices and 
their outcomes. So, 𝑓 0 = 0.   

𝑓 ′′  𝜗 𝑥, 𝑦  < 0 whenever  𝜗 𝑥, 𝑦 < 0 

We know that  𝜗 𝑥, 𝑦 < 0 ⇔ 𝑈 𝑥 < 𝑈 𝑦 ⇔ 𝑥 < 𝑦, meaning that the outcome 𝑥 of the agent’s choice 
is dominated by the outcome 𝑦 of a forgone alternative. This causes the agent to experience a feeling of 
regret and thus develop an aversion towards regret. It is this aversion that results in the concavity of the 
regret function. Therefore,  𝑓 ′′ < 0  whenever 𝜗 𝑥, 𝑦 < 0 and 𝑓 ′′ > 0 whenever  𝜗 𝑥, 𝑦 > 0. 

 is monotonically increasing 
This comes from the fact that an agent rejoices more when his outcome turns out more favorable than 

an alternative outcome and regrets more when his outcome turns out less favorable than an alternative 

outcome. This is why 𝑓 𝜗 𝑥, 𝑦  > 0 for 𝜗 𝑥, 𝑦 > 0 and 𝑓 𝜗 𝑥, 𝑦  < 0 for 𝜗 𝑥, 𝑦 < 0.  

 

(b) Formulation of Regret Theory and the Maximization Problem 
Suppose an agent has to choose between actions 𝐴𝑖  and 𝐴𝑘 , and that the outcomes of both actions in the 

𝑗th state of the world are 𝑥𝑖𝑗  and 𝑥𝑘𝑗  respectively. We may define the expected modified utility of action 𝐴𝑖 , 

evaluated with respect to action 𝐴𝑘 , by  

𝔼  𝜓 𝑥𝑖𝑗 ,𝑥𝑘𝑗  

𝑛

𝑗=1

𝑝𝑗 =  𝔼   𝑈 𝑥𝑖𝑗  + 𝑓  𝑈 𝑥𝑖𝑗  − 𝑈 𝑥𝑘𝑗    𝑝𝑗

𝑛

𝑗=1

  

and the expected modified utility of action 𝐴𝑘 , evaluated with respect to action 𝐴𝑖 , by  

𝔼  𝜓 𝑥𝑘𝑗 ,𝑥𝑖𝑗  

𝑛

𝑗=1

𝑝𝑗 =  𝔼   𝑈 𝑥𝑘𝑗  + 𝑓  𝑈 𝑥𝑘𝑗  − 𝑈 𝑥𝑖𝑗    𝑝𝑗

𝑛

𝑗=1

  

An agent will weakly prefer 𝐴𝑖  to 𝐴𝑘  ⇔ 

               𝔼  𝜓 𝑥𝑖𝑗 ,𝑥𝑘𝑗  

𝑛

𝑗=1

𝑝𝑗 ≥ 𝔼  𝜓 𝑥𝑘𝑗 ,𝑥𝑖𝑗  

𝑛

𝑗=1

𝑝𝑗  
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      ⇔ 𝔼   𝑈 𝑥𝑖𝑗  + 𝑓  𝑈 𝑥𝑖𝑗  − 𝑈 𝑥𝑘𝑗    𝑝𝑗

𝑛

𝑗=1

 ≥ 𝔼   𝑈 𝑥𝑘𝑗  + 𝑓  𝑈 𝑥𝑘𝑗  − 𝑈 𝑥𝑖𝑗    𝑝𝑗

𝑛

𝑗=1

  

⇔ 𝔼   𝑈 𝑥𝑖𝑗  − 𝑈 𝑥𝑘𝑗  + 𝑓  𝑈 𝑥𝑖𝑗  − 𝑈 𝑥𝑘𝑗   − 𝑓  𝑈 𝑥𝑘𝑗  − 𝑈 𝑥𝑖𝑗    𝑝𝑗

𝑛

𝑗=1

 ≥ 0 

Let 𝜑 = 𝑈 𝑥𝑖𝑗  − 𝑈 𝑥𝑘𝑗   and define a function ɸ 𝜑 = 𝜑 + 𝑓 𝜑 − 𝑓 −𝜑  ∀ 𝜑, then  𝐴𝑖  ≽ 𝐴𝑘  ⇔ 

                                      𝔼  ɸ 𝑈 𝑥𝑖𝑗  − 𝑈 𝑥𝑘𝑗   

𝑛

𝑗=1

𝑝𝑗 ≥ 0                                            

Proposition 2 
 The function ɸ(. ) satisfies the following properties 

ɸ = 0 
(𝜑) = −ɸ(−𝜑), i.e. 
ɸ(𝜑) is increasing 

(𝜑) is convex for 𝜑 ≥ 0 
 Proof 

ɸ 0 = 0: 
Indeed, ɸ 0 = 𝑓 0 − 𝑓 −0 = 0 ⇒  ɸ 0 = 0 

ɸ(𝜑) = −ɸ(−𝜑): 

ɸ(−𝜑) = ɸ 𝑈 𝑥𝑘𝑗  − 𝑈 𝑥𝑖𝑗   = 𝑈 𝑥𝑘𝑗  − 𝑈 𝑥𝑖𝑗  + 𝑓  𝑈 𝑥𝑘𝑗  − 𝑈 𝑥𝑖𝑗   − 𝑓  𝑈 𝑥𝑖𝑗  − 𝑈 𝑥𝑘𝑗    

ɸ(−𝜑) = − 𝑈 𝑥𝑖𝑗  − 𝑈 𝑥𝑘𝑗  + 𝑓  𝑈 𝑥𝑖𝑗  − 𝑈 𝑥𝑘𝑗   − 𝑓  𝑈 𝑥𝑘𝑗  − 𝑈 𝑥𝑖𝑗    = −ɸ(𝜑) 

 
* (𝜑) is increasing:  
If  𝜑 > 0 , then  −𝜑 < 0 , 𝑓 𝜑 > 0  and 𝑓 −𝜑 < 0  as  𝑓  is an increasing function.  Consequently, 

−𝑓 −𝜑 > 0 and 𝑓 𝜑 − 𝑓 −𝜑 > 0. This implies 𝜑 + 𝑓 𝜑 − 𝑓 −𝜑 > 0 and so ɸ 𝜑 > 0. 
 
If  𝜑 < 0 , then  −𝜑 > 0 , 𝑓 𝜑 < 0  and 𝑓(−𝜑) > 0  by assumption on  𝑓 . Consequently, −𝑓 −𝜑 <

0 and 𝑓 𝜑 − 𝑓 −𝜑 < 0. This implies that  𝜑 + 𝑓 𝜑 − 𝑓 −𝜑 < 0 and so  ɸ 𝜑 < 0. 
  
We have 𝜑 > 0 ⇒  ɸ(𝜑) > 0 and 𝜑 < 0 ⇒  ɸ(𝜑) < 0. Hence ɸ(𝜑) must be increasing.   
* ɸ(𝜑) is convex for 𝜑 ≥ 0: 
We show that ɸ′′ (𝜑) ≥ 0 for 𝜑 ≥ 0. Indeed, if 𝜑 ≥ 0, then 𝜑 ≥ −𝜑, which implies that  𝑓 𝜑 ≥ 𝑓 −𝜑  

as 𝑓  is increasing. Twice differentiating both sides of the inequality gives 𝑓 ′′  𝜑 ≥ 𝑓 ′′  −𝜑 . Twice 
differentiating ɸ ( 𝜑)  gives ɸ′′ ( 𝜑) = 𝑓 ′′  𝜑 − 𝑓 ′′ (−𝜑) , which therefore follows that ɸ′′ ( 𝜑) ≥ 0 
since  𝑓 ′′  𝜑 ≥ 𝑓 ′′  −𝜑 .  Hence ɸ(𝜑) is convex for 𝜑 ≥ 0. 

 
To know the value of ɸ(𝜑) ∀ 𝜑, it is sufficient to know the value of ɸ(𝜑)∀ 𝜑 ≥ 0. The merit of regret 

theory is that it is consistent with the violations of expected utility theory. It allows preferences to be 
intransitive, thereby capturing properties such as preference reversals. It addresses the phenomena of 
common ratio effect, common consequence effect (Allias paradox), reflection effect, mixed risk attitudes 
and two-stage gambles isolation effect. As the aim of this paper is not to discuss these implications of regret 
theory, we refer interested readers to the original paper on regret theory by Loomes and Sugden (1982). 
The paper elegantly expounds on some key implications of the theory. 

 
Appendix 4. The Maximization Problem Setup under Regret Theory 

As we have motivated in the previous appendix, regret theory rests on two fundamental assumptions. 
The first is that agents experience the sensations of regret and rejoicing, and the second is that agents try to 
anticipate and take account of these ex-post sensations when making ex-ante decisions under uncertainty. 
The modified utility function is therefore defined over the ex-post (final) outcomes of choices and rational 
investors would make choices ex-ante by maximizing the expected value of this modified utility. This allows 
agents to take the anticipation of regret into account in an axiomatic fashion, and is consistent with the 
jettisoning of both the equivalence and transitivity axioms documented in Loomes and Sugden (1982).  

The modified utility function is not only defined over the outcome of the choice an agent makes, but it 
also includes a comparison with the outcome of another choice that could have been made in the same state 
of the world.    

If we define the expected value of the modified utility of a rational regret averse agent faced with two 
choices by 

                                            𝔼 𝜓 𝑥, 𝑦  = 𝔼 𝑈 𝑥 + 𝑓 𝑈 𝑥 − 𝑈 𝑦                        

 
then the agent will seek to make a choice ex-ante that will give a final outcome 𝑥 which will maximize 

his expected modified utility, i.e. 
 

                                                           max
                  𝑥

𝔼 𝜓 𝑥, 𝑦  = ∇                                               

with  ∇= max𝑥 𝔼 𝑈 𝑥 + 𝑓 𝑈 𝑥 − 𝑈 𝑦   . 
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It is important to note that if agents experience no regret or rejoicing at all, or if the function 𝑓 is linear, 
then the above formulation collapses to the conventional expected utility paradigm. 

 

Appendix 5. The Solnik Model of Portfolio Optimization within Regret 
Theory 

A somewhat related problem to the one in this paper is the Solnik (2008) currency hedging and 
portfolio optimization problem within regret theory. We expound and summarize the main results as 
follows, with propositions and associated proofs wherever possible. Solnik (2008) considers a case in which 
investors can build diversified portfolios that provide better absolute performance by taking positions in 
foreign assets, which are considered risky, and domestic assets, which are considered non-risky.  Investors 
are then assumed to experience a feeling of regret if their international portfolios of assets underperform 
their domestic portfolios of assets and, conversely, they experience a feeling of rejoicing if their 
international portfolios of assets overperform their domestic portfolios of assets. The domestic portfolios of 
assets therefore serve as a benchmark with which to compare the international portfolios of assets. 

Suppose that, of their initial wealth 𝑊0, investors allocate  𝑊0
𝑑  to domestic assets and  𝑊0

𝑓
 to foreign 

assets, so that 𝑊0 = 𝑊0
𝑑 +  𝑊0

𝑓
 represents the total wealth invested in both assets and 

 𝑊0
𝑑

𝑊0
 and 

 𝑊0
𝑓

𝑊0
 

represents the proportions 𝛼 and  1 − 𝛼   of the total wealth invested in the domestic and foreign assets 
respectively. As the domestic assets serve as a benchmark, their final value 𝑊𝑑  is nonrandom and assumed 
to be known in advance.  The foreign assets, on the hand, are risky and their final value 𝑊𝑓  is not known in 
advance. The value depends on the overall behavior of the market. If the domestic assets are denominated 
in US Dollars, then the dollar value of the foreign assets equals the product of the value of the foreign assets 
in the foreign currency and the exchange rate of the dollar to the foreign currency. This exchange rate is not 
known in advance, and so it is assumed to be stochastic. Also, the returns on the foreign assets are not 
known in advance, and so they are assumed to be stochastic. The returns are also denominated in the 
domestic currency i.e. dollar value, by multiplying the returns of the foreign assets in the foreign currency 
by the exchange rate of the dollar to the foreign currency.   

Doing all these, the final dollar value 𝑊𝑓  of the foreign assets equals the initial value  𝑊0
𝑓

 plus the 

returns on the initial value invested in the foreign assets  𝑅𝑊0
𝑓

 plus the gain/loss of the initial value due to 

exchange rate fluctuations/currency movements  𝑠𝑊0
𝑓

, i.e.  

𝑊𝑓 =  𝑊0
𝑓

+  𝑅𝑊0
𝑓

+  𝑠𝑊0
𝑓

=  𝑊0
𝑓 1 + 𝑅 + 𝑠 =  1 − 𝛼  𝑊0 1 + 𝑅 + 𝑠  

and the final dollar value 𝑊 of the domestic and foreign assets equals 

𝑊 = 𝑊𝑑 + 𝑊𝑓 = 𝑊𝑑 +  𝑊0
𝑓 1 + 𝑅 + 𝑠 = 𝑊𝑑 +  1 − 𝛼  𝑊0 1 + 𝑅 + 𝑠  

where 𝑅 and 𝑠 are stochastic/random/non-deterministic variables denoting the return of the foreign 
asset in the domestic currency and the movement of the exchange rate (i.e. changes in the dollar value of the 
foreign currency) respectively.  

As the foreign exchange rate fluctuates sporadically, i.e. can appreciate or depreciate unexpectedly 
without previous warning, investors decide to sell the foreign currency forward (i.e purchase a put option 
on the currency) as a way to hedge a proportion 𝑕 of the foreign assets against currency risk. Selling a 
currency forward means agreeing on the exchange rate at the time the contract is entered, but carrying out 
the transaction at a future time. Interest rates are assumed equal globally so that the forward exchange rate 
(the exchange rate for the future transaction) equals the spot exchange rate (the exchange rate at the time 
of the contract). The argument behind this is simple. We know that the spot 𝑆 and forward 𝐹 exchange rates 
between two currencies are related to their interest rates by  

𝐹 = 𝑆  
1 + 𝑖$
1 + 𝑖𝐶

  

and so it follows that the spot and forward exchange rates must be equal when the interest rates are 
equal worldwide.  

Foreign assets are considered as being homogeneous and denominated in a single foreign currency 𝐶, 
while domestic assets are, as earlier remarked, denominated in $. Since domestic investors view both 
foreign and domestic assets in terms of the domestic currency, i.e. $, then this is equivalent to saying that 
domestic (American) investors care more about an appreciation of the domestic currency $ against all other 
currencies. It is therefore sane to hedge against any unexpected and unfavorable movement of the dollar 
relative to the foreign currency. 

Suppose a proportion 𝑕 of the foreign assets is hedged against currency exposure, where 𝑕 ∈  0, 1 . We 
shall call 𝑕 the hedge ratio. A hedge ratio of zero implies no hedge against currency exposure and this means 
acomplete exposure to currency movement, while a hedge ratio of one means full hedge against currency 
risk and no exposure to currency movement. The participation in currency exposure is just the proportion 
of the foreign asset that is not hedged, i.e. 1 − 𝑕. Since 𝑕 is the proportion of the foreign assets hedged 
against exposure to currency fluctuations, then the value of the foreign assets not subject to any currency 

exposure (i.e. hedged against currency exposure) is 𝑕𝑊0
𝑓
𝑠 and so the final value of the foreign asset would 

be decrease by this amount, i.e. 

𝑊 = 𝑊𝑑 +  𝑊0
𝑓 1 + 𝑅 + 𝑠 −  𝑕𝑊0

𝑓
𝑠 = 𝑊𝑑 +  𝑊0

𝑓
 1 + 𝑅 + 𝑠 1 − 𝑕  . The expression reduces to the 

previous case of full currency exposure when 𝑕 = 0 and, when 𝑕 = 1, it reduces to the case of no currency 
exposure, i.e. fully hedged.  

From this, the traditional utility of final wealth, as a function of the decision variable 𝑕 and the two 
stochastic variables 𝑅 and 𝑠, can be written as  𝑈 𝑊 = 𝑈 𝑅 + 𝑠 1 − 𝑕  . Solnik assumes that investors 

exhibit regret on the decision variable 𝑕, that is, their choice to hedge a proportion 𝑕 of the value of their 
foreign assets against currently risk. Also, an alternative decision that the investors could make would have 
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been to select the best hedge ratio max 𝑕, from a set of other feasible hedge ratios, to give an outcome 

whose utility is 𝑈 𝑊max . = 𝑈 𝑅 + max 𝑠 1 − 𝑕   . We have the outcome of choosing a hedge ratio 𝑕 and 

the outcome of choosing a forgone hedge ratio max 𝑕 and so the modified utility can be written as 

𝜓 𝑊,𝑊max .  = 𝑈 𝑅 + 𝑠 1 − 𝑕  + 𝑓  𝑈 𝑅 + 𝑠 1 − 𝑕  − 𝑈  𝑅 + max 𝑠 1 − 𝑕     

where, as previously explained, 𝑈 .   and 𝑓 .   are monotonically increasing and concave; 𝑓 .   is 
decreasingly concave, i.e. 𝑓 ′′ < 0 and 𝑓 ′′′ > 0, and 𝑓 0 = 0 

Proposition 3 
The modified utility function 𝜓 𝑊,𝑊max .   can be written as                      

𝜓 𝑊,𝑊max .  = 𝑈 𝑅 + 𝑠 1 − 𝑕  + 𝑓𝑠+  𝑈 𝑅 + 𝑠 1 − 𝑕  − 𝑈 𝑅 + 𝑠  + 𝑓𝑠−  𝑈 𝑅 + 𝑠 1 − 𝑕  − 𝑈 𝑅   

Proof 
We first note that the foreign currency will either appreciate or depreciate. 
If the foreign currency appreciates, so that 𝑠 ∈ ℝ+, then the best forgone decision would have been to 

take the longest position in the foreign currency exposure and remain unhedged, i.e. 𝑕 = 0. So, max 𝑠 1 −

𝑕  = 𝑠, ∀ 𝑠 ∈ ℝ+  

Similarly, if the foreign currency depreciates, so that 𝑠 ∈ ℝ−, then the best forgone alternative would 
have been to take the shortest position in the foreign currency and hedge completely, i.e. 𝑕 = 1. So, 
max 𝑠 1 − 𝑕  = 0,∀ 𝑠 ∈ ℝ−   

Accordingly, therefore, for any ∈ ℝ− ∪ ℝ+ , we have 

𝜓 𝑊,𝑊max .  = 𝑈 𝑅 + 𝑠 1 − 𝑕  + 𝑓𝑠+  𝑈 𝑅 + 𝑠 1 − 𝑕  − 𝑈 𝑅 + 𝑠  + 𝑓𝑠−  𝑈 𝑅 + 𝑠 1 − 𝑕  − 𝑈 𝑅   

Proposition 4                                                                                                                                                 
The impact of a currency movement 𝑠 is such that regret aversion induces currency loss aversion, i.e. a 

depreciation of the foreign currency leads to reductions in financial wealth and investors are more sensitive 
to these reductions than to corresponding increases in financial wealth. 

Proof 
We take the current exchange rate movement 𝑠 = 0 as a reference point. In order to prove that regret 

aversion induces currency loss aversion, we must prove that  
𝜕𝜓

𝜕𝑠
  𝑠∈ℝ− >

𝜕𝜓

𝜕𝑠
  𝑠∈ℝ+ 

Now, taking the reference point into account, the left and right derivatives of the modified utility 
function with respect to 𝑠 are given by 

         
𝜕𝜓

𝜕𝑠
  𝑠∈ℝ− =  1 − 𝑕 𝑈′ 𝑅 +  1 − 𝑕 𝑓 ′ 0 𝑈′(𝑅) 

𝜕𝜓

𝜕𝑠
  𝑠∈ℝ+ =  1 − 𝑕 𝑈′ 𝑅 − 𝑕𝑓 ′ 0 𝑈′(𝑅) 

So, 
𝜕𝜓

𝜕𝑠
  𝑠∈ℝ− −

𝜕𝜓

𝜕𝑠
  𝑠∈ℝ+ = 𝑓 ′ 0 𝑈′ 𝑅 > 0 

since 𝑓 and 𝑈 are monotonically increasing . Thus, we have 
𝜕𝜓

𝜕𝑠
  𝑠∈ℝ− >

𝜕𝜓

𝜕𝑠
  𝑠∈ℝ+ 

as required to prove.  
We have shown that, taking the current exchange rate movement as a reference point, investors are 

more sensitive to reductions in financial wealth, i.e. 
𝜕𝜓

𝜕𝑠
> 0 for 𝑠 ∈ ℝ−, than to corresponding increases in 

financial wealth, i.e. 
𝜕𝜓

𝜕𝑠
< 0 for 𝑠 ∈ ℝ+.  We remark that 𝑠 ∈ ℝ− indicates a depreciation of the foreign 

currency, resulting in financial wealth reductions while 𝑠 ∈ ℝ+ indicates an appreciation of the foreign 
currency, resulting in financial wealth increases. Hence, regret aversion induces loss aversion.  

Proposition 5     
The modified utility function 𝜓(. ) is concave with respect to 𝑠, ∀ 𝑠 ∈ ℝ 
Proof                                                                                                                                                                                    The 

proof is in two phases. First, we prove  
𝜕2𝜓

𝜕𝑠2
< 0 ∀ 𝑠 > 0. Second, we prove 

𝜕2𝜓

𝜕𝑠2
< 0 ∀ 𝑠 < 0.  

Let 𝜃 = 1 − 𝑕, then  
𝜓 𝑊,𝑊max .  = 𝑈 𝑅 + 𝑠𝜃 + 𝑓𝑠+ 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅 + 𝑠  + 𝑓𝑠− 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅   

For any positive values of 𝑠, the first and second derivatives of 𝜓 are given by 
𝜕𝜓

𝜕𝑠
= 𝜃𝑈′ 𝑅 + 𝑠𝜃 +  𝜃𝑈′ 𝑅 + 𝑠𝜃 − 𝑈′ 𝑅 + 𝑠  𝑓 ′ 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅 + 𝑠   

               
𝜕2𝜓

𝜕𝑠2
= 𝜃2𝑈′′  𝑅 + 𝑠𝜃 +  𝜃2𝑈′′  𝑅 + 𝑠𝜃 − 𝑈′′  𝑅 + 𝑠  𝑓 ′ 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅 + 𝑠  

+  𝜃𝑈′ 𝑅 + 𝑠𝜃 − 𝑈′ 𝑅 + 𝑠  
2
𝑓 ′′  𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅 + 𝑠   

We know that  𝜃2𝑈′′  𝑅 + 𝑠𝜃 < 0 , 𝑓 ′ 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅 + 𝑠  > 0 ,  𝜃𝑈′ 𝑅 + 𝑠𝜃 − 𝑈′ 𝑅 + 𝑠  
2

> 0 , 

𝑓 ′′  𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅 + 𝑠  < 0 and  𝜃𝑈′ 𝑅 + 𝑠𝜃 − 𝑈′ 𝑅 + 𝑠  
2
𝑓′′  𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅 + 𝑠  < 0   Thus, to 

prove that 
𝜕2𝜓

𝜕𝑠2
< 0, we only need to show that  𝜃2𝑈′′  𝑅 + 𝑠𝜃 − 𝑈′′  𝑅 + 𝑠  𝑓 ′ 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅 + 𝑠  < 0 

and to do this, we need to show that  𝜃2𝑈′′  𝑅 + 𝑠𝜃 − 𝑈′′  𝑅 + 𝑠  < 0 since we already know that 

𝑓 ′ 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅 + 𝑠  > 0.  

Now, for any positive values of 𝑠  and for  𝜃 = 1 − 𝑕 ≤ 1 , we have 𝑠𝜃 < 𝑠  and 𝑅 + 𝑠𝜃 ≤ 𝑅 + 𝑠 . 
Furthermore, as investors prefer more to less, we have 𝑈 𝑅 + 𝑠𝜃 ≤ 𝑈 𝑅 + 𝑠 . Twice differentiating both 
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sides of the inequality with respect to 𝑠  gives 𝜃2𝑈′′  𝑅 + 𝑠𝜃 ≤ 𝑈′′  𝑅 + 𝑠  or   1 − 𝑕 2𝑈′′  𝑅 + 𝑠𝜃 ≤
𝑈′′  𝑅 + 𝑠 . Complete expansion gives  1 − 2𝑕 + 𝑕2 𝑈′′  𝑅 + 𝑠𝜃 ≤ 𝑈′′  𝑅 + 𝑠 . Rearranging terms gives 
𝑈′′  𝑅 + 𝑠𝜃 − 𝑈′′  𝑅 + 𝑠 ≤ 𝑕 2 − 𝑕 𝑈′′  𝑅 + 𝑠𝜃 =  1 − 𝜃  1 + 𝜃 𝑈′′  𝑅 + 𝑠𝜃 ≤ 0 ⇒ 𝑈′′  𝑅 + 𝑠𝜃 −

𝑈′′  𝑅 + 𝑠 ≤ 0. Consequently, for positive values of 𝑠, we have  
𝜕2𝜓

𝜕𝑠2
<0 as required. 

The second phase of the proof proceeds in a similar fashion. For any negative values of 𝑠, the first and 
second derivatives of 𝜓  are given by 

𝜕𝜓

𝜕𝑠
= 𝜃𝑈′ 𝑅 + 𝑠𝜃 +  𝜃𝑈′ 𝑅 + 𝑠𝜃 𝑓′ 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅   

                 
𝜕2𝜓

𝜕𝑠2
= 𝜃2𝑈′′  𝑅 + 𝑠𝜃 +  𝜃𝑈′ 𝑅 + 𝑠𝜃  

2
𝑓 ′′  𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅  

+ 𝜃2𝑈′′  𝑅 + 𝑠𝜃 𝑓 ′ 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅   

The second derivative is trivially negative because 𝜃2𝑈′′  𝑅 + 𝑠𝜃 < 0, 𝑓 ′′  𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅  < 0 and 

 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅  > 0. Consequently, for negative values of 𝑠, we have 
𝜕2𝜓

𝜕𝑠2
<0 as required. Thus, for all 

values of 𝑕 and 𝑅, 
𝜕2𝜓

𝜕𝑠2
< 0 ∀ 𝑠 > 0 and 

𝜕2𝜓

𝜕𝑠2
<0 ∀ 𝑠 < 0 and so 𝜓 is continuous and concave with respect to 𝑠. 

Still on Solnik model/problem, we shall now discuss how the optimization problem is set up in a regret 
theoretic framework and how optimal investment rules are derived.   

Solnik Model: Problem Setup and Results of Portfolio Optimization  
* Problem Setup  

The problem is structured in such a way as to obtain the optimal hedge ratio 𝑕∗ by maximizing the 
expected modified utility with respect to the decision variable 𝑕. The expected modified utility is given by 

𝔼 𝜓 𝑊,𝑊max .   = 𝔼 𝑈 𝑅 + 𝑠𝜃  + 𝔼s+ 𝑓 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅 + 𝑠   + 𝔼𝑠− 𝑓 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅    

and investors obtain the optimal hedge ratio by solving 
max

0≤𝜃=1−𝑕≤1
𝔼 𝑈 𝑅 + 𝑠𝜃  + 𝔼s+ 𝑓 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅 + 𝑠   + 𝔼𝑠− 𝑓 𝑈 𝑅 + 𝑠𝜃 − 𝑈 𝑅    

where 𝔼s+ and 𝔼s− denote the expectation taken over positive and negative values of 𝑠 respectively.  
Proposition 6a 
If 𝑓 .   is nonlinearly concave, then the expected modified utility 𝔼 𝜓 𝑊,𝑊max .    is concave in 𝑕 and so 

the first order condition 
𝜕𝔼 𝜓 𝑊,𝑊max .   

𝜕𝑕
 =0 is necessary and sufficient for optimality.  

Remark 
Except for very particular and simplistic functions 𝑈(. ) and 𝑓 .  , the first order condition is not 

explicitly solvable in 𝑕 and applying numerical solutions results in little generalization of the hedging rules. 
To unravel this challenge, Solnik make a Taylor expansion of 𝔼 𝜓 𝑊,𝑊max .    and apply the two-moment 
approximation of Arrow Pratt. The resulting expression is then maximized with respect to 𝑕 , giving explicit 
hedging rules. The two-moment approximation of Arrow Pratt is very crucial because it helps to explicitly 
retain the parameters of the modified utility in the optimal hedging rules derived from the maximization of 
the expected modified utility, something that cannot be achieved/done by simply assuming normality of 
returns, R and s.  

* Key results of Solnik Model 
The results of the optimization problem for different assumptions on the exchange rate movement are 

summarized in the propositions below 
Proposition 6b (Pure Currency Risk Minimization) 
Suppose that investors have no prior information on expected currency returns or correlation between 

asset and currency returns (This is called pure risk, which implies no currency risk premium). If we assume 
that the distribution of currency returns is symmetric and the return on foreign assets is non-stochastic, 
then the optimal hedge ratio for a regret averse investor is given by 

𝑕∗ = 1 −
1

2

𝜌

𝜆 + 𝜌
 

where 𝜆 = −
𝑈 ′′

𝑈 ′
> 0 is traditional risk aversion and 𝜌 = −

𝑈 ′ 𝑓 ′′

1+𝑓 ′
> 0 is regret aversion 

Remark 
In the absence of regret, the function 𝑓 is either linear, zero or constant, and so 𝑓 ′′ = 0 which then 

implies that 𝜌 = 0 and so the optimization problem reduces to the expected utility case. Consequently, the 
optimal hedge ratio 𝑕∗ ∀ 𝜆 ∈ ℝ is given by 𝑕∗ = 1, i.e. full currency hedging and no participation in currency 
exposure. This is the optimal hedge ratio for a traditional expected utility investor who considers only the 
outcome of his choice and thus feels no regret.  This is a typical complete-hedging risk minimization result.  

Since regret aversion 𝜌 and risk aversion 𝜆 are both positive, then 0 <
𝜌

𝜆+𝜌
<1 and so  

1

2
 < 𝑕∗ <1. This 

shows that the optimal hedge ratio is always between 50% and 100%. 

Because 
𝜕𝑕∗

𝜕𝜌
= −

1

2

𝜆

 𝜆+𝜌 2
<0, the lower the regret aversion 𝜌 the higher the optimal hedge ratio and the 

lower the participation in currency exposure.  

When regret aversion 𝜌 is sufficiently larger than risk aversion 𝜆, we have 𝜆 + 𝜌 ≈ 𝜌 and 𝑕∗ ≈
1

2
, i.e. the 

optimal hedge ratio gets close to 50% when investors are infinitely regret averse. When it is smaller, the 
optimal hedge ratio tends to 100% as 𝜌  nears zero.  

For sufficiently large regret aversion, investors care exclusively about the level of regret associated with 
any hedging decisions. For instance, when investors try to hedge fully, they anticipate the maximum regret 
associated with a strong appreciation of the foreign currency. This anticipation is so high that it forces them 
to reject such a hedging decision. Conversely, when investors try not to hedge at all but instead participate 
fully in currency exposure, they anticipate the high regret associated with a depreciation of the foreign 
currency and this coerces them to avoid taking such a hedging decision.  
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Proposition 7 (General case) 
If the returns 𝑅 and 𝑠 on foreign assets and currency are both stochastic, and if the expected currency 

return 𝔼 𝑠  is nonzero (existence of currency risk premium and no pure risk) so that there exists a 
correlation between asset and currency returns, then the optimal hedge ratio for a regret averse investor, in 
the case where the distribution of currency returns is not necessarily symmetric, is given by  

𝑕∗ = 1 −
  .𝑠+ 

 .𝑠

𝜌

𝜌 + 𝜆
−

𝔼 𝑠 

 𝜌 + 𝜆  .𝑠
+
𝕔𝑜𝑣 𝑅, 𝑠 

 .𝑠

𝜆

𝜆 + 𝜌
 

where  .𝑠 = 𝔼 𝑠2  ∀ 𝑠 ∈ ℝ and  = 𝔼 𝑠2 𝑠+  ∀ 𝑠 ∈ ℝ+. The regret, speculative and covariance terms are 

−
  .𝑠+ 

 .𝑠

𝜌

𝜌+𝜆
 , −

𝔼 𝑠 

 𝜌+𝜆  .𝑠
 and 

𝕔𝑜𝑣 𝑅,𝑠 

 .𝑠

𝜆

𝜆+𝜌
 respectively.  

Remark 
In the absence of regret aversion, i.e.  𝜌 = 0 and the optimal hedge ratio for an expected utility investor 

under the above assumption is given by 𝑕∗ = 1− 
𝔼 𝑠 

𝜆  .𝑠
+

𝕔𝑜𝑣 𝑅 ,𝑠 

 .𝑠
. From this, we see that a positive expectation 

on the foreign currency movement reduces the optimal hedge ratio and increases participation in currency 
exposure. The lower the risk aversion, the more investors speculate and therefore the lower the hedge ratio. 
In the same vein, a negative correlation between foreign currency movement and asset returns reduces the 
optimal hedge ratio. 

In this case where the return distribution is not necessarily symmetric and where the expected 

currency return differs from/ is not zero, the term  w𝑠+ ill generally be different from the term   
1

2
 .𝑠  To 

see this, we need to first recognize that  =𝑠  +𝑠+  .𝑠−  Now, if the expected currency return is more than 
zero (investors anticipate an appreciation of the foreign currency), then 

 >𝑠+  and 𝑠−  >  −𝑠  ⇒𝑠+𝑠+  >
1

2𝑠+  .𝑠  Plugging this into the optimal hedge ratio 𝑕∗ shows that regret 

averse  investors will hedge less and participate more in foreign currency exposure because they anticipate 
to experience less regret. On the other hand, if the expected currency return is less than zero (investors 

anticipate a depreciation of the foreign currency), then  <
1

2𝑠+  . P𝑠 lugging this into the optimal hedge ratio 

𝑕∗ shows that regret averse investors will hedge more and participate less in foreign currency exposure 
because they anticipate to experience more regret if the foreign currency depreciates. Conjecturally, a 
similar result holds true for a skewed distribution. A distribution that is positively skewed implies that 
there are significantly large currency returns with low probability of occurring. Regret averse investors will 
therefore hedge less and participate more in currency exposure so as to take advantage of these large 
returns even if they know that the returns have a small chance of occurring/ a rare event. Therefore, 
positive skewness leads to taking a huge position in currency exposure (hedging less) while negative 
skewness leads to a lower participation in currency exposure (hedging more). This helps to reduce the 
potential for regret.  

Looking at the optimal hedge ratio from the point of view of the speculative term, we see that a positive 
expectation on the foreign currency movement increases the participation in foreign currency exposure and 
reduces the optimal hedge ratio. Regret averse investors tend to speculate less on their anticipations of 
currency movements.  

Now that we have successfully discussed the portfolio optimization and hedging model of Solnik, we 
next proceed to the main objective of this chapter which is to perform the analysis of a pension fund in a 
regret theoretic framework. 

 

Appendix 6. Proof of Concavity and Monotonicity of the Value Function 
Under all the suitably stated conditions that must hold for the optimization problem of the pension 

fund, the modified utility function, and hence the value function, is increasing and concave in 𝑾. 
Proof 
We have  
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> 0 

Hence the modified utility is concave in 𝑊, implying that the first order condition is necessary for 
optimality. This is a standard result in optimization theory. It guarantees that, under suitable conditions for 
the optimization problem, the value function is increasing and concave in 𝑊. Here the value function is 
increasing and concave in 𝑊 because it is a function of the modified utility, which is itself increasing and 
concave in 𝑊. 

 

Appendix 7. Explanation of Important Concepts 
Here we present the notion of financial markets in relation to the pension fund industry and 

describe some relevant concepts that will make clear the arguments presented in the paper. 
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Financial Markets: Financial markets serve as a transaction point where investors trade securities, 
commodities and other transposable financial instruments such as currencies and derivatives at prices 
that reflect demand and supply. Investors can be private and institutional investors while financial 
markets can be capital, money, derivatives, commodities, foreign exchange and insurance markets.  

Private and Institutional Investors: Private investors are individuals who participate in transaction 
activities in the financial markets with limited initial capital while institutional investors comprise 
large corporations that engage in buy-side deals with large initial capital and restricted protective 
regulations. Institutional investors account for a majority of overall volume of trades in the financial 
markets and are known to include pension funds, hedge funds, insurance companies, brokerages, 
mutual funds, investment banks and asset management firms etc. We dwell mainly on the investment 
strategy of pension funds institutional investors because that is the basis of this research. 

Pension Funds: Pension funds are important institutional investors that provide retirement income 
and benefits to their clients/subscribers. Their presence is especially felt in the money and capital 
markets where sell-side investors such as private and public enterprises as well as governments come 
to raise short- and long-term funds to finance business operations and capital expenditures. Pension 
funds worldwide hold over $20 trillion in assets and therefore dominate other institutional investors in 
terms of investments in assets [10]. This suggests the importance of pension funds and hence the need 
for them to be studied. 

 Researchers have studied two different types of pension plans, which are: 
* Defined-benefit plans 
* Defined-contribution plans 
* Defined-Benefit and Defined-Contribution Plans 
While defined-benefit pension plans are employer-sponsored plans in which a retired employee 

receives specific retirement benefits at retirement based on years of service and salary history, 
defined- contribution pension plans, on the other hand, allow the employee to make seasonal 
contributions to the pension fund before retirement, but there is no way the employee can know the 
specific retirement benefits he will enjoy at retirement because the fund is invested and everything 
depends on the rate of return of the invested fund. Another important distinction between both 
pension plans is that, in the case of defined-contribution pension plans, the employee sets up an 
investment account and almost solely makes the entire investment decisions while, in the case of 
defined-benefit pension plans, the employer makes all investment decisions and has the final say over 
the invested fund. Thus, the employee bears the investment risk in defined-contribution pension plans 
while the employer manages the investment portfolio and bears the investment risk in the case of 
defined-benefit plans. Examples of these plans are annuities and 401k plans. Annuities are defined-
benefit plans that provide fixed monthly payments to each employee at retirement, while 401k plans 
are defined-contribution plans that allow tax-deferred income to finance retirement benefits. 

Unlike other institutional investors, the analysis of pension funds requires the introduction of 
three unique characteristics: 

* The behavior of the fund wealth in the accumulation phase (Ac) 
* The variation of the fund wealth in the decumulation phase (Dc) 
* The mortality risk of the subscriber 
Accumulation and Decumulation Phases: The representative subscriber makes contributions to 

the pension fund in the accumulation phase and so the fund wealth swells. In the decumulation phase, 
the pension fund makes mandatory payments (pensions) to the subscriber and so the fund wealth 
shrinks.    

Researchers and practitioners have established the existence of a link between contributions in the 
accumulation phase and pensions in the decumulation phase for both defined-benefit and defined-
contribution plans. In defined-benefit plans, the employer fixes benefits in advance and contributions 
are designed to maintain the fund in balance. In defined-contribution plans, contributions are fixed but 
benefits depend on the returns of the invested funds. The model presented here concerns the case of a 
pension fund that offers its subscribers a deterministic pension plan. The deterministic pension plan is 
such that the subscriber makes a constant contribution to the fund while the pension fund pays a 
constant pension to the subscriber at retirement. This is the so called ‘Cash Balance Plan’, which is 
especially prominent in the US. 

Cash balance plans are fundamentally defined-benefit pension plans that operate as defined-
contribution pension plans in that they require an employee to set up and maintain an investment 
account, while the investment account earns a fixed rate of return that may change over time. Thus, 
cash balance plans share the characteristics of both defined-benefit and defined-contribution pension 
plans because they require an employee to have an investment account, which makes them defined-
contribution, and the investment account earns a fixed rate of return, which makes them defined-
benefit.  

Mortality Risk: In any pension plan, mortality risk is the risk that an active subscriber who is 
accumulating his pension benefits will die earlier than expected. This contrasts longevity risk, which 
is the risk that an inactive member with pensions in payment will live longer than expected. 
Essentially, mortality risk is restricted to accumulation phase while longevity risk is restricted to 
decumulation phase. As we can quickly infer therefore, longevity risk is worse than mortality risk 
because it ultimately leads to the depletion of the wealth of the pension fund if it carries on for a very 
long time. 
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