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Abstract. Hyperbolic growth describes the historical economic growth and historical 

growth of population, but their mechanism remains unexplained. Presented here is a brief 

survey of attempts to understand hyperbolic growth. Mathematical formulations are in 

general complicated and there is no clear advantage in using them because they do not give 

better description of data than the simple, two-parameter hyperbolic formula. They also do 

not explain the mechanism of growth. The well-known simple formula suggests a simple 

explanation. Two examples show how two independent investigations were on a brink of 

making an important and breakthrough discovery and how their potential discovery was 

thwarted by the established knowledge in demography and in economic research. 

Researchers who could have used their expertise to suggests new research directions and to 

advance science were constrained by doctrines, which are widely accepted by faith.  
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1. Introduction 
istorical economic growth and the growth of population were hyperbolic 

(Nielsen, 2014, 2016a, 2016b, 2016c). Hyperbolic growth is described by 

an exceptionally simple mathematical formula. It is just the reciprocal of a 

linear function. Many attempts were made to understand hyperbolic growth or to 

give an alternative mathematical description. These descriptions or interpretations 

tend to be complicated, maybe because hyperbolic distributions appear to be 

complicated. Furthermore, they do not explain the mechanism of growth. They also 

do not give better description of data than the description furnished by the simple 

mathematical equation. We shall present here a few examples of earlier attempts to 

explain or to describe hyperbolic distributions.  

 

2. Technology and the growth of population 
Using correlations between two processes might be tempting in order to explain 

the mechanism of growth but correlations could be spurious and misleading. Just 

because there is a correlation between two processes it does not mean that one 

process influences another. It does not also mean that there is a cause-effect 

relation between two observed processes. One has to be on guard when using such 

correlations because they can lead easily to loops and to the incorrect interpretation 

of the mechanism of growth.  
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The correlation between technology and the growth of human population is 

deceptively misleading and it leads quickly to a dubious loop (Korotayev, Malkov, 

& Khaltourina, 2006a): technology increases the carrying capacity, the increased 

carrying capacity promotes population growth, population growth promotes the 

growth of technology, technology increases the carrying capacity, and so on. It is 

explaining one unknown mechanism by another unknown mechanism. It is going 

in circles and explaining nothing. 

Technology might be helpful in supporting the existence of people but is it 

essential? When trying to explain the mechanism of growth it is necessary to 

consider first the most obvious and most essential force or forces. Other forces may 

be added if the essential force is insufficient to explain growth.  

It is obvious that the essential force controlling the growth of population is the 

force of procreation. Technology does not produce children and it is even not 

essential to support growth, as demonstrated by the fast growth of population in 

poor countries. 

Even if we briefly agree that technology supports or limits the growth of human 

population, such an “explanation” ignores the obvious and indispensable force of 

growth of human population, the force of procreation. It ignores the abundant 

evidence that even without advanced technology people can still produce children 

and support them.  

This closed-loop explanation is supported by the assertion that “throughout 

most of human history the world population was limited by the technologically 

determined ceiling of the carrying capacity of land” (Korotayev, Malkov, & 

Khaltourina, 2006a, p. 18. Italics added.). It is a typical claim based of pure 

imagination, a statement that has to be accepted by faith. How can we possibly 

prove that over thousands of years and all over the world, the growth of human 

population was so finely tuned to the “the technologically determined ceiling of the 

carrying capacity of land”?  

When this statement was published and when the associated closed-loop 

explanation was proposed it was already well known that the growth of human 

population was hyperbolic, at least during the AD era (Kapitza,1992, 1996, 2006; 

Kremer, 1993; Podlazov, 2002; Shklovskii, 1962, 2002; von Foerster, Mora, & 

Amiot, 1960; von Hoerner, 1975). Evidence-based indication is that hyperbolic 

growth was in general unconstrained and surprisingly robust over a long time. This 

type of growth contradicts the concept of the limiting effects of the ceiling of the 

carrying capacity. This ceiling appears to have been always much higher than 

required for supporting growth, the conclusion being in agreement with the study 

of the ecological capacity and ecological footprints showing that only recently we 

have crossed the ecological limit of our planet (Ewing, et al. 2010). 

To accept this closed-loop explanation we would have to accept, without a 

proof, that each component in this loop was not only finely tuned but also that they 

were all for some mysterious and unexplained reason increasing hyperbolically: the 

population was increasing hyperbolically, the technology was increasing 

hyperbolically, the carrying capacity was increasing hyperbolically and all of them 

were so finely tuned as to increase in unison, in such perfect harmony and so close 

to each other. The size of the population would have to be all the time close to the 

limiting ceiling of the carrying capacity, which would be so mysteriously 

increasing.  

The proposed closed-loop explanation breaks also down already in the first step. 

What if the carrying capacity was already so large that the assumed contribution 

from technology was inconsequential? The size of the population in the past was 

small over a long time. It is hard to accept that our planet was incapable to support 

the increasing population.  
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With the exception of just two demographic transitions in the past 12,000 years 

(Nielsen, 2016a), the growth of human population was increasing without any 

major disturbance. With the small number of people and with the huge resources of 

our planet we can reasonably expect that the carrying capacity was much higher 

than the size of human population.  

It would be unrealistic and unconvincing to assume that the growth of human 

population over such a long time was so precisely adjusted to the carrying capacity. 

It would be unrealistic to expect that this fine tuning was done so precisely by 

technological development. To make such a claim we would first have to prove 

that the growth of human population was always limited by the carrying capacity 

of our planet but we have no such proof and probably we shall never have. Any 

theory, which attempts to explain the mechanism of growth of human population 

by fine tuning of the size of population to the carrying capacity by technology, 

economic growth or by any other means is either unscientific (because it is based 

on untestable assumptions) or at least strongly questionable.  

We would have to have some incredibly advanced technology to measure the 

carrying capacity and to adjust the growth of human population so precisely to its 

“ceiling.” But even then, we could hardly expect such a regular hyperbolic growth.  

By using this advanced technology, we would also have to control precisely three 

interacting processes: technological development, the increase in the carrying 

capacity and the growth of human population. We would have to make sure that 

these three processes are perfectly synchronised and that they follow the closely 

coupled hyperbolic trajectories.  

To justify the closed-loop process we would have to explain it without 

assuming that it was controlled by any advanced technology. Without such 

explanation, the mechanism of the proposed closed-loop remains unexplained and 

consequently, it does not explain the mechanism of the growth of human 

population.    

We can also have other questions about this first step in the postulated closed 

loop. What is the carrying capacity of our planet? What was the carrying capacity 

of our planet over the past 12,000 years or longer? What was the contribution of 

technology to the carrying capacity? Even if we assume that technology increases 

the carrying capacity, is this assumed increase so essential to support the growth of 

human population? It is well known that people can survive on very little and that 

even then they can still procreate and support children. All they need is basic food, 

body cover and shelter.  

How much damage is caused by technology? How is the technology reducing 

the carrying capacity? Can we ignore, for instance, that carbon footprint accounts 

for about 50% of our total ecological footprint? (Ewing, et al. 2010). Can we 

ignore the pollution of not only the atmosphere but also of the land and water? Can 

we ignore climate change, the ever-increasing weather-related economic losses, the 

decreasing carrying capacity of people living on islands, the increasing 

deforestation, the continuing human-induced extinction of species, the continuing 

loss of arable land, the overuse of pesticides, herbicides, artificial fertilisers and 

other agricultural chemicals? Can we ignore the ever-increasing urban population 

and their increasing dependence on food supply, which comes from the decreasing 

land resources? Can we ignore how the huge and the well-stocked arsenal of 

weapons is relentlessly used to destroy the carrying capacity? Can we ignore the 

never-decreasing stream of displaced population? 

If we want to claim that technology increases the carrying capacity, we should 

also consider how this carrying capacity is decreased by technology. But the 

essential point is to show that technology was indeed playing the crucial role in 

shaping the growth of population, that this assumed force of growth has to be 
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added to the essential and indispensable force of procreation, that without 

technology population would not have been increasing or that it would not have 

been increasing hyperbolically.  

Another problem with linking technological development with the growth of 

human population is the misinterpretation of the fundamental mechanism of 

technological development. Technological growth is not prompted by the sheer 

number of people but by concepts, ideas and solutions. This is the driving force of 

technological development. People are just carriers of these concepts, ideas and 

solutions, or more precisely, carriers of the genetic ability to generate concepts, 

ideas and solutions.  

Is the technological development dependent on the number of people? While it 

is true that with a larger number of people we can expect a greater number of ideas 

and solution, it is also true that the growth of human population is now slowing 

down. Does it mean that technological development is also slowing down because 

of the slowing down growth of human population? If the growth of human 

population is going to reach a maximum and stop growing, will the technology also 

reach a certain maximum and stop growing?  Will people stop thinking and 

inventing?  

The growth of technology is not determined by the number of people but by the 

number of creative ideas, inventions and solutions, which do not appear to be 

directly proportional to the number of people. Consequently, even if the size of 

population is going to be constant, people will not stop being intellectually active.  

The correlation between technology and the growth of human population was 

investigated by Kremer (1963). He claims that there is a close correlation between 

the growth of population and technological development, which is hardly 

surprising. However, by observing a correlation between two processes we can 

only tell that there is a correlation.  The correlation alone does not explain the 

mechanism of growth of any of the correlated processes. Correlations can be 

strongly misleading and they have to be handled with care.  

Kremer claims that the growth rate of human population during the AD era was 

approximately proportional to the size of human population indicating that the 

growth was hyperbolic but he did not explain why it was hyperbolic. He suggests 

the correlation between the growth of human population and the growth of 

technology but this correlation does not explain the mechanism of growth of any 

of them. It does not explain why these two correlated processes are hyperbolic. It 

is like with the finely-tuned closed-loop mechanism proposed by Korotayev, 

Malkov & Khaltourina, (2006a): one process is explained by another without 

explaining any of them. The growth of human population is hyperbolic because the 

growth of technology is hyperbolic, and the growth of technology is hyperbolic 

because the growth of population is hyperbolic. It is also explaining one unknown 

mechanism by another unknown mechanism and going in circles. 

The primary, if not the only, force driving the growth of population is the force 

of procreation, which in its simplest representation is the biologically controlled 

sex drive and biologically controlled mortality. Until recently, children were not 

produced by technology. Mortality was also not controlled by technology. Maybe 

technology could be claimed to give a better chance of survival but it is definitely 

not the primary force of growth. Likewise, the primary force driving technological 

development can be identified as concepts and ideas created by people, combined 

with the efficiency of sharing information.  

The primary force of the growth of population is represented by the biological 

processes controlling birth and death. The primary force controlling the growth of 

technology is represented by concepts, ideas and generally by creative activities of 

human population. Biological process controlling birth and death apply not only to 
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humans but also to other species. The force of creative thinking applies 

specifically only to humans. There might be some examples of creative thinking in 

other species, particularly in primates, but they are on such a low level that they do 

not initiate some new lines of technological development. 

If the force responsible for the growth of technology were determined by the 

sheer number of people, i.e. by the number of members of this particular species, 

there would be no reason for excluding other species from this process. They 

should be also expected to develop technology but they do not. The growth of 

technology and the growth of population are controlled by different forces of 

growth. Their fundamental mechanisms of growth are distinctly different. 

There is a close correlation between the growth of technology and the growth 

of human population only because creative concepts come from humans. 

Explaining the growth of population by technology and technology by the growth 

of population is going in circles and explaining nothing.  

 

3. Convoluted construction 
Hyperbolic growth is described by a simple formula: 

 

1
( )S t

C kt



,        (1) 

 

where ( )S t is the size of the growing entity, such as population or the Gross 

Domestic Product (GDP), C is the constant of integration, k is a positive constant 

and t is time.  

This expression is a solution of a very simple differential equation: 

 

1 ( )
( )

( )

dS t
kS t

S t dt
 .       (2) 

 

Normally, the next step would be to explain why the growth is hyperbolic. To 

this end, we would have to start with some simple and easily acceptable 

assumptions and derive the hyperbolic formula based on these assumptions. Maybe 

we could also start with acceptable assumptions and derive and alternative formula, 

which would give a better description of data. However, if we derived a more 

complicated formula, which would not give a better description of data we could 

then decide that we were on the wrong track and we would have to try another 

approach.  

In contrast, in the demographic and economic research there appears to be a 

tendency to construct mathematical formulae and to try to make them as 

complicated as possible. Here is one such example (Johansen & Sornette, 2001).  

Start with the logistic equation of growth 

 

 )(
)(

)(

1
tSKb

dt

tdS

tS
 .      (3) 

 

This is already a questionable starting point because we know that population 

and the GDP do not grow logistically but hyperbolically. Even now, they do not 

yet level off (Nielsen, 2016d) to suggest a conversion to a logistic-type of growth. 

Assume that the limit to growth K depends on time. 
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 )()(
)(

)(

1
tStKb

dt

tdS

tS
 .      (4) 

 

For no apparent reason, delete )(tS from the right-hand side of the eqn (4).  

 

 )(
)(

)(

1
tKb

dt

tdS

tS
 .       (5) 

 

Again, for no apparently good reason, assume that 

 

 )()( tStK  ,        (6) 

 

where 1 . 

 

Under this assumption, eqn (6) is now changed to  
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This equation can be presented as  

 

  1
)(

)( 



tSb

dt

tdS
.       (8) 

 

We can solve it by substitution 
1S Z  . The solution is 

 

1
S c bt



    ,       (9) 

 

where c is the constant of integration. So now we have 

 

   zc

z
ttbtS  )( ,                 (10) 

 

where /1z and /ct c b  is the time of singularity when )(tS escapes to 

infinity.  

Replace ( )zb  by an arbitrary and adjustable parameter B and add another 

arbitrary and adjustable parameter A to construct 

 

 zc ttBAtS )( .                 (11) 

 

Assume that the parameter z is a complex number 

 

)(  iz                    (12) 

 

So now we have 

 

   i

c ttBAtS

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Find the real component of  i

c tt  )( . 

This is an easy exercise that can be completed using two well-known formulae: 

 
xyy ex ln                    (14) 

 

and  

 

 sincos iei  .                 (15) 

 

The answer is 

 

 )ln(cos)()Re( tttttt cc

i

c    .              (16) 

 

Assuming that both A and B are real, the formula for ( )S t can be now expressed 

as 

 
 i

c ttBAtS  )Re()(Re ,               (17) 

 

which with the help of the eqn (16) gives 

 

 )ln(cos)()(Re ttttBAtS cc   .              (18) 

 

Use the eqn (13) again but now delete i . 

 

 ttBAtS c )( .                 (19) 

 

Return to the eqn (16) and multiply the right-hand side of this equation by a 

constant D. 

 

 )ln(cos)()Re( ttttDtt cc

i

c    .              (20) 

 

Add a phase shift in the eqn (20). 

 

    )ln(cos)()Re( ttttDtt cc

i

c
.             (21) 

 

Return to the equation (19) and add to it the right-hand side of the eqn (21). We 

have now constructed the equation published by Johansen & Sornette (2001). 

 

   
 )ln(cos)()( ttttDttBAtS ccc

            (22) 

 

This equation contains seven adjustable parameters but we do not know how 

they are supposed to be linked with the mechanism of growth. We know how we 

constructed (not derived) this complicated and impressive formula but we do not 

know why we have it and indeed why we should be interested in using it except 

perhaps to draw a line through data points, which we could do equally successfully 

using pen and paper and obtain equally meaningless result. 

It is always good to look for mathematical description of data because it could 

help in understanding the nature of the observed phenomenon. However, if 
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complicated description is not better than description given by a simple 

mathematical formula there is obviously no advantage in using the complicated 

description.  

Hyperbolic growth described by the eqn (1) gives a satisfactory description of 

the growth of population and of the economic growth (Nielsen, 2014, 2016a, 

2016b, 2016c). This is a simple formula, which could be expected to have a simple 

explanation. But now, we have a significantly more complicated formula. So, 

rather than making our task of explaining the mechanism of growth easier we have 

made it even more complicated.  

In Figure 1, the distribution generated by the complicated eqn (22) is compared 

with the first-order hyperbolic distribution described by the eqn (1) and with data. 

As explained elsewhere (Nielsen, 2016a), fitting data around AD 1 by using 

hyperbolic distribution is pointless because around that time there was a transition 

from a fast to a slow hyperbolic trajectory. However, if we replace the complicated 

formula of Johansen and Sornette by a significantly simpler reciprocal of the 

second order polynomial 

 
12

210 )()(  tataatS                 (23) 

 

we can generate a virtually identical distribution. There is no clear advantage in 

using the complicated formula of Johansen and Sornette.  Simple description using 

the first-order hyperbolic distribution given by the eqn (1) gives acceptable 

representation of data but we can also replicate the complicated seven-parameter 

calculations but using just three parameters. 

 

 
Figure 1. Growth of the world population calculated using the Johansen & Sornette’s 

(2001) constructed formula (22) is compared with the calculations based on significantly 

simpler formulae given by the eqns (1) and (24). Population data come from numerous 

sources compiled by Manning (2008) and by the US Census Bureau (2016). The 

parameters for the distribution of Johansen and Sornette given by the eqn (22) are: A≈0, 

B≈1624,D ≈−127,  z≈−1:4, tc≈2056;  ≈6:3 and  ≈5.1. Parameters for the hyperbolic 

distribution given by the eqn (1) are: 07.875 10C   and 
33.834 10k   . Parameters for 

the reciprocal second-order polynomial distribution given by the eqn (24) are:
0

0 3.367 10a   , 3

1 1.172 10a   and 6

2 1.382 10a    . 
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The aim of constructing this complicated formula appears to be misplaced 

because even Johansen and Sornette used a significantly simpler formula in their 

analysis of a wide range of data presented in their Figs 9-32. The formula they used 

was 

 
z

c ttatS )()(  .                  (24) 

 

However, even in this simplified form it is already unnecessarily more 

complicated than the eqn (1) because ( )S t is no longer represented by the 

reciprocal of a linear function but by the time difference taken to the power of z. 

This expression is linear only if 1z  . For integer values of 1z  it describes 

higher-order polynomials. For integers 1z   it describes reciprocals of higher 

order polynomials. However, z can be also any other number greater or smaller 

than zero. 

 

4. The homeostatic simulation model 
In conformity with the generally accepted established knowledge in 

demography and in economic research (Nielsen, 2016d), Artzrouni & Komlos 

(1985) imagined that the growth of population can be divided into two distinctly 

different regimes: Malthusian stagnation and explosion. These regimes of growth 

are assumed by be controlled by two distinctly different mechanisms of growth. 

They assumed incorrectly that the growth before the Industrial Revolution was 

controlled by random forces such as wars, famines and diseases, the mechanism 

causing allegedly stagnation in the growth of population. They also assume, 

incorrectly, that the growth after around the Industrial Revolution was exponential. 

They should have known that their assumptions were unrealistic and incorrect 

because many years earlier it has been shown that the growth of population was 

hyperbolic (von Foerster, Mora, & Amiot, 1960; von Hoerner, 1975). Hyperbolic 

growth cannot be divided into two regimes of growth, slow and fast. For this type 

of growth, Malthusian regime does not exist and the apparent explosion is just the 

natural continuation of hyperbolic growth. There was no stagnation in the growth 

of human population and in the economic growth and there were no takeoffs 

leading to distinctly different explosive growth (Nielsen, 2014, 2015, 2016a, 

2016b, 2016c, 2016e, 2016f, 2016g, 2016h).  

Their work is important because, unknown to them, they have demonstrated that 

the established knowledge is contradicted by science. They did not realise that they 

made an important discovery because typically for the research carried out within 

the constraints of the established knowledge they did not compare results of their 

research with data.   

To generate the growth of population before the Industrial Revolution, 

Artzrouni and Komlos carried out Monte Carlo simulations of the alleged 

Malthusian regime of stagnation. To describe the alleged population explosion, 

they simply assumed exponential growth after the Industrial Revolution. In their 

model, the growth of population is given by  

 

)(
)(

trS
t

tS





.                  (25) 

 

For the constant r, this equation would describe exponential growth. However, 

in their calculations, the growth rate r is either constant (after the Industrial 

Revolution) or time-dependent (before the Industrial Revolution). 



Journal of Economics and Political Economy 

 JEPE, 3(4), R.W. Nielsen, p.594-626. 

603 

603 

So, more explicitly, they consider two stages of growth. Before the Industrial 

Revolution the growth is given by: 

 

)()(
)(

tStr
t

tS





,                  (26) 

 

whereas after the Industrial Revolution it is given by 

 

)(
)(

tSr
t

tS
e




,                  (27) 

where er is a certain constant “escape rate” (Artzrouni & Komlos, 1985, p 27), 

escape from nowhere because there was no escape, or more accurately there was 

nothing to escape from, because the mythical Malthusian trap did not exist. The 

growth of population was monotonically hyperbolic, and the Industrial Revolution 

had no impact on changing the growth trajectory. However, according to the 

established but erroneous knowledge, there was an escape.  

Fluctuations in the growth rate )(tr  before the Industrial Revolution are 

determined by )(te  described as “a non negative random variable generated by a 

Monte Carlo type of simulation” (Artzrouni & Komlos, 1985, p. 27). For no 

apparent reason, this variable is defined by the following equation: 

 
  5)(15.01)()(1.0)(  tyetUtvte ,               (28) 

 

where )(tv  is a random number drawn from a normal distribution with the mean 

0 and variance 1, )(ty is the number of decades the population was in the assumed 

Malthusian crisis and )(tU  is defined (again for no clear reason) as  

 

)]([400
41

1
)(

tPPTe
tU




 .                 (29) 

 

The population is divided into two sectors: the subsistence sector (“rural”) and 

the capital producing sector (“urban”). In the eqn (29), )(tP represents the per 

capita output (production) of the subsistence sector. If the per capita output is 

below a certain threshold defined by TP , i.e. if TPtP )( , the population is 

assumed to be in the Malthusian crisis and cannot grow. If TPtP )(  , the 

population is assumed to be out of crisis and can increase.  

The per capita output in the subsistence sector is defined as 

 

)(

)]([
)]([)(

2

1

2
tS

tS
tKCtP R




 ,                (30) 

 

where  2C , 1 and 2 are positive constants with 121   , )(tK is the 

capital stock and )(tSR is the population in the subsistence (“rural”) sector.  

The total output in the subsistence sector is given by 

 
21 )]([)]([)( 2


tStKCtQ RR  .                (31) 
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Likewise, the total production in the capital producing sector (“urban”) is given 

by 

 
21 )]([)]([)( 1


tStKCtQ UU  ,                (32) 

 

where  1C , 1 and 2 are positive constants with 121   . 

The total population is then given by 

 

)()()( tStStS UR  .                 (33) 

 

Returning to the eqn (28) we should notice that the function )(tU defining the 

time-dependent parameter )(te , which plays the essential role in the Monte Carlo 

simulations, depends on )(tP , which in turn depends on the capital stock )(tK . 

The growth of the capital stock is described as 

 

)()(
)(

tQt
t

tK
U




,                 (34) 

 

where )(t is defined as 

 
tet 05756.02610778.101.0)(  .               (35) 

 

The process of Monte Carlo simulations is well described by Artzrouni & 

Komlos (1985). These simulations produced most interesting results. Designed to 

demonstrate the existence of Malthusian regime of stagnation, the model shows 

that the regime of Malthusian stagnation did not exist. The assumed mechanism of 

stagnation does not produce stagnation but a steadily-increasing growth. 

Furthermore, the growth generated by the model during this imaginary regime of 

stagnation does not fit the data (see Figure 2).  

 
Figure 2. The established knowledge in demography is contradicted by science. 

Simulations of the mechanism of Malthusian stagnation carried out by Artzrouni & Komlos 

(1985) do not produce stagnation but a steadily increasing exponential growth. They also 

do not fit date. These calculations are compared with hyperbolic distributions (Nielsen, 

2016a). The data represent the average values of the size of population calculated using the 

compilations of Manning (2008) and of the US Census Bureau (2016). 
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Parameters describing hyperbolic distributions shown in Figure 2 and defined in 

the eqn (1) are: 
02.282 10C    and 

22.210 10k   for the BC era and 
07.061 10C   and 

33.398 10k   . The data come from a variety of sources 

compiled by Manning (2008) and the US Census Bureau (2016). 

The model of Artzrouni & Komlos’s (1985), designed to reproduce the “well 

documented fluctuations experienced by the world’s population throughout 

history” (Artzrouni & Komlos, 1985, p. 24), produced instead a steadily increasing 

growth along exponential trajectory. (In the semilogarithmic display, exponential 

growth is represented by an increasing straight line.) Furthermore, their model 

calculations do not fit the data. Their results show clearly that the model of 

Malthusian stagnation does not work. The mechanism of Malthusian stagnation 

does not describe the growth of population. The model based on the assumption of 

the mechanism of Malthusian stagnation did not generate the required fluctuations 

in the growth of population let alone fluctuations that “were, to a large extend, 

brought about by randomly determined demographic crises (wars, famines, 

epidemics, etc.)” (Artzrouni & Komlos, 1985, p. 24).  

Thus, if Artzrouni and Komlos took the final step normally expected in 

scientific investigations, if they compared theory with data, even with the data used 

by von Foerster, Mora & Amiot (1960), they would have made an important 

discovery that the fundamental concepts of the established knowledge in 

demography are incorrect. Theywould then be able to suggest new lines of 

research. 

It is essential to notice that even though Monte Carlo simulations based on the 

assumption of the mechanism of Malthusian stagnation produced exponential 

growth it would be incorrect to claim that the mechanism of Malthusian stagnation 

generates exponential growth. Equation (26) makes it clear that Artzrouni & 

Komlos (1985) assumed exponential growth. They assumed that Monte Carlo 

calculations were fluctuating around the growth rate describing exponential growth 

because eqn (26) describes modulated exponential growth. If we assume 

exponential growth it is hardly surprising that we get exponential growth. 

Fluctuations in the growth rate are not readily reflected as fluctuations of the 

growth of population or the GDP (Nielsen, 2016i, 2016k). 

5. Lagerlöf’s model of growth 
Lagerlöf’s model of growth (2003a, 2003b) belongs to the so-called OLG 

(overlapping generations) models (Aliprantis, Brown & Burkinshaw, 1990) used 

for instance by Becker, Murphy & Tamura (1990) and by Galor (2005a, 2011) to 

look at the growth of the population from the economic perspective. The central 

idea of this approach is to try to explain the growth of population by considering 

human capital defined as “embodied knowledge and skills” (Becker, Murphy & 

Tamura, 1990, p. S13). The growth is on the favourable rates of return. 
When human capital is abundant, rates of return on human capital 

investments are high relative to return on children, whereas when human 

capital is scarce, rates of return on human capital are low relative to those on 

children. As a result, societies with limited human capital choose large 

families and invest little in each member; those with abundant human capital 

do the opposite (Becker, Murphy & Tamura, 1990, p. S35). 

It is a strong assumption, which is hard to accept. One would have to have a 

strong proof that this assumption is correct but we do not have such a proof. 

It is interesting that neither Becker, Murphy & Tamura (1990), nor Galor 

(2005a, 2011), nor Lagerlöf (2003b) tried to compare their model predictions with 

population data. Lagerlöf (2003b) came close to testing his model against data 
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when he generated growth rates in his Monte Carlo simulations but we shall show 

that his model is in disagreement with data he was referring to in his publication. 

Lagerlöf’s model is an excellent example of convoluted models characterised by 

the abundance of parameters but models, which neither describe data nor explain 

the mechanism of growth. This model was also designed to reproduce the epoch of 

stagnation and the alleged transition from stagnation to growth at the time of the 

Industrial Revolution, all as specified by the prescribed instructions of the 

established knowledge in demography and in the economic research. Like 

Artzrouni & Komlos (1985), Lagerlöf was also on the verge of making an 

important discovery that the established knowledge in demography and in 

economic research is contradicted by science. Like Artzrouni & Komlos (1985), he 

was on the verge of proving that the epoch of Malthusian stagnation did not exist 

and that there was no transition from stagnation to growth. Like Artzrouni and 

Komlos (1985), he was on the verge of showing that simulations of Malthusian 

stagnation do not produce stagnation, that they do not fit data and that they do not 

explain the mechanism of growth. He missed making this important discovery 

because he did not take the final step normally expected in scientific investigations 

– he did not compare theory with data. Parameters and definitions used in 

Lagerlöf’s model are listed in Table 1.  

 
Table 1. Parameters and definitions used in Lagerlöf’s theory (Lagerlöf, 2003a, 2003b) 
Parameter Description 

t Time interval or “period t” assumed to be 25 years, i.e. one generation 

tH  Human capital or “a component resulting from parental investment” (Lagerlöf, 2003b, p. 426) 

called also “human capital stock” (Lagerlöf, 2003a, p. 760) 

L  The “units of skills” (Lagerlöf, 2003b, p. 426) endowed by nature to “every agent” (person) 

tHL   The “productivity of a unit of time” (Lagerlöf, 2003b, p. 426) 

v “a fixed time cost of rearing one child” i.e. “the time required to nurse the child just enough to 

keep her alive” (Lagerlöf, 2003a, p. 759) 

v  Assuming 0 1  , this product “measures the direct inheritance of human capital from one 

generation to the next” reflecting the assumption that less than 100% of the time invested in 

rearing (nursing) a child is converted into human capital. 

th  
The time invested in the education of each child 

tl  
The “time input in the consumption good sector” (Lagerlöf, 2003a, p. 759) i.e. time spent on 

production or work 

t  
The “mortality shocks” (Lagerlöf, 2003b, p. 426) “which can be interpreted as epidemics” 

(Lagerlöf, 2003a, p. 760), the function assumed to be described by the probability density 
function of a log-normal distribution. 

tP  
“the (adult) population size” called also “population density” in the generation t (Lagerlöf, 

2003a, p. 760). The fundamental assumption of OLG models is that people live only for two 
generations. All adults in the generation t are replaced by the children born during the 

generation t. This new generation will be completely replaced by the next generation. 

)( tPA  The productivity parameter, which enters into the equation of the time-dependence of human 

capital 

tB  “the number of born children (or births)” (Lagerlöf, 2003a, p. 759). It is the average number 

of children per capita of adult population born in the generation t, i.e. over the entire 25 years. 

tT  The “survival rate” (Lagerlöf, 2003a, p. 760). It is the average fraction of the number of 

individuals born during the 25 years of the generation t, who survive to the next generation 

1t . 

tt Bhv )(   The total time invested in children per capita of the adult population calculated over the entire 
time of one generation, i.e. over the total time of 25 years 

tY  The output of the consumption (production) of goods 

tC  The “adult consumption” (production) (Lagerlöf, 2003b, p. 426) 

  A parameter ( 0 ) used in the utility function 

 

Assuming that each person (agent) is endowed with a unit of time, the time 

budget for each agent is given by 
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ttt Bhvl )(1                   (36) 

 

At any given time, each person (agent) is assumed either to work or to spend 

time with children. 

Assuming a single economy (or non-interacting economies) and that children 

consume (produce) nothing, the output of the consumption (production) of goods is 

given by 

 

tttt CHLlY  )(                  (37) 

 

It is simply the productivity per unit of time multiplied by the time spent at 

work.  

The survival rate is given by 

 

tttt

t
t

SHS

H
T

/

1





                 (38) 

 

In the absence of mortality shocks ( 0t ), the survival rate 1tT . 

 

The production of human capital is given by 

 

  )()(1 tttt hvHLPAH                   (39) 

 

Human capital increases in proportion to the productivity per unit of time 

multiplied by the time spent with each child, with the part of this time corrected for 

the unproductive fraction of time when nursing a child. By including the parameter 

10   it is assumed that education is more profitable for the increasing of 

human capital than nursing. 

Each agent is assumed to maximise a utility function describing personal 

preferences and is given by 

 

)ln()ln()ln( 1 ttttt HLTBCU                (40) 

 

The first term of the utility function measures the utility (the preference) of 

consumption (production), the second measures the utility of surviving children 

given by ttTB  and the third the utility of human capital of the offspring.  

By maximising the utility function, we get the following expression for the 

optimal (preferred) number of births 

 

t

t
hv

B














1

1 


                 (41) 

 

The number of born children depends entirely on the time invested in each child 

corrected by a factor dependent on the parameter used in the utility function. The 

larger the invested time, the smaller is the number of children, or vice versa. 

The annual crude birth and death rates (
trB ,

and
trD ,

, respectively) are 

calculated using the following expressions: 
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 11000 25/1

,  ttr BB                  (42) 

 25/1

, 11000 ttr TD                   (43) 

 

Calculations become significantly more complicated if interacting countries are 

included. Thus, for instance, assuming that that a demographic shock in one 

country is also reflected in other countries, the survival rate can be expressed as 
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             (44) 

 

 

If we look back at eqns (38), (42) and (43) we can see that when 0t , then 

1tT  and the death rate 0, trD , which also means that if mortality shocks are 

low, i.e. if 0t , the death rate is also approximately zero. If we assume that 

the time spent with each child remains approximately the same over time, or 

equivalently that the number of born children remains approximately the same, a 

dramatic decrease in mortality shocks should generate a prominent population 

explosion.  

This mechanism is the essence of the Demographic Transition Theory, which 

claims that towards the end of the assumed first stage of human history, interpreted 

as the epoch of Malthusian stagnation, the death rate started to fall while the birth 

rate remained approximately the same, the process creating allegedly population 

explosion, the explosion which in fact never happened. This is also the essence of 

the three regimes of growth postulated by Galor & Weil (1999, 2000) but 

contradicted by the analysis of data (Nielsen, 2016f).  

The mechanism of Malthusian stagnation followed by explosion is carefully 

incorporated in the Lagerlöf’s model of growth. In particular, regarding the 

mortality shock function t , Lagerlöf explains: 

 
To understand the mechanisms driving the results in the calibration later, it is 

useful to first think of economies where t is constant over time: Either high 

or low. To replicate the Three Regimes of Galor & Weil (1999, 2000), 

discussed in the introduction, we shall rig the model so that a high-ω 

economy converges toward a locally stable (Malthusian) steady state, 

whereas a low-ω economy converges to a balanced growth path (Lagerlöf, 

2003a, 763). 

 

The three regimes Lagerlöf is writing about are the assumed Malthusian regime 

of stagnation, which was supposed to last for thousands of years but which never 

existed; the post-Malthusian regime marked allegedly by the rapid increase of 

population and economy; and the modern growth regime or sustained growth 

regime, which allegedly follows a little later but which also represents an 

imaginary stage of growth. We have already demonstrated that these three regimes 

of growth did not exist (Nielsen, 2016f). 
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Lagerlöf’s theory is based on the scientifically contradicted fantasy and if he 

carried his research properly, if he compared his theory with empirical evidence, he 

would have soon discovered that he was guided by fiction. His hard and convoluted 

work was unnecessary because it has been known for a long time that the growth of 

population was hyperbolic (Kapitza,1992, 1996, 2006; Kremer, 1993; Podlazov, 

2002; Shklovskii, 1962, 2002; von Foerster, Mora, & Amiot, 1960; von Hoerner, 

1975). Hyperbolic growth can be described by an exceptionally simple 

mathematical formula, which is just the reciprocal of a linear distribution. This type 

of growth is in contradiction of the concepts of stagnation and explosion. 

Using his model and Monte Carlo simulations, Lagerlöf generated growth rate 

for the growth of population in England, France and Sweden (Lagerlöf, 2003b). 

His model produced minor fluctuations in the growth rate, which were interpreted 

by Lagerlöf as the proof of the existence of the regime of Malthusian stagnation. 

That was a serious mistake because even large fluctuations in the growth rate are 

not readily reflected in the growth of population (Nielsen, 2016i, 2016j), and we do 

not even have to carry out laborious calculations to see that fluctuations in the 

growth rate are not reflected as similar fluctuations in the growth of population. 

Data for Sweden are well known (Statistics Sweden, 1999). They are often used in 

defence of the Demographic Transition Theory without even realising that the they 

are in its contradiction. There, in the same document, for everyone to see, we have 

graphs showing fluctuating birth and death rates, and fluctuating annual population 

increase but also we have a graph of population growth with no signs of 

fluctuations. The usual practice of showing fluctuations in birth and death rates or 

in the growth rate and claiming that we have a proof of the existence of Malthusian 

stagnation is unjustified. These fluctuations are not reflected in the growth of 

population and consequently they have no impact on the mechanism of growth. 

They are, in this respect, irrelevant.   

Figure 3 shows an example Lagerlöf’s results for France. His model-generated 

growth of population was calculated using the numerical integration of the 

following differential equation: 

 

1 ( )
( )

( )
L

dS t
R t

S t dt
 ,                  (45)  

 

where ( )LR t is the Lagerlöf’s, model-generated andfluctuating growth rate, 

precisely as published in his paper (Lagerlöf, 2003b).  
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Figure 3. The established knowledge in demography is contradicted by science. 

Simulations of Malthusian stagnation carried out by Lagerlöf (2003b) do not produce 

stagnation but a steadily increasing growth of population. Furthermore, his model 

calculations do not fit data (Maddison, 2010). Model-calculated distribution follows 

exponential trajectory because the growth rate was assumed to oscillate around a constant 

value. The claimed population explosion is just a small deviation from the exponential 

trajectory at its end. The growth of population in France was hyperbolic. 

 

In Figure 3, Lagerlöf’s model-generated distribution is compared with the 

exponential distribution and with data. We also show the hyperbolic distribution 

fitting the data (Maddison, 2010). These data were not available to Lagerlöf but he 

had access to similar data (Maddison, 2001) published before the publication of his 

work.  

Parameters describing hyperbolic distribution are:
12.085 10C   and 

59.635 10k   [see eqn (1)]. The exponential distribution, which is so closely 

followed by Lagerlöf’s model-generated results, is described by the following 

equation: 

 
'( ) rtS t C e .                   (46) 

 

Its parameters are
' 03.100 10C    and 

49.780 10r   . 

The tiny, model-generated fluctuations in the growth rate presented in 

Lagerlöf’s publication (Lagerlöf, 2003b) could not have possibly generated 

oscillations in the growth of population. Even large fluctuations are not readily 

reflected in distributions describing growth, such as growth of population or the 

GDP (Nielsen, 2016i, 2016j). Lagerlöf could have seen it clearly if he looked at the 

data for Sweden (Statistics Sweden, 1999). He could have also known it if he 

studied the excellent data for England (Wrigley & Schofield, 1981). These results 

show clearly, even without carrying out any calculations, that even large 

fluctuations in birth and death rates and in the corresponding growth rate have no 

tangible effect on the growth of population and consequently that they have no 

effect on shaping the mechanism of growth. These data are clearly contradicting 

the established knowledge in demography but they are systematically ignored. The 

established knowledge in demography is also contradicted by results published 

over 50 years ago (von Foerster, Mora, & Amiot, 1960) but they are also 

systematically ignored. 
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The important contribution of Lagerlöf’s Monte Carlo simulations is to show 

that the mechanism of Malthusian stagnation and population explosion does not 

work. Such a mechanism fails to produce the desired effects of stagnation and 

explosion and it fails to fit the data.  

Results of Lagerlöf show that his model-generated distribution was exponential 

and that his claimed population explosion is just a minor deviation from the 

exponential trajectory. However, one might wonder why model-generated results 

follow exponential trajectory. Does it mean that the process of Malthusian 

stagnation generates exponential growth? No, it does not. Results depend on our 

assumptions about the way birth and death rates are fluctuating. 

Lagerlöf assumed that crude birth rate was a non-zero constant and that crude 

death rate fluctuated around a non-zero constant value. Naturally, therefore, his 

growth rate also fluctuated around a non-zero constant, which in turn generated 

exponential growth. If Lagerlöf assumed that birth rate was zero and that the death 

rate fluctuated also around zero, he would have produced growth rate fluctuating 

around zero and thus he would have produced a constant size of population in his 

Monte Carlo calculations but he would still have not produced the required 

fluctuations in the size of population and his results would have been in a clear 

disagreement with data. The same applies to the calculations of Artzrouni & 

Komlos (1985). If they did not assume the modulated exponential growth during 

the postulated epoch of Malthusian stagnation [see the eqn (26)], they would have 

also produced a constant population without the so-called Malthusian oscillations.  

If Lagerlöf took the final step and compared his model-generated distributions 

with data (Maddison, 2001), if he consulted the available to him literature 

(Statistics Sweden, 1999; Wrigley & Schofield, 1981) he would have made an 

important discovery that the concept of Malthusian stagnation followed by 

explosion is incorrect, that it is contradicted by data and even by his own model. 

He could have then used his expertise to suggest new directions for the 

demographic and economic research.  

The same applies to Galor. He uses Maddison’s data but surprisingly he never 

attempts to analyse them. He prefers to distort them (Galor, 2005a, 2005b, 2007, 

2008a, 2008b, 2008c, 2010, 2011, 2012a, 2012b, 2012c; Galor & Moav, 2002) to 

support the preconceived but erroneous ideas. He knows mathematics and he 

should be familiar with hyperbolic distributions. If he analysed data, the same data 

that he used in his publications, he would have soon discovered that the established 

knowledge in demography and in economic research is scientifically unsupported. 

He could have then also used his expertise to suggest new lines of research. These 

examples show how strongly the established knowledge is established and that 

even prominent researchers can be easily misled by the system of its doctrines.  

 

5. Camouflaging the hyperbolic equation 
Here is an example how the well-known differential equation describing 

hyperbolic growth was disguised as something new, which was supposed to 

explain the mechanism of growth based on the assumption that the growth of 

population is finely-tuned to the technological development.  In its undisguised 

form, the differential equation (2) describes hyperbolic growth but does not explain 

its mechanism. It is just a mathematical equation, which when solved produces 

hyperbolic distribution. However, in its disguised form it seems to contain an 

explanation of the mechanism of growth. It seems to show that the growth of 

population is determined by the level of technology or knowledge.  

This is a good example, which demonstrates that one should never be 

mesmerised by complicated mathematics. Mathematical formulations can be 
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complicated and useful but just because they are complicated it does not mean that 

they are useful. Unified Growth Theory (Galor, 2005a, 2011), which is supposed to 

explain the mechanism of economic growth, is full of such complicated 

mathematical formulations. However, these complicated formulae do not explain 

anything. They just translate erroneous concepts into mathematical language. Data 

describing economic growth and the growth of population (Maddison, 2001) were 

used but they were never analysed to check the proposed theory. They were 

presented in a distorted way to make the impression that theory is confirmed by 

data. In the example presented here, the discussed mathematical equations are 

relatively simple and even attractive but they give a corrupted and mathematically 

unacceptable representation of the well-known differential equation [eqn (2)] 

describing hyperbolic growth. 

Korotayev (2005) used the following differential equations to describe and 

explain the growth of population: 

 

)()]()([
)(

tStStbKa
dt

tdS
 ,                 (47) 

)()(
)(

tKtcS
dt

tdK
 .                 (48) 

 

According to his interpretation “K is the level of technology/knowledge, bK 

corresponds to the number of people (N) [ ( )S t in our notation], which the earth can 

support with the given level of technology (K)” (Korotayev, 2005, p. 81). Thus bK 

is interpreted as the carrying capacity of the planet.  

To fit the population data, Korotayev carried out step-by-step calculations based 

on the eqns (47) and (48) but presented in a different form: 

 

iiii KcSKK 1
,                  (49) 

iiiii SSbKaSS )( 11  
.                (50) 

 

There is absolutely no reason why ( )K t  should represent technology or 

knowledge. We can call it whatever we want but just because we call it technology, 

knowledge or the carrying capacity it does not mean that it represents these 

imposed by us concepts. In the logistic model, which is similar to the eqn (47), it is 

a constant describing the limit to growth, which may or may not represent the 

carrying capacity. However, we shall show that in eqns (47) and (48), ( )K t has 

nothing to do even with the limit to growth. It is a variable that does not restrict 

growth in any way because ( )K t  is in fact ( )S t . It is simply the size of population 

or the size of any, hyperbolically-increasing quantity. Consequently, even if we use 

this set of differential equations and even if we fit data, we cannot claim that we 

have explained the growth of human population. 

To show that ( )K t is in fact just ( )S t , let us start with the differential equation 

for the hyperbolic growth [see eqn (2)]: 

)(
)( 2 tkS

dt

tdS
 .                  (51) 

 

It is the same equation as eqn (2) but it is now presented in s slightly different 

form. Let us now replace k by 
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( 1)k c a b   .                  (52)  

 

where c, a and b are constants. Mathematically, this modification is acceptable 

because k is a constant and we can always replace a constant by any combination 

of constants. Normally, we would not do it. We do it here to show that the eqns 

(47) and (48) represent a complicated representation of the eqn (51). However, we 

shall show that these equations represent also a corrupted form of the eqn (51).  

 

Equation (51) can now be expressed as 

 

)()]()([
)(

tStStbSa
dt

tdS
 .                (53) 

 

This equation is already almost the same as the eqn (47). But now let us corrupt 

this equation. Let us replace one )(tS  in the eqn (53) by )(tK , while keeping the 

other )(tS unchanged. So now we have two equations: 

 

)()]()([
)(

tStStbKa
dt

tdS
 ,                (54) 

)()( tStK  .                  (55) 

 

If )()( tStK  then of course: 

 

.                  (56)  

 

However, according to the eqns (51), (52) and (55), and supported by the 

selective treatment of )(tS , we have 

 

.               (57) 

 

So finally, we now have 

 

)()]()([
)(

tStStbKa
dt

tdS
 ,                (58) 

( )
( ) ( )

dK t
cS t K t

dt
 .                  (59) 

 

These two equations are precisely the same as the eqns (47) and (48), and 

functionally the same as the eqn (51). However, now we have three constants, a, b 

and c, rather than just one constant k. We also have one ( )S t disguised as ( )K t , 

while the other ( )S t retains its identity. The variable )(tK is just the size of the 

population. It has nothing to do with technology, knowledge or carrying capacity. 

Korotayev’s differential equations do not explain the mechanism of growth. They 

only describe the growth of human population using the well-known mathematical 

differential equation for the hyperbolic growth. They do not explain why the 

growth of population was hyperbolic.  

( ) ( )dK t dS t

dt dt


2 2( )
( ) ( ) ( ) ( )

dS t
kS t cS t cS t K t

dt
  
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We have repeated the calculations of Korotayev (2005) using his eqns (47) and 

(48) and his step-by-step procedure defined by eqns (49) and (50). Results are 

presented in Figure 4. They show that ( )K t  is precisely the same as ( )S t , 

( ) ( )K t S t . The two distributions are indistinguishable. ( )K t is not technology, 

knowledge or carrying capacity but the size of the hyperbolically increasing 

quantity, such as population or the GDP. 

 

 
Figure 4. Results of calculations carried out using eqns (47) and (48) and the step-by-

step procedure defined by eqns (49) and (50). They confirm that ( ) ( )K t S t . Eqns (47) 

and (48) represent a camouflaged eqn (51), which describes hyperbolic growth. The data 

represent the average values of the size of the world population calculated using the 

compilations of Manning (2008) and of the US Census Bureau (2016). 

 

Korotayev accepts now that he made a mistake: “I agree with what you wrote.” 

(Korotayev, 2015). However, his model and his calculations have been published 

in a peer-reviewed journal and as far as we can tell they were never corrected.   

This earlier attempt by Korotayev (2005) was followed by a new approach 

designed to link the growth of population with economic growth (Korotayev & 

Malkov, 2012; Korotayev, Malkov & Khaltourina, 2006a): 

 

( )
( ) ( )

dS t
aq t S t

dt
 ,                  (60) 

( )
( ) ( )

dq t
bq t S t

dt
 ,                   (61) 

 

where ( )S t is again the size of human population, a and b are adjustable 

constant and ( )q t is claimed to be, again for no convincing reason, the surplus of 

the GDP per capita.  

If we compare eqns (51) and (60), we can see that if the eqn (60) is supposed to 

describe hyperbolic growth of population or the GDP, then ( )q t cannot be anything 

else but ( )S t , the size of the population or the GDP. The eqn (60) is the same as 

the eqn (51) except that, for no good reason, one ( )S t  is now replaced by ( )q t . 

However, this also means that a b and indeed the authors of these two equations 
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have determined that 1.04a b , which is as good as a b . The two equations are 

identical. They are not two different equations but the same equation repeated 

twice, the same equations as eqn (51) but now one ( )S t is again disguised, this 

time as ( )q t , which for absolutely no convincing reason is called the surplus of the 

GDP per capita. 

We can replace S by any letter in the alphabet. We can call the replaced letter 

anything we want but in this context, it is nothing else but the size of population or 

the GDP or the size of any other hyperbolically increasing quantity. We are back to 

the original habit of corrupting the perfectly good and legitimate hyperbolic 

equation, but now we are not representing one of the ( )S t as ( )K t  , which for no 

good reason was called technology or knowledge. We are now representing one of 

the ( )S t  as ( )q t , which again for no convincing reason is called the surplus of the 

GDP per capita. 

In the earlier mistake, the hyperbolic differential eqn (51) or (2) was disguised 

as two distinctly different equations. Now it is disguised as two similar equations, 

which are in fact identical. Previously, the growth of population was supposed to 

have been explained by technology, knowledge or the carrying capacity, which was 

incorrect and misleading, because the so-called technology or knowledge or the 

carrying capacity was nothing else but the size of the hyperbolically increasing 

quantity ( )S t . Now, the growth of population is supposed to be explained by the 

surplus of the GDP per capita, which is again incorrect and misleading because the 

claimed surplus of the GDP per capita is just ( )S t , which represents the size of the 

hyperbolically increasing quantity. They are making the same mistake as before. 

They have not introduced any new idea but present the same mistake in a different 

mathematical form. 

The next step is to make it all even more mysteriously complicated. For obscure 

reasons, the growth of human population is now supposed to be described by a set 

of three differential equations (Khaltourina & Korotayev, 2007; Korotayev, 

Malkov & Khaltourina, 2006a, 2006b): 

 

 1
dS

aqS L
dt

  ,                  (63) 

dq
bqS

dt
 ,                   (64) 

 1
dL

cqL L
dt

  ,                  (65) 

 

where a, b and c are adjustable constants and L is claimed, without any 

convincing justification, to represent the fraction of literate population, which 

implies that 1 L is the fraction of the illiterate population (Korotayev, 2015). In 

these equations, the time dependence is not explicitly displayed. So, ( )S S t , 

( )q q t and ( )L L t  

Again, if the eqn (63) is supposed to describe hyperbolically increasing 

distribution, such as population or the GDP, then (1 )q L S  . We can replace 

one S in the hyperbolic differential equation (51) by whatever we want but 

functionally it will be still S.  

A modified version of the three equations (63)-(65) are equations containing 

even more, spurious and meaningless parameters (Korotayev, Malkov & 

Khaltourina, 2006b): 
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  31 2 1
dS

aq S L
dt

   ,                 (66) 

54
dq

bq S
dt

 ,                  (67) 

  86 7 1
dL

cq L L
dt

 
  ,                 (68) 

 

where i with 1 8i   are arbitrary adjustable positive constants “not 

necessarily equal to one” (Korotayev, Malkov & Khaltourina, 2006b, p. 73). The 

interpretation of these additional parameters is also obscure.  

Korotayev and his associates claim that they can generate hyperbolic growth 

with a transition to a new type of growth. However, they did not introduce any new 

concepts, which could justify this claim. They have just replaced two equations by 

three and one spurious variable by two. They follow the same idea as expressed in 

the eqns (47) and (48). In the original equations, a spurious variable ( )K t , was 

introduced which for no good reason was called technology or knowledge or the 

limit to growth and which turned out to be just the size of population or some other 

hyperbolically increasing quantity. Now, the original two equations are replaced by 

three because two spurious variables are introduced, ( )q t and ( )L t , which for no 

convincing reason are called the surplus of the GDP per capita and the fraction of 

literate population, respectively. The method of calculations is also the same, i.e. as 

outlined in the eqns (49) and (50).  

Whatever is done is hidden in the obscure calculation procedure. As before, one 

would have to repeat their calculations to understand better the source of error or 

maybe to become convinced that whatever they are doing is correct. However, 

from a start, there is no convincing justification for claiming that q represents the 

surplus of the GDP per capita and that L represents the fraction of literate 

population, described also as “potential teachers” (Korotayev, Malkov & 

Khaltourina, 2006a, p. 26, 2006b, p. 73). There is also no convincing justification 

for claiming that the growth of population should be so vitally dependent on the 

surplus of the GDP per capita and on the number of potential teachers.    

We could probably invent many other complicated formulae to replace the 

simple and working eqn (2) or (51). We could also label the new introduced 

variables or constants in whatever way we want but could we claim that we have 

contributed to a better understanding of the mechanism of hyperbolic growth?  

 

6. Microscopic growth theory 
The concept of Karev (2005a, 2005b, 2010) and Karev & Kareva (2014) is to 

see human population (or other biological systems) as being made of individuals, 

each characterised by a certain, unique parameter a. In a more general formulation 

of this theory, this uniquely defining parameter is a multi-dimensional vector 

)...,( 21 naaaa 


made of many characteristic components. In the extreme case, 

we could think that the components of the vector a


 are made of genes or even of 

the components of the whole genome. In such a case, the multidimensional vector 

would be made of 10
6
-10

9
 components (Karev, 2005b).   

This theory is based on the advanced and aesthetically appealing mathematics. 

We shall explain the fundamental concepts of this theory. Once the fundamental 

ideas are understood, it will be easier for anyone to read the more advanced 
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description presented by Karev (2005a, 2005b, 2010) and Karev & Kareva (2014). 

In our discussion, we shall replace vector a


 by constant a.  

Rather than dealing with individuals characterised by the parameter a, it is 

assumed that the entire population is made of a certain number of groups of a-

clones, each group characterised by the same parameter a and each group made of 

( , )n t a number of members at a given time t. In order to calculate the growth of 

population we first calculate the growth of each group of a-clones. The differential 

equation describing the growth of a-clones is given by   

 

1 ( , )
( , )

( , )

dn t a
F t a

n t a dt
 .                 (69) 

 

The function ( , )F t a  is called “the per capita reproductive rate” (Karev & 

Kareva, 2014, p. 73) but the well-known and accepted definition of the net 

reproductive rate is the number of daughters born per woman in her lifetime. In the 

same publication, ( , )F t a appears also as ( )ag N , where in our notation N 

represents ( )S t , and ( )g N  is interpreted as ”some function, chosen depending on 

the specifics of the model” (Karev & Kareva, 2014., p. 69). Karev agrees (Karev, 

2015) that it would be better to call ( , )F t a simply as a growth factor, which will 

depend on the model used in the calculations. However, if we use the concept of 

the general law of growth (Nielsen, 2016k), then this factor can be identified 

simply as the force of growth, which in the microscopic theory can have a variety 

of representations.  

The factor ( , )F t a contains all the information about the mechanism of growth 

of each group of a-clones. The microscopic theory does not describe any single 

mechanism but gives a complete freedom to explore a variety of options. Each 

specifically chosen mathematical representation of the factor ( , )F t a will describe 

a certain mechanism of growth of each group of a-clones, but the mechanism will 

remain unknown until the chosen mathematical description of ( , )F t a is not only 

convincingly explained but also justified.  

The additional complication in this theory is that the calculated size ( )S t of the 

population made of numerous groups of clones will depend on how their growth is 

combined. To understand the mechanism of growth of population it is necessary to 

explain not only the factor ( , )F t a but also to justify a specific mathematical way 

of combining the growth of all clones.  

The growth rate of population is given by: 

 

1 ( )
( ) ( , )

( )

dS t
E t F t a

S t dt
 ,                 (70) 

 

where ( )E t is a function describing the mathematical way of combining the 

growth of population in all groups of clones. So now, the description of the 

mechanism of growth depends not only on ( , )F t a but also on ( )E t . In order to 

explain this mechanism, it is not enough to explain and justify the factor ( , )F t a

but also ( )E t . The force of growth is given by the product of ( , )F t a and ( )E t .  
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The calculation of ( )E t  is based on the assumption that the populations of 

various groups of clones are distributed along a certain probability density function 

( , )p t a defined as: 

 

( , )
( , )

( )

n t a
p t a

S t
 .                  (71) 

 

The function ( , )p t a describes the probability of having ( , )n t a number of 

individuals characterised by the unique parameter a, i.e. the probability distribution 

of the parameter a. 

The definition of ( )E t , based on the publication of Hofbauer and Sigmund 

(1998), is: 

 

0

( ) ( , )E t ap t a da



  .                 (72) 

 

To illustrate the application of this theory to the description of the growth of 

human population we shall use three models of growth presented by Karev (2005a) 

leading to three solutions. 

6.1. Solution 1 
This solution is based on the assumption that ( , )F t a a . Consequently, 

 

1 ( , )

( , )

dn t a
a

n t a dt
 .                 (73) 

 

In this model, it is assumed that each group of a-clones increases exponentially. 

The growth is prompted by a constant force generating a constant growth rate. This 

is the force of unknown nature. We do not know why this force should be constant. 

We just assume that it is. Thus, from the very beginning we cannot explain the 

mechanism of growth. Whatever we shall calculate will not help us to understand 

the growth of population. Maybe we shall be able to fit the data but we already 

know that the data can be fitted well (Nielsen, 2016a, 2016c) using the simple 

expression describing hyperbolic distribution [see eqn (1)]. The approach proposed 

by the microscopic theory will offer an alternative description but it is more 

complicated and there is no clear reason for preferring this approach.  

The growth of human population as a whole is given now by: 

 

1 ( )
( )

( )

dS t
E t a

S t dt
 .                 (74) 

 

Karev (2005a) gives the following expression for ( )E t a , determined by his 

choice to describe mathematically the probability density function ( , )p t a : 

 

( )
k

E t a
s t

 


,                  (75) 

 

where  , k and s are adjustable constants (s, k>0,   ). For t s , 

this function escapes to infinity.  
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The differential equation for the growth of human population is now given by: 

 

1 ( )

( )

dS t k

S t dt s t
 


.                 (76) 

 

The right-hand side of this equation is again the force of growth of unknown 

origin and it is even less acceptable than the constant force because it is more 

complicated. If we had reservation about using a constant force of unknown origin 

to describe the growth of a group of clones [eqn (73)] our reservation is now even 

stronger because the force describing the growth of population is significantly 

more complicated and also unexplained. We can see that explaining the mechanism 

of growth is becoming progressively more difficult. We might only hope that 

perhaps our formula will give a better description of data but we shall soon see that 

it does not.  

The solution of the eqn (76) presented by Karev (2005a) is 

 

0( )
(1 / )

t

k

e
S t S

t s






, for t s ,                 (77) 

 

which is the exponentially modulated hyperbolic-like growth because it 

increases to infinity when t s . It is not clear why we should want to use this 

distribution when we already have a simpler distribution given by the eqn (1) 

fitting the population data.  

If 0 , then 

 

kst
StS

)/1(

1
)( 0


  for st   .               (78) 

 

The size of population approaches singularity when time t approaches the 

parameter s.  For 1k  it is the first order hyperbolic growth given by the eqn (1). 

We can explain this formula but we cannot explain the mechanism of growth. We 

cannot explain why the growth should be expected to behave in this particular way. 

6.2. Solution 2 
Solution 2 is also based on the assumption of an exponential growth of each 

group of a-clones but now a different mathematical description is used for the 

probability density function ( , )p t a , which gives different expression for ( )E t a  

used in the eqn (74): 

 

( )

1
( )

1 c s t

c
E t a

s t e 
 

 
.                 (79) 

 

( )E t a escapes to infinity when t s .  

The differential equation for the growth of human population is now given by: 

 

( )

1 ( ) 1

( ) 1 c s t

dS t c

S t dt s t e 
 

 
,                (80) 

 

and its solution by: 
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( )

0

1
( )

(1 )(1 )

c t s

sc

e
S t S

t s e








 
.

                

(81) 

 

Parameters used by Karev (2005a) are 114.0c  and s = 2026. The 

corresponding product cs  is large and the second term in the denominator can be 

neglected. The formula (81) can now be presented as  

 

 st

e
StS

stc








1

1
)(

)(

0 .                  (82) 

 

This solution resembles the first-order hyperbolic growth because the 

denominator is a linear function of t, and if not for the function appearing in the 

numerator, the growth of the population would escape to infinity at st  . 

However, when st  , the numerator is also zero. Close examination of the eqn 

(82) shows that when t approaches s, this fraction approaches a constant value, 

which depends on parameters s and c. Furthermore, calculations show that for 

st  , )(tS increases approximately hyperbolically but for st  , it increases 

approximately exponentially. Thus, the Solution 2 can be seen as being made of 

two parts: a hyperbolic growth to t s and an exponential growth from t s with 

an instantaneous discontinuity at precisely st  .  

Mathematically, this formula is interesting because it shows that by assuming a 

certain force of growth it might be possible to generate a trajectory, which would, 

at a certain stage, change from hyperbolic to a different type of growth. If we could 

explain the nature of this peculiar force and if we could reproduce data, we would 

make a huge progress in the understanding of the mechanism of growth. However, 

in this particular case we have no clue about the nature of this peculiar force and, 

as we shall soon see, the formula given by the eqn (82) does not fit the data. 

6.3. Solution 3 
Solution 3 is based on the assumption that ( , )F t a , which in Solutions 1 and 2 

was constant, is now represented by the modified logistic growth rate (Gilpin & 

Ayala, 1973).  

 

( )
( , ) 1

k
S t

F t a a
K

  
   

   

.                 (83) 

 

Again, we do not know the nature of this force.  

Under this assumption, the growth of each group of a-clones is given by 

 

1 ( , ) ( )
1

( , )

k
dn t a S t

a
n t a dt K

  
   

   

,

                

(84) 

 

where 0k const   and K is the limit to growth. 

Unless 1k  , the driving force of growth for each group of clones decreases 

non-linearly with the size ( )S t of the whole population. The growth of each group 

of clones is no longer defined by the parameter a alone, which represents exclusive 

characteristics of any particular group of clones, but it also depends on the size of 
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the whole population. The growth of each group of clones is somehow coupled to 

the growth of other clones.  

The differential equation for the whole population is now given by: 

 

1 ( ) ( )
( ) 1

( )

k
dS t S t

E t a
S t dt K

  
   

   

.                (85) 

 

Karev (2005a) uses the following expression for ( )E t a : 

 

 ( )

1 1
( )

( ) 1
c s p t

E t a
s p t e


 

 
,                (86) 

 

where )(tp is a solution of Cauchy problem: 

 
k

scKe

stpc

tps

s
S

dt

tdp
















1

]})([exp{1

)(
1

)(
0 .             (87) 

 

So, now, the differential equation describing the growth of human population is 

given by: 

 

 ( )

1 ( ) 1 1 ( )
1

( ) ( ) 1

k

c s p t

dS t S t

S t dt s p t Ke


    
     

       

,             (88) 

 

and the size of population by 

 

sce

stpc

tps

s
StS








1

]})([exp{1

)(
)( 0

.              (89) 

 

The description of the growth of human population is now significantly more 

complicated. Solutions given by eqns (78) and (82) were relatively simple because 

they were based on the assumption of the simplest type of growth of the individual 

groups of clones, growth of each clone prompted by a constant force. Even though 

we were not able to explain the mechanism of growth of the entire population made 

of various groups of clones we could at least explain the mathematical formulae 

describing growth. However, in the case of the growth described by the eqn (89) 

we cannot even understand this formula let alone to understand the mechanism of 

growth of the entire population. We do not understand why the growth of human 

population should follow this particular trajectory. Even if we could fit the theory 

to data precisely and over the entire range of time we would be still unable to 

explain the mechanism of growth. 

6.4. Comparing theory with data 
Solutions 1-3 are shown in Figures 5 - 7. They are compared with data coming 

from a wide range of sources compiled by Manning (2008) and by the US Census 

Bureau (2016).  

In Figure 5 we show the reciprocal values of data and the reciprocal values of 

Solutions 1-3. The advantage of using this display is that the decreasing linear 

trends identify uniquely hyperbolic distributions (Nielsen, 2014).  
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The common feature of all these solutions is that over the nearly entire range of 

time during the AD era they all follow hyperbolic trajectories. However, they 

reproduce data over a strongly limited range of time. Consequently, there is no 

advantage in using these solutions. The microscopic theory does not give a better 

description of data than the simple hyperbolic formula, which can reproduce data 

over the past 12,000 years (Nielsen, 2016a). Solutions 2 and 3 are indistinguishable 

in this display. Solution 1 is only slightly different. Differences between these three 

solutions can be observed only towards the end of the time scale, as shown in 

Figures 6 and 7.  

 

 
Figure 5. The decreasing straight lines of reciprocal values identify uniquely hyperbolic 

growth. Reciprocal values of solutions 1, 2 and 3 [eqns (78), (82) and (89)] are compared 

with the reciprocal values of the world population data as compiled by Manning (2008) 

and by the US Census Bureau (2016). 

 

 
Figure 6. Solutions 1, 2 and 3 [eqns (78), (82) and (89)] are compared with the world 

population data compiled by Manning (2008) and the by US Census Bureau (2016). 
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Figure 7. Trajectories generated by Karev’s Solutions 1, 2 and 3 (Karev, 2005a) in the 

region where they start to divert to different trajectories are shown together with 

population data using the compilations of Manning (2008) and of the US Census Bureau 

(2016). Solution 1 escapes to infinity. Solution 2 converts to an exponential growth, while 

Solution 3 converts into a logistic growth. 

 

While the concept of the microscopic approach to the study of the growth of 

population is interesting, it is not only extremely complicated but also it creates 

serious problems for the explanation of the mechanism of growth. Examples used 

by Karev (2005a) show that the complicated mathematical solutions generated by 

this theory imitate hyperbolic distributions, which can be represented by a much 

simpler equation [see eqn (1)]. Furthermore, these solutions reproduce only a very 

small range of data. 

The problem with using this theory to explain the mechanism of growth is well 

illustrated by Solutions 1, 2 and 3 given by the eqns (78), (82) and (89) and by the 

accompanying expressions for ( )aE t given in the eqns (75), (79) and (86). While 

we can explain some of these expressions, we cannot use them to explain the 

mechanism of growth.   

An interesting feature of this exercise is that a single force of growth can 

describe a trajectory, which at a certain stage can change from hyperbolic to some 

other type. If we could find a force that could reproduce data over the whole range 

of time and if we could explain the nature of this force, we would have made a 

huge progress in explaining the mechanism of growth. However, examples 

presented by Karev indicate that finding such a force of growth and explaining its 

origin is close to impossible.  

 

7. Summary and conclusions 
We have presented here a brief survey of attempts to understand hyperbolic 

distributions. The common characteristic of all these attempts is that they are not 

only complicated but that they are also unnecessarily complicated because a simple 

expression given by eqn (1) describes data exceptionally well (Nielsen, 2016a, 

2016c). This simple formula describes not only the growth of population but also 

economic growth as expressed by the Gross Domestic Product (Nielsen, 2016b). 

Furthermore, by using this simple formula we can also easily describe income per 

capita and explain its puzzling features (Nielsen, 2015, 2016g).  
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Complicated methods used in the interpretations of hyperbolic growth did not 

yet result in explaining its mechanism. They also did not produce a better 

description of data than the descriptions given by the simple expression represented 

by the eqn (1).  

When mathematical formulations become increasingly complicated it is usually 

a warning sign that we are on the wrong track, that we should stop, regroup and 

look for simpler descriptions and solutions. A simple formula [eqn (1)] describing 

population and economic growth suggests that there must be also a simple 

explanation of their mechanisms. Such a simpler explanation will be proposed in 

the next publication.  
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