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Abstract. The analysis discusses the labor market equilibrium under union oligopoly, where 

unions represent homogeneous workers and use employment strategies. The following 

points are addressed: 1. The labor market outcomes in the presence of; a. uncooperative 

behavior among unions; b. uncooperative environment with a leading union; c. collusive 

(coordinated unions) behavior among unions; d. globally efficient bargaining, are 

confronted. A specific example with a Stone-Geary utility function and linear demand is 

forwarded. 2. Supply dynamics may push up employment and, therefore, the number of 

unions. In equilibrium, some bounds exist to the number of unions the market can support, 

which are investigated in the example. Five supply dynamics are considered: a. reservation 

wage restriction; b. a standard labor supply constraint; c. number of unions equal demand; 

d. individualistic unions; e. existence of a minimum (employed) membership requirement. 

The equilibrium number of unions for the Cournot-Nash, Stackelberg and efficient 

bargaining structures is derived for the case where unions exhibit Stone-Geary preferences 

and labor demand is linear. 

Keywords. Unions, Wage determination models, Union bargaining, Corporatism, Imperfect 

competition and union behavior. Union oligopoly. 

JEL. J51, E24, D49, C79. 

 

1. Introduction 
n the two last decades, union strength and importance in wage 

determination seem to have decreased substantially; it is the main 

contribution of this article to offer a methodological understanding of 

the dynamics that may be behind such process. Hence, this research derives 

and compares the features of the labor market equilibrium in which several 

unions intervene under different strategic environments and follows to the 

“economics of union collapse” by allowing the number of unions in the 

economy to increase. 

The multiple union setup has been modeled and its implications studied 

by authors as Oswald (1979) 2, Gylfason & Lindbeck (1984a) and (1984b) 
 
1† Universidade Católica Portuguesa, Department of Economics. This research started while 

the author was Invited Professor at Faculdade de Economia da Universidade Nova de 

Lisboa, Portugal. 

 . (351) 217 21 42 48 . apm@ucp.pt 
2  Citing Rosen (1970) as the first author to recognize strategic interdependency among 

unions. 
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and others 3 . These studies usually assume heterogeneous labor with 

imperfect substitutability between workers and consider price, i.e., wage 

competition. 

We are going to focus, instead, on homogeneous labor and consider that 

unions, as Hart´s (1982) syndicates, use employment strategies 4. The use of 

these strategies is also a realistic assumption: legal restrictions to 

unemployment practices and laws restricting temporary labor contracts can 

be seen as part of the bargaining outcome; also, employment seems to be 

the concern of some strikes against firm bankruptcy or maintenance of 

partial contracts. This context has already been analyzed by the authors - 

Martins & Coimbra (1997) 5 - for the duopoly case. The present research is 

oriented towards the continuation of that research, and the extension of the 

study to the determination of the equilibrium number of unions the market 

may support. 

We therefore start by considering the equilibrium conditions of four 

environments which differ with respect to the union and employer 

competitive (cooperative) behavior: Cournot-Nash strategies; Stackelberg 

equilibrium; efficient bargaining among the unions; efficient bargaining 

among unions and employers (which correspond to contract curve 

agreements in the one union case). This is presented in section II. 

Section III is designed to derive more specific conclusions with respect 

to the labor market outcome through the use of Stone-Geary union 

preferences and, when necessary, a simple linear demand schedule. 

Symmetric solutions - i.e., in which unions' utility functions are alike - are 

also analyzed, allowing us to derive conclusions about the relation between 

the equilibrium wage and employment and the number of unions in the 

market.  

In the presence of a fixed number of unions, labor demand determines 

equilibrium employment and wage. If there is unemployment, and a sort of 

closed-shop scenario in which employment - at least for that demand - can 

only be achieved through unionization, it is reasonable to conceive that 

unemployed (unionized and/or non-unionized) workers will form their 

own unions and push employment up - and/or wages down 6. The supply 

pressure - that can be seen as due to "outsiders" 7 (in Lindbeck & Snower's 

(1988) sense) or unsatisfied "insiders" reaction when legally allowed - will 
 
3 Also Davidson (1988), Dixon (1988), Dowrick (1989), Jun (1989) and Dobson (1994), for 

example, where the effect of the existence of oligopoly in the product market is 

investigated. 
4 Notice that even if unions effectively consider price, i.e., wage, strategies, there will be 

equivalent quantity-employment strategies that will reproduce the former. See Martins & 

Coimbra (1997) for a justification. Also, Martins (1998) for the appraisal of dual reaction 

functions in the presence of heterogeneous labor. 
5 The reader is referred to the literature review there cited. 
6 As (positive) profit opportunities would attract new firms in the product market. 
7  We do not pursue a model of insider-outsider justification - as Solow (1985), for an 

example. Instead, we deal with an environment where "outsiders existence" is only 

justified by the closed shop agreement and/or some other legal requirement. 
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probably cause the number of unions to raise, at least till a certain point. 

This is the subject of section IV. 

Different unions may be formed because labor force participants have 

different preferences over the employment-wage mix - therefore, 

membership assignment is a result of differentiated preferences of the labor 

force. But we do not pursue here a link to the membership dynamics 

literature. We are interested in union formation rather than union 

affiliation and argue that, as for firms in the product market model, the 

labor market may only support a fixed number of unions.  

Notice that union entry is really a movement towards collapse of union 

effectiveness, even in a closed-shop scenario. If we consider industry-wide 

bargaining, union formation in most Western Countries is not usually 

restricted by labor legislation, apart from some representativeness 

requirements. Also, wage setting is commonly generalized to the whole 

industry or economy, which approaches the closed shop philosophy. 

Therefore, our study, even if theoretical, mirrors empirical realities. 

The ways in which supply (or other) restricts union formation may be 

varied. We put forward five scenarios. Some of these are solutions with 

standard usage in the macroeconomics literature - the existence of a 

reservation wage, below which workers do not accept jobs, and a standard 

linear labor supply schedule. Others are suggested by the union scenario: 

aggregate employment goes up till the point where everybody who is 

unionized is (fully) employed - i.e., equilibrium number of unions equals 

demand; there is a fixed (exogenous) number of individuals in the economy 

which will form that many unions (in equilibrium they will/may not be 

fully employed). Finally, we consider another realistic situation: there is a 

legal requirement on the minimum number of employed members a union 

must exhibit to be considered representative in labor negotiations.  

The solutions for Nash-Cournot unions, Stackelberg equilibrium and 

efficient bargaining unions are compared for symmetric unions with Stone-

Geary utility functions and for a linear labor demand schedule.  

The exposition ends with a summary of the main conclusions in section 

V.  

 

2. Union oligopoly and other solutions 8. 
Assume that there are n unions in the economy. The unions maximize 

the general utility function Ui(Li,W), increasing in the arguments and 

quasi-concave, for which Ui
L

 / Ui
W

 - the marginal rate of substitution 

between employment and wage - decrease with Li and increases with W. 

Employment contracts are under closed-shop agreements, i.e., the firm(s) 

can only hire unionized workers. Demand is of the form: 
 
8 This section's results are a generalization of those presented in Martins & Coimbra (1997) 

for the two unions case, being, thus, presented in a sketchy manner. 
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
i=1

n

 Li  =  L(W)         (1) 

 

or its inverse:      

 

W = W(
i=1

n

Li )        (2) 

 

being negatively sloped, coming from maximization (in L = 
i=1

n

Li ) of 

the (aggregate) profit function П(L,W) = P F(
i=1

n

Li) - W 
i=1

n

Li. 

Therefore, (2) establishes the value of the marginal product of labor, equal 

for all types of workers 9. 

 

2.1. Cournot oligopoly 
Each union maximizes 

Max  Ui(Li, W)        (3) 

Li, W 

s.t.:     
i=1

n

Li = L(W)    or   W  = W(
i=1

n

Li)  =  P FL(
i=1

n

Li)  ,    or 

Max  Ui[Li, W(
i=1

n

Li)]       (4) 

 Li  

 

The optimal solution will obey 

Ui
L

 / Ui
W

 = - W
L

  or  Li = Ri(L1, ..., Li-1, Li+1, ..., Ln) = Ri(
ji

S  Lj) (5) 

      i=1,2,...,n 

where Ri(
ji

S  Lj) denotes union i's reaction function, and labor 

demand 10. 
 
9 Nevertheless, most of the results below would also apply if this function represented the 

marginal revenue product of labor and if firms did not behave competitively in the 

product market. 
10 Existence of equilibrium is guaranteed by concavity of each union i's utility function with 

respect to L
i
, and uniqueness is satisfied if 

i=1

n

 dR
i
/dL

-i
 / (1+dR

i
/ dL

-i
)  0, - where 
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 2.2. Union 1 is Stackelberg leader 
The optimal solution will obey labor demand and 

Ui
L

 + Ui
W

 W
L

 = 0    or   Li = Ri(L1, ..., Li-1, Li+1, ..., Ln)  i=2,...,n  (6) 

 

One can solve the system of n-1 equations in n unknowns in such a way 

that: 

 

Li = R'i(L1) ,      i =2, ..., n       (7) 

 

Then, the leader, say 1, solves: 

 

Max    U1[L1, W(
i=1

n

Li)]       (8) 

L1, L2,..., Ln    

s.t.: Ui
L

 + Ui
W

 W
L

 = 0      or     Li = R2(L1) ,  i = 2, 3, ..., n 

 

Equilibrium is defined by (7), demand and: 

 

U1
L

 / U1
W

   =  - W
L

 (1 + 
j=2

n

 dR'j / dL1 )     (9) 

            =  (1 + 
j=2

n

 dR'j / dL1)  Ui
L

 / Ui
W

  ,  i = 2, 3, ..., n  

 

3.3. Efficient cooperation 
Assume the unions cooperate with each other and we can extend the 

Nash-maximand approach to more than the 2 unions scenario. Then, 

unions maximize: 

 

Max 
i=1

n

 {Ui[Li, W(
j=1

n

 Lj )] - U

_
i}
i        (10) 

     L1, L2, ..., Ln  

 

i is related to the strength of union i within the coalition, as justified by 

Svejnar (1986), extending the Nash-Zeuthen-Harsanyi solution. With n = 1, 

i can be associated in "fair gambles" with Mi/Mn, where Mi denotes 

                                                                                                                                       

dR
i
/dL

-i
 = dR

i
/d(

ji
S  L

j
) - which will hold if  -1   dR

i
 / dL

-i
  0, i=1,2,...,n. This ensures that 

optimal L
i
 falls as L rises. See Friedman (1983), p. 30-33. 



Journal of Economics and Political Economy 

A.P. Martins, JEPE, 7(1), 2020, p.47-74. 

52 

52 

number of members of union i. If we consider that  
i=1

n

 i = 1, then we 

can link i = Mi / j=1

n

 Mj 
11.  

 

Eventually, (10) could represent the utility function of a unique union 

with workers with different preferences over the wage-employment mix, 

having n types of workers, with Mi workers of type i, i =1, 2,..., n. With 

perfect substitution between workers, ultimately the wage paid by the 

firm(s) must be the same for all workers. 

F.O.C yield: 

 

i U
i
L / [Ui(Li, W) - U

_
i] = - WL 

j=1

n

 j U
j
W / [Uj(Lj, W) - U

_
j]   (11) 

 i = 1, 2, ..., n    

 

Therefore, as the right-hand-side is the same for any i: 

 

i U
i
L / [Ui(Li, W) - U

_
i] = j U

j
L / [Uj(Lj, W) - U

_
j]     (12) 

 

This can be seen as a distribution (across unions) equation. 

In this case, the equilibrium will obey labor demand and  12: 

 

  
i=1

n

 Ui
W

 / Ui
L

 = - L
W

 = - 1 / WL       (13) 

 

As we have seen 13, this case reproduces the monopoly union behavior. 

 
 
11 See Martins & Coimbra (1997) for a justification of the relation between 

i
 and number of 

members of union i. 
12 Efficiency conditions, in Edgeworth tradition, would also come from the solution of the 

problem 

      Max      U
1
(L

1
,W)   

 L
1

, L
2

, ..., L
n

, W 

  s.t.:         U
j
(L

j
,W)    U

_
j
   ,     j = 2, 3, ..., n

 

   
 W = W(

i=1

n

 L
i
)  

13 Martins & Coimbra (1997). 
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2.4. Fully efficient bargaining 
 

Max  
i=1

n

 [Ui(Li, W) - U

_
i]
i  [ [(

i=1

n

 Li),W] - P

_

]   (14) 

      L1,..., Ln, W 

 

i represents the strength of union i relative to the employer side, hence, 

i / j represents the strength of union i relative to union j. A bargaining 

with equal strength between unions (together) and employers will require: 

 


i=1

n

 i = 1         (15) 

 

F.O.C. will yield (12) and also 14: 

 


i=1

n

 Ui
W

 / Ui
L

 = 
W

 / 
L

   = - 
i=1

n

 Li  / [P FL- W]     (16) 

 

2.5. Final remarks 
The comparison of the four forms for a union duopoly can be found in 

Martins & Coimbra (1997) 15; without a particular form for the union utility 

function and labor demand not much can be add. Again, the main 

important features of the solutions are: 

- the equality of the sum of the marginal rates of substitution between 

wage and labor in the coalitions cases, i.e., with efficient cooperation 

among the unions - as opposed to equality of each of such rates when 

unions compete as Cournot - to the slope of labor demand - or 
W

 / 
L

 -, 

thus suggesting a higher wage relative to employment when unions 

collude.  

- a Stackelberg leader would pick a point where its marginal rate of 

substitution U1
L

 / U1
W

 is higher than the followers', suggesting a higher 

 
14 These properties would also arise from the solution of the problem 

       Max      U
1

(L
1
,W)   

 L
1

, L
2

, ..., L
n

, W 

  s.t.:         U
j
(L

j
,W)    U

_
j
    ,     j = 2, 3, ..., n

 

   
  (

i=1

n

 L
i
, W)   P

_

 

15 See Table 1 of that work for a summary of the marginal rate of substitution conditions. 
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L1 than if she were a follower - and higher than the followers' employment 

if the utility functions of all the unions are similar. 

- efficient cooperation with the employer side leads to an equilibrium 

where wages are higher than the marginal product of labor - as it occurs in 

the traditional contract curve solution when there is only one union. 

 

3. An analytical example 
Assume that unions maximize the special case of the Stone-Geary utility 

function: 

 

Ui(Li,W)  =  W
i Li

(1-i)        (17) 

 

i = (1 - i) / i represents union i's relative (to wage) preference for 

employment. Whenever necessary, a linear demand schedule is going to be 

considered: 

 

W = a - b (
i=1

n

 Li)        (18) 

 

3.1. Oligopoly equilibrium  

From F.O.C., we can derive: 

 

[i / (1 - i)] si   =          (19) 

 

where denotes union i´s employment share, i.e., si = Li / L, and: 

 

si   =  [(1 - i) / i] / [j=1

n

 (1 - j) / j ]     (20) 

 

  =  1 / [
i=1

n

 (1 - i) / i ]       (21) 

 

Therefore:  

 

Proposition 1: With Stone-Geary utility functions as above in a 

oligopoly union 

1. the equilibrium employment share of each union is independent of 

the form of the production function (i.e., of labor demand) 

2. the share of employment of each union will be equal to the weight of 

i in total sum of i's. 
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3. the market will lead to an equilibrium where the elasticity of demand 

is equal to the inverse of the total sum of the i's. 

The reaction functions are of the type: 

 

Li =  a (1 - i) / b  - (1 - i) (L - Li)      (22) 

 

Solving for Li as a function of L: 

 

Li =  (a/b) (1 - i) / i  - (1 - i) L / i      (23) 

 

Summing over i, we get: 

 

L  =  
i=1

n

 Li =  a/ b  
i=1

n

 (1 - i) / i  - L  
i=1

n

 (1 - i) / i  

 (24) 

 

Solving for L, we get: 

 

L  =  (a / b) [  
i=1

n

 (1 - i) / i  ] / [ 1 +  
i=1

n

 (1 - i) / i ]   (25) 

 

Using the labor demand schedule, we conclude that: 

 

W  =  a  /  [ 1  +  
i=1

n

 (1 - i) / i  ]      (26) 

 

Replacing (25) in (23),  

 

Li  = ( a / b ) {[(1 - i) / i ] / [ 1 + 
j=1

n

 (1 - j) / j ] }    (27) 

 

We can therefore conclude that: 

 

Proposition 2: In an oligopoly of unions with Stone-Geary preferences 

and linear labor demand: 

1.   = 
i=1

n

 (1 - i) / i  is a measure of aggregate union preference for 

labor relative to wage. 

2. Equilibrium aggregate employment is positively related to  and 

negatively related to b, the slope of the demand. 

3. The wage is inversely related to . 
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4. Each union's employment is positively related to i  = (1 - i) / i, the 

measure of the union preference for employment relative to wage. 

Let us consider a symmetric equilibrium. 

If all unions optimize the same utility function, then i = , i=1,2,...,n. In 

this case, we will have that: 

 

L  =    (a / b)  1 / { 1 +  / [ n (1 - ) ] }      (28) 

 

W  =    a  /  [ 1  + n (1 - ) /   ]       (29) 

 

Li  = (a / b) { 1 / [ n +  / (1 - ) ] }      (30) 

 

We therefore see that: 

 

Proposition 3: In an oligopoly of unions with Stone-Geary preferences 

and linear labor demand: 

1. W and Li decrease with n; therefore, also W Li, each union's wage bill 

will decrease with n. 

2. L increases with n. But one can show that WL will decrease with n: 

3. As n   ,  W  0 and L  a / b (WL  0). 

4. n = 1 solves the monopoly union problem. 

 

3.2. Stackelberg Equilibrium 
We want to analyze the situation where a union, say 1, acts as leader and 

the others are followers. (6) and (8) hold. (6) yields: 

 

Li =  a (1 - i) / b  - (1 - i) (L1 + 
j=2

n

 Lj  - Li ) ,    i = 2,3,...n   (31) 

 

Solving for Li , 

 

Li = [ a  / b  - (L1 + 
j=2

n

 Lj) ] (1 - i) / i  ,   i = 2,3,...n   (32) 

 

Summing over i = 2,..,n 

 


i=2

n

 Li = [ a / b  - (L1 + 
j=2

n

 Lj) ] i=2

n

 (1 - i) / i    (33)

  

Solving in order to  
i=2

n

 Li =  
j=2

n

 Lj , 
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
i=2

n

 Li = (a / b - L1 ) 
i=2

n

 (1 - i) / i / [1 + 
i=2

n

 (1 - i) /i]  (34) 

 

Replacing in (32) we get 

Li = [(1 - i) / i ] (a / b  - L1) / [ 1 + 
j=2

n

 (1 - j) /j ] , i = 2,3,...n  (35) 

 

Maximizing union 1's utility function with respect to the system yields: 

 

L1 1 b / [ 1 + 
i=2

n

 (1 - i) /i ] = (1 - 1) W =    (36) 

= (1 -1){a - b L1 - b 
i=2

n

 (1 - i) /i (a/b - L1) / [1 + 
i=2

n

 (1 - i) /i} 

 

Solving for L1 : 

 

L1 = (1 - 1) a/b          (37) 

 

W = a 1 / {[1+ 
i=2

n

 (1 - i) /i ]}      (38) 

 

For the followers: 

 

Li = (a/b) [(1 - i)/i ] 1 / {[1+ 
j=2

n

 (1 - j) /j ]}    (39)

  

L  = (a/b)  { 1 - 1 / [1 + 
i=2

n

 (1 - i) /i ]}      (40) 

 

Comparing with (37)-(40) to (24)-(27) for given n, we conclude  

 

Proposition 4: 1. W is now lower - L will be higher - than it was with no 

leader. 

2. Each follower's quantity is lower than in the case of Cournot 

oligopoly. 

Assume that i =  , i = 1,2,...,n. Then: 

 

L1 = (1 - ) a/b          (41) 

Li = (a/b) (1 - ) / [1+ (n - 1) (1 - ) /  ]     (42) 
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L = (a/b) {1 -  / [1 + (n -1) (1- ) /  ] }     (43)

  

and 

 

W =  a  / [1 + (n -1) (1-) /  ]       (44) 

 

3.3. Efficient Bargaining 

Assume, as usual, that U

_
i = 0, i = 1, 2,...,n. In this setting, (12) yields: 

 

 i (1 - i) / Li  = j (1 - j) / Lj        (45) 

 

Therefore: 

 

si =   i (1 - i) /  j=1

n

  j (1 - j)        (46) 

 

(13) yields: 

 


i=1

n

 [i / (1 - i)] si   =        (47) 

 

and: 

 

  =  
i=1

n

  i i  /  i=1

n

  i (1 - i) =     (48) 

=   [
i=1

n

 i i / i=1

n

  i ] / {[1 - [
i=1

n

 i i / i=1

n

  i ] = 

= 
_

 / (1 - 
_

) 

 

where  

 


_

 = 
i=1

n

  i i / i=1

n

  i        (49) 

 

i.e., 
_

 is the weighted average of the i's, the weights being the strength 

parameters in the coalition. 

 

Proposition 5: With Stone-Geary utility functions and efficient 

bargaining between unions (i.e., coordination of union bargaining): 
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1. the equilibrium employment share of each union is independent of 

the form of the production function  

2. the employment share of each union will be higher, the lower i, the 

union's preference for wage, and the higher i, the union's strength 

parameter. 

3. the employment share of union i will be higher than in the Cournot 

game iff 

   i i  >  
j=1

n

 j (1-j)  /  j=1

n

 (1-j) / j   

  

4. the elasticity of demand will, in equilibrium, be higher than in the 

point where the Cournot game end. 

5. The elasticity of aggregate demand will be equal to the monopoly 

union solution for a union the  of which equals the weighted (by the i's) 

average of the i's. 

 

If demand is linear, one can show that: 

 

Li  =  (a/b) i (1 - i) / j=1

n

 j  ,     i = 1,2,..,n    (50) 

 L = (a/b) 
i=1

n

 [(1-i) i] / i=1

n

 i = (a/b) (1 - 
_

)   (51) 

 

and 

 

W = a  
i=1

n

 i i /  i=1

n

 i = a  
_

      (52) 

 

We can see that the aggregate labor market outcome is analogous to the 

monopoly union solution and does not depend on the number of unions in 

the industry (or in the economy) - suggesting that a higher number of 

unions will just have, at least on average, lower employment. 

One can show that: 

 

Proposition 6: In a equilibrium, with Stone-Geary union preferences and 

a linear demand schedule, with unions behaving cooperatively among 

themselves: 

1. W is higher and aggregate employment is lower than in Cournot 

oligopoly.  

2. Aggregate employment and wage is invariant to the number of 

unions in the economy, i.e., no matter how many unions there are in the 

economy, they will share the same aggregate employment. 
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3. In a symmetric equilibrium, i.e., i = q
_

 =  and i =  for all i, W will be 

higher and employment will be lower than in the Stackelberg equilibrium. 

4. In a symmetric equilibrium, each union's employment will be lower 

than in the Cournot case. Each follower will have a lower employment than 

in the Stackelberg case if  > 0,5. 

 

3.4. Globally Efficient Bargaining 
Then we can show that (45) and (46) hold and distribution of 

employment is the same as with only efficient bargaining among unions. 

Contract curve agreements will be such that: 

W = (a - b L) 
_

 / (2 
_

 - 1)       (53) 

 

Notice that this expression is equivalent to the contract curve with only 

one union. The number of unions does not affect (directly) the aggregate 

contract curve relation. 

If 
_

 > 0,5, for a positive (meaningful) wage, the marginal product of labor 

will be positive. If  
_

 < 0,5 - in which case unions' preferences for 

employment (relative to wage) are very high -, for a positive wage, we 

must have in equilibrium aggregate employment till a point where the 

marginal product of labor is negative. 

Therefore: 

 

Proposition 7: In fully efficient bargaining with union Stone-Geary 

preferences and a linear demand curve, considering positive wage results, 

in equilibrium solutions: 

1. If 
_

 > 0,5, the marginal product of labor will be positive. If 
_

 < 0,5, 

aggregate employment will be pushed till a point where the marginal 

product of labor is negative. This result is independent of unions relative 

strength to the employers side. 

2. For given aggregate employment, contract curve agreements will 

imply a larger wage level the larger is the average union preferences for 

wage, 
_

. 

3. The contract curve relation does not depend on the number of unions. 

The effective solution depends on the i's and turned out to be of 

difficult comparison with the previous cases. We concluded that, if unions 

maximize the wage bill, i.e.,  = 0,5 and, for i =  for all i: 

 

L  =    (a / b)            (54) 

Li  =  (a / b) (1 / n)         (55) 
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The wage will (also) depend on the relative strength of the unions and 

employers. 

 

4. Union entry 
4.1. Introduction 
Assume there is a fixed number of unions in the labor market. They set 

employment and membership is exogenous. If labor supply at the 

equilibrium wage is much higher than employment, unemployed workers 

may press wages down in order to get a job - that is, supply reacts. As we 

consider closed-shop agreements, and recalling some of the oligopoly 

symmetric solutions, aggregate employment increases with n, i.e., the 

number of unions. Then, it is reasonable to suppose that unemployed 

workers (unionized or not...) collude, form a (or other) new union(s) and 

push the wage down till they get employment.  

We can derive the equilibrium number of unions, n*, in several ways: 

1. Reservation Wage Restriction. 

We can assume there is a reservation wage Wr below which unions 

collapse. With entrance, wage decreases till this point is reached. 

Alternatively, Wr may represent a minimum wage floor, arising from 

(exogenous) general legislation. 

2. Labor Supply Constraint. 

Another form is to assume labor supply reacts directly, pressing down 

wages till unions are virtually irrelevant in wage and aggregate 

employment determination, only maintained through the legal closed shop 

requirements. There is a labor supply schedule (or a membership demand 

function), which will be reached. 

Notice that this outcome guarantees that full-employment will be 

achieved. 

3. Number of Unions Equals Demand. 

Each employed worker behaves as a union, i.e., Li = 1 (at least for non-

leaders). Eventually, each union's utility function can be seen as 

representing each individual's preferences over wage W and probability of 

employment, Li 
16 ; then, n* = L (for Cournot-Nash equilibrium; for 

Stackelberg, n* - 1 = L - L1) establishes the n* that will guarantee full-

employment (but only) of unionized workers.  

In terms of insider-outsider theory, this corresponds to the solution of 

the maximum number of insiders the (closed) system supports - which 

depends on demand, and union preferences. 

4. Individualistic Unions. 

If each individual (not necessarily employed all the time...) behaves as 

an union and there are L

_

 individuals in the market, then a bound for n is L

_

.  
 
16 A similar interpretation of the household maximand can be found in Oswald (1979). 
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This could be seen as the limit solution, when the union utility function 

represents, as before in 3., the worker's preferences over the probability of 

(un)employment (and, indirectly, leisure) - wage mix . The final outcome 

would originate a Natural Rate of Unemployment, given by  (L

_

 - 
i=1

n

 Li) / 

L

_

, as long as Li < 1; this could be seen as underemployment solution, as Li > 

1 would correspond to overemployment cases. 

This scenario is only meaningful in the Stackelberg case if we admit that 

it applies exclusively to the workers not employed in union 1, i.e., n* - 1 =  L

_

 

- L1. It would be as if union 1 members would be full-employed insiders. 

5. Minimum Employed Members Requirement. 

A realistic scenario is that there is an exogenous - legally required - 

minimum number of employed members, M, that each union must exhibit 

to be constituted or considered representative for access to the closed-shop, 

i.e., Li  M. Union entrance will occur till this bound is reached. 

We can appreciate the dynamics of union formation in the Cournot 

environment. Or in the Stackelberg case. In the latter, at first glance, the 

scenario could be seen as describing the insider-outsider environment, with 

members of union 1 corresponding to insiders. However, insiders have the 

same wage as outsiders; only, the leader has now fixed employment - 

independent of n; but, as in the product market, the leader ends up by 

sustaining the reduction in quantity to support the wage. 

Finally, note that, from (51)-(52) we conclude that with union collusion, 

the aggregate outcome is invariant to n. Nevertheless, conclusions can be 

drawn for some of the five cases. 

To derive the equilibrium n, n*, we admit symmetric unions, i.e., i =  

and i =   for all i. We ignore problems (indivisibilities) arising from 

treating n as a rational number. We also derive the final labor market 

outcome - W, L and Li - for the endogenous n*. 

 

4.2. Nash-Cournot equilibrium 
The derivation of results starts from equations (28)-(30). 

A. Reservation Wage Restriction. 

Then, if all unions are similar, using (29), we will have union "entrance" 

till: 

 

W  =  Wr  =    a  /  [ 1  + n (1 - ) /   ]      (56) 

 

That is, the maximum number of unions the market will support will be: 

 

n*  =    (a / Wr  - 1)   / (1 - )        (57) 
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n* is positively related to the unions relative preference for wage and 

negatively related to the reservation or minimum wage. Replacing (57) in 

(28) and (30): 

 

L =  (a - Wr ) / b        (58) 

Li = Wr  [(1 - ) / ] / b       (59) 

 

B. Labor Supply Constraint 

We will have (28) and (29) and, say, a linear labor supply schedule (or a 

membership demand function): 

 

W = c + d L         (60) 

 

Solving for n*: 

 

n*  =    [b (a - c) / (bc + da)]   / (1 - )      (61) 

 

The equilibrium wage and employment in this case will be the same as 

with no unions - i.e., supply equals demand. 

 

L = (a - c) / (b + d)        (62) 

W = (bc + da) / (b + d) = b  (L/n*)  / (1 - )     (63) 

Li  =  [(1 - ) / ] (bc + da) / [b (b + d)]      (64) 

 

We expect that n* < L, i.e., each union will employ more than one 

individual, Li  > 1. 

C. Number of Unions Equals Demand 

If each employed worker behaves as the union, then, n* = L and  

 

Li = 1          (65) 

 

Using in (30), we can solve for: 

 

n*  =  L*  =  a/b  -  / (1 - )       (66) 

 

Notice that now n* is negatively related with the unions relative 

preference for wage and negatively related to the inverse of the labor 

demand slope, b. Eventually, each union's utility function can be seen as 

representing each individual's preferences over wage W and probability of 

employment, Li; then, condition (66) establishes the n* that will guarantee 

full-employment of unionized workers. 

Also 

 

W  =  b   / (1 - )        (67) 
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W will be the same as in (63) for n* = L. 

 

D. Individualistic Unions 

If each individual (not necessarily employed all the time...) behaves as 

an union and there are L

_

 individuals in the market, then a bound for n is L

_

 

and (28)-(30) with n replaced by L

_

 will be the bounds for W, L and Li - with 

Li representing the equilibrium probability of employment of each 

individual. We will therefore have: 

 

n*  =  L

_

          (68) 

L  =    (a / b)  1 / { 1 +  / [L

_

 (1 - )] }      (69) 

W  =    a  /  [ 1  + L

_

 (1 - ) /   ]       (70) 

Li  = (a / b) { 1 / [ L

_

 +  / (1 - ) ] }      (71) 

 

Li  1, iff 

L

_

    (a/b) -  / (1 - )        (72) 

 

E. Minimum Union Employed Members Requirement 

There is an exogenous minimum number of employed members, M, that 

each union must exhibit to be constituted. Then, entrance will occur till the 

point where: 

 

Li = M          (73) 

 

Using (30) we conclude that 

 

n*  =  (a/b) (1/M) -  / (1 - ) = [a (1 - ) - b M ] / [b M (1 - )]  (74) 

 

It varies negatively with M and , the union preference for wage relative 

to employment. 

 

L  =  (a/b) -  M  / (1 - )  =  [a (1 - ) - b M ] / [b (1 - )]   (75) 

 

and 

 

W  =  b M  / (1 - )         (76) 
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Proposition 8: 1. The equilibrium number of unions increases with the 

unions' relative preference for wage in the reservation wage and the labor 

supply constraint cases. It decreases when number of unions equals 

demand and when there is employed membership requirement. 

2. A reservation wage level higher than the final equilibrium wage in all 

other cases will imply a smaller number of unions in equilibrium. 

3. In general, we expect individualistic unions to originate a higher 

number of unions than any other case (provided only that Li > 1 for the 

labor supply constraint). 

4. We expect that the minimum employed members requirement implies 

the lowest equilibrium number of unions (provided only that the 

requirement is higher than the equilibrium employment per union of the 

other cases). 

One can give an intuition for the result 1. of Proposition 7. In the first 

two cases, we have, in fact, a labor supply constraint: the reservation wage 

hypothesis corresponds to a infinitely elastic labor supply. Therefore, 

supply and demand determine total employment - and wage. In these 

circumstances, the number of unions can be seen as determined from wage 

equation (29), showing that the wage varies negatively with n and 

positively with  - as expected; therefore the positive relation between n 

and  follows immediately. 

In the case where the number of unions is demand determined, the 

stronger are the insiders preferences for employment - weaker for wage - 

the larger will be aggregate employment - for given n. As in this case n is 

simultaneously determined by demand, we arrive at the conclusion that n* 

should increase with (1 - ) - increase with . 

The explanation for the minimum employed members requirement case 

can invoke the relation (30): in a Cournot equilibrium, each union's 

employment varies inversely with n and . Then, if Li is fixed, the relation 

between n and  is straightforward.  

 

4.3. Stackelberg Equilibrium 
To derive the equilibrium number of unions, we consider equations (41)-

(44). Employment of the leader, L1, does not depend on n and is always 

fixed and equal to: 

 

L1  =  (1 - ) a/b        (77) 

Considering: 

 

A. Reservation Wage Restriction 

Then: 

 

n*  =  / (1 - ) [ a  / Wr  - (2  - 1) / ]       (78) 
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We can show that the new n* will be smaller than for Cournot oligopoly 

iff Wr / a  < ; from (44) we can see that this always occurs. Total 

employment is the same as in the Cournot case and given by (58). 

 

B. Labor Supply Constraint 

As we have seen, total employment and wage is fixed outside the 

control of the union - given by 

 

L = (a - c) / (b + d)        (79) 

 

W = (bc + da) / (b + d)         (80) 

 

Then,  

 

n*  =  / (1 - ) [a  (b+d) / (bc + ad)  - (2  - 1) / ]    (81) 

 

C. Number of Unions Equals Demand 

I.e., for outside unions Li = 1.  

 

n*  = a  / b -  (2  - 1) / (1 - )       (82) 

 

If a/b > 1 / (1 - ), i.e., for the leader, L1 > 1, which we implicitly assume, 

then the new n* will be smaller than in the Cournot case.  

In this case: 

 

L = (1 - ) a/b + (n* - 1) = a/b -  / (1 - )     (83) 

 

Therefore, total employment is maintained relative to Cournot 

oligopoly. Only a redistribution favoring the leader will take place. 

 

D. Individualistic Unions 

We admit the restriction applies to workers not employed in union 1 - 

the insiders which would have full-employment. We will therefore have: 

n* - 1  =  L

_

 - L1  =  L

_

 - (1 - ) a/b       (84) 

 

Then: 

 

n*  =  L

_

 - L1 + 1  =  L

_

 + 1 - (1 - ) a/b      (85) 

 

n* will be smaller than in the Nash-Cournot case. Also: 

 

L  =    (a / b)  ( 1 -   / {1 + [L

_

 - (1 - ) a/b] (1 - ) / ]} )   (86) 
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W  =    a   / {1 + [L

_

 - (1 - ) a/b] (1 - ) / ]}      (87) 

Li  = (a / b)  / { / (1 - ) + [L

_

 - (1 - ) a/b]}     (88) 

 

As in the Nash-Cournot case, Li  1 iff 

L

_

    a/b -  / (1 - )        (89) 

 

E. Minimum Union Employed Members Requirement 

M is going to restrict the n-1 followers: 

 

Li = M    , i = 2, 3, ..., n      (90) 

 

We can see then that: 

 

n* =  a/(b M) - (2  - 1) / (1 - )       (91) 

 

From (43), 

 

L = (a/b) - M  / (1 - )        (92) 

 

From (44), 

 

W = b M  / (1 - )        (93) 

 

As in previous cases, n* is smaller than in the analogous Cournot 

solution iff  > W/a = (b M /a)  / (1 - ), which - from (44) - must always 

occur. However, the aggregate solution (L, W) is the same as in the 

corresponding Cournot case. 

 

Proposition 9: 1. Stackelberg equilibrium: 

1. in general, will originate a smaller number of unions than the 

corresponding Nash-Cournot case. 

2. will lead to the same aggregate employment and equilibrium wage 

than the corresponding Nash-Cournot case. 

 

4.4. Efficient Bargaining 
We consider equations (50)-(52) and assume the symmetric case where 

i =  and i =  for all i. It will always be the case that: 

 

Li  =  (a/b)  (1 - ) / n = L / n  ,     i = 1,2,...,n     (94) 

L  =  (a/b) (1 - )         (95) 

and 
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W = a           (96) 

 

Therefore, total employment and wage are fixed and do not depend on 

n. 

 

B. Labor Supply Constraint 

In this case, denote the supply wage, WS and effective supply LS at the 

efficient bargaining result, which is independent of n: 

 

WS  =  c + d (a/b)  (1 - )       (97) 

LS  =  (a  - c) / d        (98) 

 

If  W  =  a  c + d (a/b) (1 - ), there will be involuntary unemployment 

at rate: 

 

(LS  -  L) / LS  =  {a [b  - d (1 - )] - c b} / [b (a  - c)]    (99) 

 

However, if  W = a  c + d (a/b) (1 - ), there won't be enough supply. 

Alternatively, we can admit that in any case number of people  

 

n*  =  LS  =  (a  - c) / d        (100) 

 

and number of available jobs are given by (95). Each "supply unit" will 

work: 

 

L / LS  =  (a/b) (1 - ) / [(a  - c) / d]      (101) 

 

This may be smaller than 1 (corresponding to the involuntary 

unemployment case), or larger than 1.  

Notice that this case is not directly comparable to the Cournot or 

Stackelberg cases, once there is now unemployment.  

 

C. Number of Unions Equals Demand 

If each employed worker behaves as the union, then, n* = L and  

Li = 1          (102) 

 

Then: 

 

n* = (a/b) (1 - )         (103) 

 

D. Individualistic Unions 

We will therefore have, as long as Li  1: 
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n*  =  L

_

          (104) 

 

and 

Li  =  (a/b)  (1 - ) / L

_

  ,        i = 1,2,...,n     (105) 

 

Li  1, iff: 

 (a/b)  (1 - )    L

_

        (106) 

 

 

E. Minimum Union Employed Members Requirement 

Then: 

 

Li = M          (107) 

 

Using (94) we conclude that 

 

n*  =  (a/b)  (1 - ) / M        (108) 

 

Proposition 10: Efficient bargaining: 

1. will imply that the equilibrium number of unions will vary with 

unions preference for wage as in the Cournot case, except in the minimum 

membership requirement case (in which they now vary inversely). 

2. will originate a smaller aggregate employment and higher wage than 

any Nash-Cournot or Stackelberg cases (except for the labor supply 

constraint). 

3. will imply a smaller number of unions than the corresponding Nash-

Cournot case in the minimum employed members requirement iff  < 0,5 (a 

larger number iff  > 0,5); a smaller number in number of unions equal 

demand. 

 

5. Summary and conclusions 
This paper gathers some notes and enlargements to the standard 

collective bargaining problem in which unions maximize utility; we 

oriented the analysis to model union formation.  

The research started by confronting different scenarios of union and 

firm(s) strategic behavior. The results - some are summarized in Table 1 - 

are an extension of the duopoly case, previously studied. A specific 

example using Stone-Geary union utility functions is derived - see Table 2 

for some of the main labor market outcomes. We conclude that efficient 

cooperation among unions can be seen as a union composite behaving as a 

monopoly union; cooperation between unions and employers reproduce 

contract curve agreements for the one union solution.  
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The symmetric equilibrium (with an exogenous number of unions) 

allows us now to infer that with non-cooperative (among themselves) 

union behavior - as expected -, the equilibrium wage will decrease with the 

number of unions and employment will move in the opposite direction. 

Yet, with efficient bargaining among unions, aggregate outcomes are 

invariant to the number of unions in the industry. 

The equilibrium (endogenous) number of unions - which will 

presumably rise while there is unemployment - is studied for five cases: 

there is a reservation or minimum wage restriction; a standard labor supply 

constraint closes the model; number of unions equals demand; 

individualistic unions, the number of which is exogenous and equal to the 

number of individuals in the economy; there is a legal minimum employed 

members requirement. Minimum employed membership requirements, 

with free union entry, partly restore union effectiveness in wage lifting. The 

results are summarized in Table 3. Interestingly, it is not always the case - 

as one would expect - that number of unions increases with the unions' 

preferences for wage relative to employment. Number of unions will be 

larger (or at least equal) in Cournot-Nash than in Stackelberg 

environments; both will have the same aggregate outcome, i.e., wage and 

total employment.  

Efficient bargaining will support, in general, a smaller (or not larger) 

number of unions than Cournot, except when minimum employed 

membership requirements are imposed (With a labor supply constraint, 

results are not comparable). Aggregate employment will be smaller in 

efficient bargaining - and wage higher - than in Cournot or Stackelberg 

cases in the final equilibrium with endogenous number of firms. 
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Table 1. Marginal Rate of Substitution Conditions 

 Equation Efficiency Locus 

A. Cournot-Nash (5) 
U

i
L

 / U
i
W

  =  - W
L

 ,  i = 1,2, ..., n 

 

B. Stackelberg 

 

(9) 

 
U

1
L

/ U
1

W
 =  (1 + 

j=2

n

dR'
j
 / dL

1
) U

i
L

/ 

U
i
W

 = 

= - (1 + 
j=2

n

 dR'
j
 / dL

1
) W

L
,  i = 2, 3, ..., 

n 
C. Efficient Union  

Cooperation 

(13) 

 
i=1

n

 U
i
W

 / U
i
L

  =  - L
W

 

D. Globally Efficient  

Cooperation 

 

 

(16) 
i=1

n

 U
i
W

 / U
i
L

 = 
W

 / 
L

 = 

= - (
i=1

n

 L
i
) / [P F

L
- W]  
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Table 2. Equilibrium Outcomes for Stone-Geary Union Utility Functions 

Variable 

 

 

Cournot Oligopoly 

 

Stackelberg Oligopoly 

L
1
 

(27) (a/b) (1/
1
) / [1+

j=1

n

(1/
j
)] 

  (37)         a (1 - 
1

) / b 

 

L
i
 (27) (a/b) (1/

i
) / [1+ 

j=1

n

(1/
j
)] 

  (39)    (a/b) [(1 - 
i
)/

i
 ] 

1
 /  

    /  {[1+ 
i=2

n

(1 - 
i
) /

i
 ]} 

 

L (25)    (a /b) [
i=1

n

(1 - 
i
) / 

i
  ] /  

         / [ 1 +  
i=1

n

(1 - 
i
) /

i
] 

   (40)        (a/b) {1 - 
1
/ 

        /[1 +
i=2

n

(1 - 
i
) /

i
 ]} 

W 

 (26) a  / [ 1 + 
i=1

n

(1 - 
i
) / 

i
 ]  (38) a 

1
 /{[1+ 

i=2

n

(1 - 
i
) 

/
i
]} 

 

Variable 

 

 

Efficient Union Cooperation 

 

Globally Efficient Cooperation 

(for 
i
 = 0.5; 

i
 = ) 

L
i
 

(50)    (a/b)  
i
 (1 - 

i
) /

j=1

n

 
j
 

 

           (55)      (1/n)  a / b  

 

L (51)    (a/b) 
i=1

n

 [(1-
i
) 

i
] / 

    / 
i=1

n

 
i
  =  (a/b) (1 - 

_
) 

 

             (54)      a / b 

 

W 

 

 

(52) a 
i=1

n

 
i

i
 /

i=1

n

 
i
 = a 
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           (Dependent on ) 
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Table 3. Equilibrium Number of Unions 

 

 Cournot-Nash Stackelberg Efficient Bargaining 

A. Reservation  

Wage Restriction 
(57) (a/W

r
- 1) /(1-) (78) /(1-) [ a/W

r
 

- 

 - (2  - 1) / ] 

- 

 

B. Labor Supply 

 Constraint 

(61)  [b (a - c) /  

/ (bc + da)]   / (1 - ) 

(81)   / (1 - ) [a 

 (b+d) / (bc + ad)  -  

- (2  - 1) / ] 

(100)    (a  - c) / d 

C. Number of Unions 

Equals Demand 
(66)  a/b  -  / (1 - ) (82)    a  / b -   

- (2  - 1) / (1 - ) 

(103)   (a/b) (1 - ) 

D. Individualistic 

 Unions (68)      L

_

 (85) L

_

 - L
1

 + 1 = 

=  L

_

 + 1 - (1 - ) a/b 

(104) L

_

 

D. Minimum Union 

Member Requirement 

 

(74)  a/(bM) - /(1-) (91)   a/(b M) - 

- (2  - 1) / (1 - ) 

(108)  (a/b) (1 -) 

M 
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