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Abstract. Lacking data on price levels across locations, economists are forced to proxy 

them. One method is to extrapolate the price levels known for locations in some point in 

time to another point by multiplying the initial price levels by the local CPIs. With the use 

of simulation experiments, this paper demonstrates that such a method is inadequate, since 

the path dependence of CPI alone produces considerable biases distorting cross-location 

comparisons of price levels. 
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1. Introduction 
o correctly compare monetary indicators across locations (countries, 

national regions, cities, etc.) in real terms, economists need data on local 

price levels. Commonly, relative price levels are dealt with, taking some 

location as the base, which gives spatial price indexes (SPI). Lacking such data, 

economists resort to local consumer price indexes (CPI) to estimate SPIs. That is, 

provided that local price levels are known at some base point in time, an economist 

extrapolates them to a given point with the use of changes in the price levels, i.e. 

CPIs.  

To name a few, Chen & Devereux (2003) exploit this procedure to construct 

price levels for US cities; Solanko (2008) estimates real incomes across Russian 

regions through extrapolated regional price levels; and Faber & Stockman (2009) 

use EU’s Harmonized Index of Consumer Prices to asses price levels in European 

countries. Estimation of purchasing power parities (PPPs) for non-survey years 

also bases on the use of national CPIs as extrapolation factors (Eurostat & OECD, 

2012, p. 132). Such an approach seems doubtful for two main reasons. First, there 

is a conceptual inconsistency between spatial and temporal price indexes. Second, 

the CPI is known to suffer from a number of biases which are hardly uniform 

across locations. Therefore, one may reasonably expect the CPI-extrapolated SPIs 

to be biased, thus distorting spatial comparisons. 

Even elimination of these two concerns does not save the situation. The bias is 

unavoidable if for no other reason than the path dependence of CPI. This paper 

uses simulated data to understand the extent of distortions caused by this reason 

within a simple two-good two-location framework. Consider a time span t = 

0,…,T. At starting point t = 0, prices pkr(t) are set equal both across goods (k = X, 
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Y) and locations (r = 1, 2). They randomly change but eventually return to equal 

values at final point t = T as displayed in Figure 1. Thus, the ‘actual’ SPI, P12(t) = 

(WX1(t)pX1(t) + (1 – WX1(t)) pY1(t))/(WX2(t)pX2(t) + (1 – WX2(t)) pY2(t)), W standing for 

weights, equals 1 at time points 0 and T under any definition of the weights.  

 

   
Figure 1. Price paths 

 

Representative consumers are identical across locations, having the same 

preferences and nominal incomes. This allows to get rid of the first problem, the 

conceptual inconsistency between spatial and temporal price indexes, as we can 

deem a consumer from any location to be an ‘over-location’ representative who can 

equally well confront prices at both locations. To compute the CPI-extrapolated 

price level, the Divisia price index (see, e.g. Hulten, 2008) is applied. This allows 

to get rid of biases in CPIs, the formula bias among them. With continuously 

changing weights, the Divisia index is the most exact CPI; all other formulas of 

chained CPI are approximations of it.  

Under these conditions, the sole source of bias in the extrapolated SPI is the 

path dependence of CPI. That is, despite changes in prices themselves over time T 

are equal across locations, local CPIs prove to be unequal due to different price 

paths. It is worth noting that the CPIs themselves cannot be deemed biased, as the 

path dependence is an inherent property of measuring price level changes by 

chained indexes. (The only case of path invariance is that of homothetic 

preferences – Samuelson & Swamy, 1974; however, it is unrealistic, implying 

unity income elasticity of demand for all commodities.) Comparing the ‘actual’ and 

CPI-extrapolated SPI at T, a bias in the latter is estimated. Generating a great 

number of random price paths yields a distribution of the bias. Results obtained 

suggest that the path dependence of CPI alone produces considerable biases 

distorting cross-location ratios of price levels.  

 

2. Design of simulations 
Simulating price dynamics. Prices are continuous time functions. Let rkt be a 

change in price for good k in location r (percentage price shock) over a unit time 

interval [t – 1, t], i.e. pkr(t) = (1 + krt)pkr(t – 1); pkr(0) = p0. Within intervals [t – 1, 

t], the changes are linear: pkr(t – 1 + ) = (1 + krt)pkr(t – 1),   [0, 1]. Price 

shocks are random and independent across locations and goods, but they depend on 

their own past values through an autoregressive process AR(1): krt = kr,t–1 + 

krt, kr0 = 0, kr > –1 (otherwise it is reestimated; no one such event occurred 

during the simulations), where krt is a ‘raw’ (nonnormalized) value of price shock, 

 is an autoregressive coefficient (0    1), and krt is i.i.d. N
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likely than rise in prices: krt < 0 are drawn from N
–
(0, –

2
) with probability –/(– 

+ +), and krt  0 are drawn from N
+
(0, +

2
) with probability +/(– + +); – < +. 

Normalization 1)1()1)(1(

1

/1  



T

z

T
krzkrtkrt   ensures the 

geometric average (over the whole time span) of rises in prices, 1 + rkt, to be 

uniform for all goods and locations and equal to 1  (where   is a predetermined 

value). Hence, the cumulative rise in all prices becomes the same at t = T, equaling 

T)1(  . 

Incomes. Nominal incomes, mr(t), are the same in both locations, m1(t) = 

m2(t) = m(t). In contrast to prices, incomes change discretely, remaining constant 

within unit time intervals (t–1, t], i.e. m(t –1 + ) = mt,   (0, 1]. They steadily 

change with a constant rate: 
)1/()1(

0 ))1((  TtT
t nmm  , so that the real 

income at the final point t = T equals nm0. Thus, depending on whether n is more or 

less than unity, real incomes may either rise or fall with time. 

Modeling consumption. One or another of three demand systems model 

consumer behavior. Suppressing the location and time subscripts to economize 

notations and denoting the quantity of good k by qk, these demand systems look 

like 
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All three systems assume a nonzero minimum consumption of X, qX0 (say, X 

designates foods and Y non-foods), and m  pXqX0 to hold. In the above formulas,  

and  are parameters; 0 <  < 1;  > 1;  = log(/( – 1)).  

Different nonhomothetic preferences generate the above demand systems. The 

Stone-Geary preferences 
  1

0 )(),( YXXYX qqqqqU  yield demand system 

(1). Preferences of the form 

)
)1/exp(

exp(),(
00

 


Xq

XX
YYX

qqqq

dq
qqqU  imply that the income 

elasticity of demand for X asymptotically tends to zero with increasing quantity of 

X: mX = qX0/qX. This gives demand system (2). At last, in preferences 
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
, consumption of X is 

assumed to have a saturation level qX0, approached as m/pX  . We obtain 

herefrom demand system (3). 

Computing CPI. In the standard manner, expenditure equals income, qXr(t)pXr(t) 

+ qYr(t)pYr(t) = m(t). A CPI over [0, T] for location r is computed as the Divisia 
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price index 

 )
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prices are piecewise-linear functions of time and expenditures are piecewise 

constant, it takes the form 
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where pkr,t – 1 = p0(1 + kr1)…(1 +  kr,t – 1); recall that all initial prices are equal. To 

compute (4), numerical integration is implemented.  

For comparison, a CPI similar to that employed by most national statistical 

agencies, the chained Laspeyres-type index, is also computed. (In fact, this is the 

Lowe index rather than the original Laspeyres index – see ILO et al., 2004, pp. 2–

3.) For two goods, a one-period index looks like 
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period; the chained CPI over [0, T] is Ir(0, T) = Ir(0, 1) … Ir(T – 1, T). Weights 

wkr are updated ‘yearly,’ based on the expenditure pattern over the previous ‘year.’ 

Then  relates to that ‘year,’ being calculated as (t – 1)/12, where x stands for 

the integer part (‘floor’) of x. For   1, 
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Estimating SPIs and the bias. Let Pr(t) be an actual price level. Then the ratio 

P12(t) = P1(t)/P2(t) gives the actual SPI. The CPI-extrapolated price level looks like 

Pr(t) = Pr(0)Ir(0, t). Call P12(t) = P1(t)/P2(t) = P12(0)I1(0, t)/I2(0, t) the indirect 

SPI. Since P12(0) = 1 by construction, P12(T) = I1(0, T)/I2(0, T). Its deviation from 

the actual SPI, (P12(T) – P12(T))/P12(T), estimates the bias in indirect SPI relative 

to the actual one. As – also by construction – P12(T) = 1, the bias is equal to P12(T) 

– 1. 

 

3. Results  
The results reported below are obtained for T = 120 (10 ‘years’  12 ‘months’). The 

average ‘monthly’ price shock,  , equals 1.35%, yielding ‘annual’ rise in prices of 

17.5% and a fivefold rise in prices over the whole time span (such a figure is not 

extraordinary, e.g., inflation in Turkey over 2000–2009 increased the overall price 

level by a factor of 5.62); πσ 1.0  and πσ 4.1 ;  = 0.5. Figure 2 depicts a 

kernel estimate of the distribution of simulated price shocks krt.  
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Figure 2. Distribution of simulated price shocks 

 

The number of replications is 10,000 in each experiment. Parameters of the demand 

systems are:  = 0.1,  = 1.5, and qX0 = 0.9. Starting prices are prk0 = 1; final prices are 

pkrT = p0(1.0135)
120

  5p0. Nominal incomes are set in two ways that provide rising and 

falling real income. First, incomes rise from m0 = 1 with ‘monthly’ rate about 2.14% to 

mT  12.5, thus, real incomes at T are 2.5 times higher than at t = 0. Second, m0 = 2, 

‘monthly’ rate is about 0.77%, and mT  5, final real incomes becoming half as much 

as the initial ones.  

Figure 3 summarizes results obtained, reporting kernel estimates of the 

distribution of biases in indirect SPIs. Each panel of the figure corresponds to one 

of three demand systems; it demonstrates results for the cases of rising and falling 

real incomes and for two methods of extrapolating the indirect SPI, namely with 

the use of the Divisia and Laspeyres CPI. Table 1 reports summary statistics of the 

distributions. 

 
Table 1. Summary statistics of distributions of biases in indirect SPIs (%) 

Demand 

system 
Index used for indirect SPI 

Real 

income 
Mean Minimum Maximum 

Standard 

deviation 

(1) 

Divisia  rising 0.4 –24.3 30.2 6.8 

Laspeyres  0.5 –23.3 30.7 7.1 

Divisia  falling 0.2 –26.0 23.7 5.8 

Laspeyres  0.1 –28.9 25.8 5.6 

(2) 

Divisia  rising 0.1 –13.1 18.5 4.1 

Laspeyres  0.1 –13.2 18.8 3.8 

Divisia  falling 0.0 –10.2 12.0 2.8 

Laspeyres  0.0 –11.6 10.6 2.9 

(3) 

Divisia  rising 0.2 –24.0 26.0 6.3 

Laspeyres  0.2 –23.0 27.2 6.2 

Divisia  falling 0.1 –16.1 20.4 4.8 

Laspeyres  0.1 –15.6 21.8 4.8 
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Figure 3. Distributions of biases in indirect SPI 

 

These results indicate that the path dependence of CPI alone can sufficiently 
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bias CPI-extrapolated SPIs. The most impressive are ranges of biases in Table 1, 

suggesting that the indirect SPI might be biased by up to 30% in either direction as 

compared to the direct SPI. Dispersion of biases (measured by standard deviations) 

is large as well, varying across different kinds of experiments from 3% to 7%.  

The distributions of biases prove to be nearly symmetric around zero. Hence, 

estimates of SPI by extrapolation with the use of CPI can be either understated or 

overstated with approximately equal probability. The shapes of the distributions are 

roughly similar across demand systems. This provides hope that the pattern is 

qualitatively similar to what is actually occurring in the real world, whatever a real 

demand system may be. 

Although we know the Laspeyres index is biased compared to the Divisia index 

due to the substitution effect, the distributions of the biases in indirect SPIs 

obtained with the use of Divisia and Laspeyres indexes are surprisingly close to 

each other. A possible explanation is that the substitution biases differ little 

between locations 1 and 2. Therefore, they almost cancel out in the indirect SPI 

which is the ratio of location CPIs.  

The experiments not reported here may be summarized as follows. The higher 

and the more volatile inflation, the greater biases of indirect SPI (i.e. their standard 

deviation). This is valid for increases in both the average price shock,  , and 

cumulative inflation with widening the time horizon T at a fixed  . Volatility of 

inflation rises with increasing –, +, and/or . The effect of random changes in 

nominal incomes instead of deterministic ones is similar to that of increasing 

volatility of inflation, enlarging – ceteris paribus – biases in indirect SPI. 

 

4. Conclusions  
The approach of approximating local price levels with the use of local CPIs is fairly 

common. The main conclusion of the simulation experiments is that such a procedure 

is biased even within a simple two-good two-location framework assuming identical 

preferences and nominal incomes of representative consumers in both locations. In 

reality, the pattern is much more complex. Actual CPIs cover a few hundreds of 

commodities with their own price paths; locations differ in income dynamics and 

preferences, etc. Therefore it may be expected that actual biases are much higher than 

those in our numerical experiments, being due not only to the path dependence. For 

instance, Gluschenko (2006), p. 22, finds indirect SPI to be biased across regions 

of Russia in the range of –8.1% to 10% over only 12 months (inflation equaling 

10.1% over these 12 months).  

Cross-country tests of the PPP also rely on approximating country price levels 

by national CPIs that can differ even in the commodity coverage. This seems to be 

one more clue to the ‘PPP puzzle’ posed by Rogoff (1966). A failure of time-series 

testing PPP may be an artifact caused by biases in relative CPIs involved, and not 

the result of price behavior.   
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