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Abstract. We apply Factor-MIDAS (FaMIDAS) and Mixed-Frequency Vector Autoregression 
(MF-VAR and MF-Bayesian VAR) to nowcast quarterly GDP growth of Suriname. For this 

purpose, we use a set of 44 microeconomic indices over the sample period 2012Q1 - 2020Q2. 
In the target equation, we regress GDP growth upon its first lag and a beta coefficient. In the 
explanatory equations the first set of monthly regressors explain the variation of growth 
without lags while the second set of regressors are fitted with two-month lags. We apply 
three set of samples for model estimations: 2012Q1 – 2019Q3, 2012Q1 – 2020Q1 and 2012Q1 – 
2020Q2. Model nowcast accuracy is benchmarked against GDP growth of 2019 and economic 
activity growth estimated by the monthly GDP indicator of March and June 2020. The models 

provide mixed results as compared to the benchmark indicators. We select the models with 
the lowest Root Mean Squared Error (RMSE) and based on own Judgment to nowcast. As the 
forecast horizon increases from 2019Q4 to 2020Q2, so do the RMSE. To hedge against high 

biases and variances, we combine the best nowcasts to produce a single nowcast. 
Furthermore, it appeared that the FaMIDAS and the MF-VAR models deliver adequate 

results for two nowcast horizons. 
Keywords. FaMIDAS; MF-VAR; MF-BVAR; Nowcasting. 
JEL. C22; C53; E37. 

 

1. Introduction 
uriname is a small developing economy in South America. The Central 
Bank of Suriname plays a major role when it comes to nowcasting and 
forecasting GDP growth. This institution operates a macroeconomic 
model that forecasts GDP 5-years ahead. In addition, there is access to a 

monthly GDP indicator that provides real time information about the 
evolution of economic activity 2-months ahead after closing of the reference 
month, see Bhaghoe & Eckhorst (2020). The availability of mixed frequency 
data allows for developing FaMIDAS regressions and mixed frequency VAR 
type of models to nowcast GDP on quarterly basis in an efficient way.  

In this paper, we consider FaMIDAS, MF-VAR, and MIDAS Factor Bayesian 
VAR (MF-BVAR) type of models to nowcast quarterly GDP growth. These 
types of models are proposed in the forecasting literature, see for example 
Frale & Monteforte (2009), Ghysels (2011), Kuzin, Marcellino & Schumacher 
(2011) and Franta, Havrlant & Rusnák (2016), and the references therein. We 
use 44 real time microeconomic indices for developing the models. Our data 
for the quarterly GDP range is 2012Q1 - 2019Q4, while the range of the monthly 
GDP indicator is available from January 2011 to June 2020. As it is a tedious 
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journey to develop a large set of individual models with all these 44 variables, 
we therefore resort to principal component analysis (PCA) to extract useful 
common factors to construct the models and combine the best nowcasts (see 
Timmermann, 2006). 

We select the best models by means of the Akaike Information Criterion 
(AIC), Bayesian Information Criterion (BIC), the Root Mean Squared Error 
(RMSE), and by own judgement. In order to evaluate the nowcasting 
performance, we compare the model accuracy with the output of two 
benchmark indicators: GDP growth of the General Bureau of Statistics2 and 
economic activity growth of the monthly GDP indicator. 3  To ensure 
comparability and evaluation, we adjust the sample size. 

The first set of models are estimated using 2012Q1-2019Q4 data, then the 
next set of models uses 2012Q1-2020Q1 data, and the last set of models uses 
2012Q1-2020Q2 data. It appeared that each model has a weak predictive power. 
We therefore use a boosting approach to combine the multiple weak models 
to create one stronger model, which also reduces bias and variance.  

This paper makes a significant contribution for modelling in the Caribbean 
with mixed-frequency data models. We construct a number of models and 
provide a comparison of the performance of these models for nowcasting GDP 
growth of Suriname. Our results indicate that these high frequency models are 
very useful for complementing existing traditional macroeconomic models of 
the Central Bank of Suriname and the National Planning Office. 

The rest of the paper is organized as follows. Section 2 discusses factor 
regression models, section 3 discusses MIDAS and FaMIDAS models, section 
4 outlines the mixed-frequency VAR models, and section 5 elaborates on 
model combinations. Sections 6 and 7 provide the data and results 
respectively, and in section 8, we provide our concluding remarks. Appendix I 
provides supporting materials.  

 

2. Factor regression models 
Factor regression models are useful when dealing with many independent 

variables. We resort to PCA for component extraction. These principal 
components consequently enter the regression models as independent 
variables (Scott & John, 1966). Stock & Watson (1998; 1999) provide insight 
into forecasting macroeconomic time series with common factors that 
significantly reduce forecast errors. Boivin & Ng (2004; 2005) compare factor 
models to traditional forecasting models and report that they tend to suffer 
less from model specification and considerably improve forecasting. 
Bernanke, Boivin & Eliasz (2005) demonstrate the use of factor-augmented 
VAR (FAVAR) to estimate the effect of monetary policy on the economy. The 
aggregate time series they use for this purpose are: real output, income, 
employment, consumption, housing sales, inventories and orders, exchange 
rates, interest rates, stock prices,  price indices, credits, and average hourly 
earnings. The results show plausible effects of monetary policy on these 
macroeconomic variables.  

Factor models have been successfully employed to forecast economic 
activity on a real time basis. Giannone et al. (2005) develops a factor regression 
model for tracking real-time flow of information released at different lags to 
 
2 [Retrieved from].  
3 [Retrieved from].  

https://statistics-suriname.org/en/
https://www.cbvs.sr/
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nowcast quarterly GDP growth for the US. Each time when new 
macroeconomic data becomes available, the nowcasts are updated based on 
“jagged edge” data (See António, Maximiano & Francisco, 2009). Forni et al. 
(2005) improve this methodology and construct a factor model, which 
successfully tracks the current state of the economy for the Euro area. Banerjee 
& Marcellino (2006) and Eickmeier & Zieglier (2008) utilize large 
multidimensional datasets for developing factor regression models for the U.S. 
and Euro-area. These authors’ findings show that factor models increase 
forecast accuracy for GDP growth, inflation, and other macroeconomic 
aggregates as well.  

Marcellino & Schumacher (2007; 2008) utilize “ragged edge” data (See 
Bouwman & Jacobs, 2011) to develop different types of factor regression models 
for the German economy. Their findings show that the most parsimonious 
fitted models for nowcasting with “ragged edge” data are FaMIDAS 
regressions. Kuzin, Marcellino & Schumacher (2011) compare the accuracy of 
MIDAS and MF-VAR and report that these types of models complement rather 
than substitute each other.  

Franta, Havrlant & Rusnák (2016) apply MF-VAR, MF-BVAR, MIDAS, and 
Dynamic Factor Model (DFM) to forecast Czech GDP growth and evaluate 
their precision against the Czech National Bank`s forecast. Their results 
suggest that the forecasts of these models compete successfully with the Czech 
National Bank`s forecast. Cimadomo et al. (2020) apply MF-BVAR to nowcast 
US economic activity growth. These authors’ point of departure is the three 
“Vs”4 and shows that the BVAR has similar nowcasting performance as that of 
the DFM, a powerful tool for policy analysis. Recently, Schorfheide & Song 
(2020) apply MF-VAR to forecast U.S. economic activity during the COVID-19 
pandemic and report that the COVID-19 shock generates long-lasting 
reduction in real activity. Others such as Frale & Monteforte (2009) suggest 
that regression models developed with factors do well in nowcasting and 
forecasting.  

 

3. MIDAS regression 
Ghysels, Santa-Clara & Valkanov (2002, 2004, and 2006) develop the 

MIDAS regression. MIDAS incorporates crucial high frequency data into 
regressions over lower frequency target variable. Another definition of MIDAS 
regression is that it is a sparsely parameterized reduced form regression over 
one explanatory variable, utilizing non-linear least squared method. Clements 
& Galvão (2007) and Kuzin, Marcellino & Schumacher (2009) report that 
MIDAS regressions suffer less from the curse of dimensionality for nowcasting.  

A MIDAS regression takes the form: 
 

𝑦𝑡 = 𝛽0 + 𝐵 (𝜃, 𝐿
1

𝑚)𝑋𝑡
𝑚 + 𝜖𝑡                                                  (1) 

 
where 𝑦𝑡 is the target variable, 𝛽0 is the intercept in the equation to control 

the error term 𝜖𝑡 . We assume that the expected value of the error term is 
uncorrelated with the set of regressors, 𝐸(𝜖𝑡) = 0. The second term in the 
 
4 Volume (large number of time series continuously released), Variety (data are published with 

different frequencies and precisions) and Velocity (incorporating new data in a timely fashion 
after their release).   
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equation 𝐵 (𝜃, 𝐿
1

𝑚)  can be written in the form of a summation operator 

𝐵 (𝜃, 𝐿
1

𝑚) =  ∑ 𝑏(𝜃, 𝑘)𝐿𝑘/𝑚𝑘
𝑘=0 . This part of the equation is a polynomial of lag 

𝑘 and 𝐿
1

𝑚 is an operator such that 𝐿𝑘/𝑚 ∗ 𝑋𝑡
𝑚 = 𝑋𝑡−𝑘/𝑚

𝑚 . With this regression 

equation, we can now project 𝑦𝑡 into a higher frequency series 𝑋𝑡
𝑚 with k lags.  

To construct the FaMIDAS regression we need to depart from the DFM. 
The following is the representation of the DFM. 

 
𝑦𝑡                          =  𝜗𝑜𝑓𝑡 + 𝜗𝑜𝑓𝑡−1 + 𝛾𝑡 + 𝑆𝑡β, 𝑡 = 1, … , 𝑛,                            (2)             

                          𝛷(𝐿)∆𝑓𝑡               =   𝜂𝑡 ,                                        𝜂𝑡~𝑁𝐼𝐷(0, 𝜎𝜂
2),                                                    

                          𝐷(𝐿)∆𝛾𝑡               = 𝛿 + 𝜁𝑡,                                  𝜁𝑡 ~𝑁𝐼𝐷(0, 𝛴𝜁),                         

 
The dependent variable,𝑦𝑡, represents a vector of 𝑁 time series with mixed 

frequency data. In essence, the DFM decomposes, 𝑦𝑡 , into nonstationary 
components, 𝑓𝑡 , and errors, 𝛾𝑡, for each time series included in the estimation 
procedures. An important feature of this model is that 𝑓𝑡  and 𝛾𝑡  follows 
autoregressive conditions. The parameter, 𝜗𝑜, and the unobserved factors, 𝛾𝑡, 
measure the effects on the dependent variable.  

The variable 𝑆𝑡 represents a regression matrix of exogenous components 
(e.g. calendar effects, Easter, length of the month and outliers) and the 
components of β are used in the model to possibly control for fixed effects and 
for the purpose of initializing parameters. 𝛷(𝐿)  is an autoregressive 
polynomial of order 𝑝 with stationary roots and 𝐷(𝐿) is a diagonal matrix with 
autoregressive polynomials of order 𝑝𝑖(𝑖 = 1, … , 𝑁) . Furthermore, 𝜂𝑡  and 
𝜁𝑡,are disturbances and uncorrelated.  The DFM is estimated in a linear State 
Space Form (for reference see Frale & Monteforte, 2009).  

The FaMIDAS regression is a combination of the DFM with mixed 
frequency data and the MIDAS structure. We first partitioned the dependent 

variable in the DFM into two groups: 𝑦𝑡 = [𝑦1,𝑡
′ , 𝑦2,𝑡

′ ]′. The right-hand side of 

the equation represents the target variable at lower frequency. Introducing the 
MIDAS structure for the high frequency indicators initiate the following 
equation: 𝑦1,𝑡

′ = [𝑏(𝐿𝑘 ,𝜃)𝑥𝑡]′. The FaMIDAS is defined as follows: 
 

[𝑏(𝐿𝑘,𝜃)𝑥𝑡

𝑦2,𝑡
]           =  𝜗𝑜𝑓𝑡 +  𝛾𝑡 + 𝑆𝑡𝛽,      𝑡 = 1, … , 𝑛,                                       (3) 

                          𝛷(𝐿)∆𝑓𝑡               =   𝜂𝑡 ,                              𝜂𝑡~𝑁𝐼𝐷(0, 𝜎𝜂
2),                                

                          𝐷(𝐿)∆𝛾𝑡               = 𝛿 +  𝜁𝑡,                       𝜁𝑡 ~𝑁𝐼𝐷(0, 𝛴𝜁).                          

 

4. Mixed - frequency VAR and factor Bayesian VAR 
Mariano & Murasawa (2003, 2010) develop the MF-VAR for forecasting U.S. 

quarterly GDP growth with high frequency explanatory variables. The 
following is the MF-VAR model.  

 

𝑦𝑡𝑞

𝑄
=  

1

3
�̃�𝑡𝑚

𝑀 +
2

3
�̃�𝑡𝑚−1

𝑀 + �̃�𝑡𝑚−2

𝑀 +  
2

3
�̃�𝑡𝑚−3

𝑀 +  
1

3
�̃�𝑡𝑚−4

𝑀                                 (4) 

 

where 𝑦𝑡𝑞

𝑄
 is the quarterly GDP growth and 𝑡𝑚 = 3, 6, 9,…,𝑇𝑚

𝑦
 that represents 

the monthly explanatory variables. Combining GDP growth with monthly 
explanatory variables (𝑋𝑡𝑚

𝑀 ) into the VAR model yields the estimator: 
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𝑧𝑡𝑚
= ∑ 𝛽𝑗𝑧𝑡𝑚

− 𝑗 +  𝑢𝑡𝑚

𝑝𝑀

𝑗=1 ,                                                (5) 

             where 𝑧𝑡𝑚
=  (

�̃�𝑡𝑚

𝑀       − �̃�𝑦
𝑀

𝑋𝑡𝑚

𝑀      − 𝜇𝑋

) and 𝜇𝑡𝑚
~ 𝑁(0, 𝛴)5. 

 
We apply MF-BVAR to nowcast GDP growth as well. The MF-BVAR is 

estimated with Gibbs sampling (see Chiu et al., 2012 and the references 
therein). This model allows for the incorporation of priors compared to the 
MF-VAR and MIDAS. The following represents the MF-BVAR model: 

  

𝑤𝑡𝑚
= 𝐴 + ∑ 𝐵𝑗𝑤𝑡𝑚−𝑗

𝑝𝑀

𝑗=1 + 𝜇𝑡𝑚
,                                              (6) 

 
where 𝑤𝑡𝑚

 represents a vector of endogenous variables on monthly and 

quarterly basis. A represents a vector of intercept coefficients, 𝐵𝑗 is an A x A 

matrix of lag coefficients and 𝜇𝑡𝑚
 a vector of errors with the Gaussian 

assumption 𝜇𝑡𝑚
~𝑁(0, 𝛴). The Bayesian estimator is defined as: 

 

𝑤𝑡𝑚
=  (

�̃�𝑡𝑚

𝑄

𝑋𝑡𝑚

𝑀
),                                                                          (6) 

 

where �̃�𝑡𝑚

𝑄
 is the quarterly GDP growth and 𝑋𝑡𝑚

𝑀  the explanatory principal 

components.   
 

5. Nowcast combination 
According to Chong & Hendry (1986), nowcasts obtained from single 

models may contain errors because of misspecifications. Timmermann (2006) 
reports that finding a best single model for shorter high frequency time-series 
is challenging and therefore combining the predicted values is highly 
suggested. Atiya (2020) argues that single models tend to have large biases. 
Diebold (1989) argues that model combinations are less justified when access 
to accurate data is possible. Yang (2004) argues that combining weights for 
pooling models could lead to estimation errors. Finally, Atiya & El-Shishiny 
(2011) argue that a major pitfall for model combination is the presence of 
outliers in the data and misspecification of the underlying data generating 
process.  

On the other hand, Clemen (1989), Makridakis & Hibon (2000), Stock & 
Watson (2001, 2004) and Marcellino (2004) argue that model combinations on 
average, increase forecast accuracy compared to that of individual models. 
Pesaran & Timmermann (2005) indicate that in the presence of structural 
breaks, it is plausible across periods with varying degrees of stability to 
combine models. Timmermann (2006) and Franta, Havrla & Rusnák (2016) 
report that pooling models for shorter time series improves nowcast. 
Kourentzes & Petropoulos (2016) justify model combination for achieving 
diversity by using different models on the same data.  

We depart from the following approach:  𝑦 =  (𝑦1, … , 𝑦𝐻)𝑇 . This vector 
contains observations to be nowcasted 𝐻  steps ahead with FaMIDAS 
 
5 For further mathematical elaboration, see Mariano & Murasawa (2003, 2010).  
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regressions and MF-VAR type models. If the models produce nowcast vectors 
𝑢(1), … , 𝑢(𝑁) then the nowcast combination is expressed as 

 

𝑢 =  ∑ 𝜔𝑖
𝑁
𝑖=1 𝑢(𝑖),                                                                (7) 

 
with 

0 ≤  𝜔𝑖  ≤ 1                  ∑ 𝜔𝑖

𝑁

𝑖=1

 = 1 

 
where 𝜔𝑖 is the weight of each model. In the combined nowcast, the bias 

and variance of the mean squared error are reduced. For detail mathematical 
elaborations, see Atiya (2020).  

 

6. Data  
We use 44 monthly microeconomic time series available for the sample 

period January 2011 to June 2020. These time series are retrieved from surveys 
of the Central Bank of Suriname and broadly cover activities in the following 
sectors: agriculture, mining, manufacturing, utilities, construction, transport, 
banking, insurance, communications, wholesale and retail sales, and the 
government. The actual observations consist of company revenues and 
production volumes. These variables are listed in the Appendix.  

For nowcasting and forecasting purposes, the dataset needs to be 
homogenized. For this purpose, the central bank utilizes various 
corresponding price indices obtained for the local economy and for the main 
import and export markets.  

The rationale for including foreign price indices in the estimations is 
straightforward: the Surinamese economy is a small open economy and 
therefore is strongly affected by price changes in main markets. The statistical 
department of the central bank transforms the dataset into a set of Laspeyres 
indices (2011=100). From these indices, we extract principal components for 
modelling purposes.  

The PCA extracts 9 factors of which the first 5 explains more than 70% of 
the variance in the data (Appendix: Table 6 and 7). These 5 factors enter the 
FaMIDAS regressions, estimated with polynomial distributed lag (PDL) and 
unrestricted polynomial lags (U-MIDAS) for modeling and nowcasting 
quarterly growth. The MF-VAR is estimated with U-MIDAS and the MF-BVAR 
with Bayesian sampling. For this class of models, we conduct the estimations 
with the first 3 factors which explain around 60% of the variance. Compared 
to the MIDAS regressions, adding more factors in the MF-VAR and MF-BVAR 
lead to weak model specifications. Model diagnostics reveal that adding 3 
factors solves for the roots of the autoregressive polynomial.  Figure 1 depicts 
the variance of the principal components and figure 2 the quarterly GDP 
growth.   
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Figure 1. Principle components 

 
Figure 2. Quarterly GDP growth (see Bhaghoe, Ooft & Franses, 2019). 

 

7. Results  
We estimate 20 FaMIDAS regression models, which are parameterized with 

PDL and with U-MIDAS. We consider these lag polynomials, because they 
seem to be used frequently in MIDAS regressions for nowcasting short time 
series6. In addition, we estimate MF-VAR and MF-BVAR7 models. We consider 
these models as complements for the FaMIDAS, as both of these approaches 
have their merits. Kuzin, Marcellino & Schumacher (2011) show that MIDAS 
are parsimoniously fitted models providing direct multiple forecasts, whereas 
the MF-VAR type models provide iterative forecasts.  

The FaMIDAS equation regresses the quarterly GDP growth on its own lag 
and the 5 principal components (𝑘). The explanatory variables of the MIDAS 
models (PDL 1-5) and (U-MIDAS 11-15) are not constructed with lagged terms, 
 
6 See Marcellino & Schumacher (2008) and the references therein.  
7 For differences between MIDAS and MF-VAR, see Kuzin, Marcellino & Schumacher (2009) 

and the references therein.  
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while we added two autoregressive terms to the remaining models (PDL 6 -10) 
and (U-MIDAS 16-20). We test for an optimal lag length using the AIC and the 
BIC to find the model that minimizes residual correlations.  

Hence, we produce different models to model the nature of the dynamic 
nowcast and to optimize forecast performance.  

We parsimoniously fit the MF-VAR and MF-BVAR models only with 
intercepts and 3 common factors.  For the Bayesian sampling, we optimize 
hyper-parameters iteratively to improve as much as possible forecast 
performance. For both the high frequency parameter as well as for the low 
frequency parameter, AR(1), we set  𝜌 = 0.4. The frequency scale is set at υ = 
0.5.  

To evaluate the dynamic nowcast performance of the FaMIDAS models, we 
carry out recursive estimations. The full sample is divided into an estimation 
part and an evaluation part. The estimation sample is 2012Q1 - 2019Q4, 2012Q1 
- 2020Q1 and 2012Q1-2020Q2. While we perform dynamic nowcasting with the 
MIDAS, with the MF-VAR and the MF-BVAR, we perform stochastic 
nowcasting. We could not perform appropriate dynamic nowcast with the MF-
VAR systems because of very few observations. Consequently, we only nowcast 
quarterly growth for 2019Q4 and 2020Q1.  

To validate the model outcomes, we make use of benchmark indicators. In 
this context, the nowcast of 2019Q4 is benchmarked against annual GDP 
growth of 2019 (0.3%).  For the nowcast figures of 2020Q1and 2020Q2, we use 
the economic activity growth of the monthly GDP indicator of March 2020 
(0.0%) and of June 2020 (-7.3%). The result of benchmarking is expressed in 
the lowest RMSE.  

We compute 22 nowcasts based on information available at time t. Table 1 
and 2 presents the FaMIDAS and the MF-VAR models. Included are intercept 
estimates, fitted coefficients, Adjusted R-squared values, AIC and BIC. We 
conduct model selection assuming high Adjusted R-squared values, lowest 
AIC and BIC, and own judgment, Table 3 and 4.  Included are the nowcasts for 
2019Q4, 2020Q1, 2020Q2 and their respective RMSEs.  

The models provide mixed results. For the estimation sample 2012Q1- 
2019Q4, the FaMIDAS regression 5, estimated with unrestricted coefficients 
(U-MIDAS), provides the best nowcast for 2019Q4 (RMSE = 0.019).  

The second best performing individual model is the BVAR (RMSE of 0.028). 
The FaMIDAS regression 5, estimated with PDL structure, also delivers best 
in-sample nowcast for 2019Q4 (RMSE = 0.039).   

Re-estimating the models with the sample range 2012Q1 - 2020Q1 indicates 
the following: in the class of the FaMIDAS, model 1 estimated with U-MIDAS 
(RMSE = 0.011) followed by model 8 estimated with PDL (RMSE = 0.044), 
deliver best in-sample nowcasts. The MF-VAR is not far behind yielding a low 
RMSE of 0.074.  

As we re-estimate the models with the sample range 2012Q1- 2020Q2 to 
increase the in-sample nowcast horizon, the following picture emerges. The 
RMSEs of almost all the models increase significantly, indicating high bias and 
high variance in the nowcasts, except for model 3 estimated with PDL. This 
model reports the lowest RMSE of 0.657. The RMSEs of the remaining 
FaMIDAS models varies between 2.673 and 6.747.  

We also perform out-of-sample nowcasts. For 2019Q4, the MF-VAR yields 
the lowest RMSE followed by model 4 and 6 estimated with U-MIDAS. In the 
class of FaMIDAS estimated with PDL, the best predictive model is 6. The two 
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best predictive models for nowcasting 2020Q1 is model 3 and 4 estimated with 
U-MIDAS. The best predictive model for nowcasting 2020Q2 is model 4 
estimated with U-MIDAS followed by model 6 estimated with PDL. The 
FaMIDAS forecasts are highly biased, since the RMSEs varies between 3.622 
and 6.587. The available short time-series did not work well for utilizing the 
MF-VAR type models, yielding unreliable results for 2020Q2.  

To hedge against the inaccurate nowcasts, Timmermann (2006), 
Kourentzes & Petropoulos (2016) and Atiya (2020) suggest combining the 
different individual models as a weighted sum of their nowcast to reduce the 
remaining biases and variances in the nowcast. Based upon this suggestion, 
we combine the single selected nowcasts into one nowcast by deriving the 
mean value. The best average nowcast of 2019Q4 from in-sample model 
estimation comes from MF-VAR models 0.36% vs. GDP growth 2019, 0.30%. 
The best average nowcast for 2020Q1 is from FaMIDAS estimated with PDL, 
0.12% vs. 0.0% economic activity growth of March 2020.  

The best individual nowcast of 2020Q2 is from model 3 estimated with PDL, 
-6.64% vs. -7.30% of June 2020. The best average nowcast is from U-MIDAS -
3.74% vs. -7.30%.  

For the out-of-sample estimation, the best average nowcast for 2019Q4 is 
from U-MIDAS 0.28% while for 2020Q1, it is the MF-VAR type models with an 
average nowcast of 0.03%. For the nowcast of 2020Q2, the FaMIDAS estimated 
with PDL function delivers the best average figure -3.45%.  
 

Table 1. In-Sample Model Estimations 

 
Note: the models (1) - (5) are estimated with PDL function. The models (6) - (10) estimated 
with the U-MIDAS function. The explanatory variables of all these models are without lags. 

Models (11) - (15) are PDL and (16) - (20) U-MIDAS. The explanatory variables of these models 
are estimated with 2 months lag. Both approaches allow for a wide variety model estimations 

from which we select well-fitted models for nowcasting. 

 
 

 

FaMIDAS β ρ(-1) Adj-R
2 AIC BIC

1 -0.118 0.756 0.750 3.699 3.937

2 -0.056 0.091 0.879 3.047 3.427

3 -0.164 -0.061 0.909 2.810 3.333

4 -0.234 0.894 0.929 2.366 2.889

5 -0.183 -0.270 0.989 0.477 1.286

6 -0.147 0.704 0.754 3.681 3.918

7 -0.095 0.097 0.870 3.121 3.502

8 -0.265 0.581 0.971 1.465 1.989

9 -0.300 0.502 0.977 1.233 1.899

10 -0.498 -0.097 0.964 1.875 2.684

11 -0.160 0.954 0.876 2.865 3.246

12 -0.215 0.901 0.949 2.058 2.724

13 -0.184 0.843 0.927 2.278 3.230

14 -0.471 0.829 0.917 2.116 3.181

15 -0.269 0.901 0.903 2.419 3.466

16 -0.232 0.970 0.887 2.770 3.151

17 -0.136 0.919 0.952 1.986 2.652

18 -0.100 0.778 0.946 1.975 2.927

19 -0.091 0.713 0.952 1.934 2.790

20 0.077 0.910 0.970 1.247 2.294

MF-VAR -0.138 0.633 0.960 1.554 2.562

MF-BVAR -0.269 0.624 0.900 NA NA
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Table 2. Out-of-Sample Model Estimations 

 
Authors’ estimates 

 
Table 3. In-Sample Evaluation 

 
Authors’ estimates 

 
 
 
 
 

FaMIDAS β ρ(-1) Adj-R2 AIC BIC

1 -0.142 0.997 0.880 2.797 3.037

2 -0.153 0.856 0.955 1.886 2.270

3 -0.183 0.961 0.961 1.790 2.318

4 -0.207 0.450 0.975 1.391 2.063

5 -0.034 0.503 0.991 0.293 1.109

6 -0.168 0.982 0.891 2.703 2.943

7 -0.164 0.737 0.966 1.630 2.014

8 -0.314 0.601 0.973 1.424 1.952

9 -0.357 0.509 0.978 1.249 1.921

10 0.408 0.633 0.996 -0.544 0.271

11 -0.126 0.939 0.876 2.911 3.294

12 -0.238 0.904 0.947 2.122 2.794

13 -0.147 0.818 0.921 2.354 3.314

14 -0.125 0.787 0.932 2.305 3.169

15 -0.192 0.890 0.896 2.433 3.489

16 -0.228 0.969 0.886 2.828 3.212

17 -0.144 0.920 0.950 2.058 2.730

18 -0.157 0.719 0.945 1.982 2.942

19 0.040 0.716 0.955 1.898 2.762

20 0.240 0.855 0.977 0.913 1.969

MF-VAR -0.141 0.630 0.953 1.652 2.668

MF-BVAR -0.156 0.845 0.922 NA NA

 2019Q4  2020Q1 2020Q2 2019Q4 2020Q1 2020Q2

Real growth 0.30 0.00 -7.30

MIDAS-PDL

     Model 2 -0.87 -0.69 -4.63 1.171 0.690 2.673

     Model 3 1.25 0.78 -6.64 0.953 0.784 0.657

     Model 5 0.34 0.18 -0.55 0.039 0.184 6.747

     Model 8 -0.18 0.04 -2.34 0.482 0.044 4.962

     Model 9 0.24 0.28 -3.39 0.064 0.284 5.388

     Average 0.16 0.12 -3.51 0.145 0.064 3.790

     Median 0.24 0.18 -3.39 0.064 0.044 3.913

U-MIDAS

     Model 1 -0.87 0.01 -4.63 1.171 0.011 2.673

     Model 3 0.01 -1.11 -4.32 0.289 1.112 2.980

     Model 5 0.28 -1.57 -3.78 0.019 1.572 3.519

     Model 6 -0.38 -0.62 -3.39 0.677 0.616 3.913

     Model 7 -0.46 0.07 -2.57 0.757 0.067 4.731

     Average -0.28 -0.64 -3.74 0.583 0.523 3.563

     Median -0.38 -0.62 -3.78 0.68 0.616 3.519

VAR

     MF-VAR 0.46 -0.07 NA 0.156 0.074 NA

     MF-BVAR 0.27 -0.45 NA 0.028 0.452 NA

     Average 0.36 -0.26 NA 0.064 0.263 NA

Nowcast RMSE
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Table 4. Out-of-Sample Evaluation 

 
Authors’ estimates 

 
Figure 3. In-sample nowcasts 

 2019Q4  2020Q1  2020Q2 2019Q4 2020Q1 2020Q2

Real growth 0.30 0.00 -7.30

MIDAS-PDL

     Model 1 1.18 0.21 -2.03 0.883 0.205 5.268

     Model 6 0.62 0.52 -2.59 0.317 0.517 4.714

     Model 7 -0.21 -0.11 -1.72 0.513 0.106 5.580

     Model 8 -0.77 -0.90 -3.25 1.073 0.897 4.051

     Model 9 -0.22 -0.25 -2.66 0.515 0.252 4.638

     Average 0.12 -0.11 -2.45 0.180 0.107 4.850

     Median -0.21 -0.11 -2.59 0.513 0.106 4.714

U-MIDAS

     Model 1 0.93 1.03 -3.12 0.627 1.069 4.181

     Model 3 0.80 -0.03 -3.68 0.497 0.030 3.622

     Model 4 0.37 0.05 -0.71 0.069 0.048 6.587

     Model 6 0.37 0.11 -2.69 0.075 0.110 4.607

     Model 8 -1.08 1.03 -0.79 1.376 1.026 6.514

     Average 0.28 0.44 -2.20 0.044 0.055 5.102

     Median 0.37 0.11 -2.69 0.075 0.110 4.607

VAR

     MF-VAR 0.27 0.34 NA 0.027 0.343 NA

     MF-BVAR 0.44 -0.28 NA 0.145 0.281 NA

     Average 0.36 0.03 NA 0.059 0.031 NA

RMSENowcast
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Figure 4. Out-of-sample nowcasts 

 
Figure 5. In-sample average nowcasts 

 
Figure 6. Out-of-sample average nowcasts 
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8. Concluding remarks 
This paper employs mixed frequency data models to nowcast GDP growth 

in real time for Suriname. For this purpose, we have full access to a set of 44 
microeconomic Laspeyres indices constructed with ongoing monthly surveys 
from 2011. The sample consists of key enterprises in the whole economy. These 
enterprises are considered to be trend-setters in their respective sectors. We 
apply PCA to extract principal components from these indices to regress those 
components on quarterly GDP growth. For this purpose, we employ FaMIDAS, 
MF-VAR and MF-BVAR models. Different sample estimations are performed 
with these models to evaluate the nowcast precision against naïve benchmarks 
such as GDP growth of 2019Q4 and the volume growth of the monthly GDP 
indicator of March 2020 and June 2020.  

The models provide mixed results. For the in-sample estimation, both the 
FaMIDAS and the MF-VAR models deliver significantly lower RMSEs. 
However, when forecasting 3 horizons further up to 2020Q2, only one model 
in the class of FaMIDAS estimated with PDL function delivers a lower RMSE. 
Consequently, we perform out-of-sample nowcast to further quantify our 
judgement. For one horizon (2019Q4) the MF-VAR models yield lowest RMSEs 
followed by U-MIDAS estimation. For two forecast horizons (2019Q4 - 
2020Q1) the U-MIDAS estimation yields better results. For three forecast 
horizons (2019Q4 - 2020Q2) all the FaMIDAS regressions yield high RMSEs. 
We resort to model combination to reduce high biases and variances in the 
individual nowcasts. Well-fitted models are selected based on higher Adjusted 
R-squared values, lowest AIC and BIC and lowest RMSEs. We derive an 
adequate average nowcast from these models, which is acceptable.  

Our analysis shows that the FaMIDAS, MF-VAR and MF-BVAR are 
important complementary models to the currently used macroeconomic 
forecast model of the Central Bank of Suriname (CBMOD4). This macro model 
draws heavily on historical trends and expert judgement for forecasting. As 
demonstrated, the mixed frequency data models are very useful to nowcast 
two quarters ahead. Adding one more quarter increases the RMSEs of selected 
models.  

A limitation of modelling in this paper is the short length of the monthly 
explanatory variables (January 2011 to June 2020). As more survey data become 
available the nowcast accuracy will increase, especially with the MF-VAR and 
the MF-BVAR.  
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Appendix 1  
Polynomial Distributed Lag parametrization 

The PDL parametrization restricts regression lag coefficients estimated as a 𝑝 
dimensional lag polynomial. The number of estimated coefficients, 𝛾1 , 𝛾2 … 𝛾𝑝 , 

depends on the polynomial order (𝑝) and not on the number of lags (𝑗) as in other 
class of MIDAS regressions. The term 𝑘 represents the number of lags: 

 

𝑌𝑡
𝐿 = ∑ 𝛽𝑖 𝑊𝑡 −𝑖

𝐿

𝑞

𝑖=1

+  ∑ 𝛾𝑖

𝑝

𝑖 =1

∑ 𝑗 𝑖−1

𝑘

𝑗=0

𝑋𝑡 −𝑗
𝐻 + 𝑢𝑡  

 
Unrestricted MIDAS parametrization  

U-MIDAS parameterizes the lag polynomials in a parsimonious fashion. The number 
of estimated coefficients 𝛾1 , 𝛾2 … 𝛾𝑘  are not subjected to restrictions, as is the case in 
other competing models. 
 

𝑌𝑡
𝐿 = ∑ 𝛽𝑖𝑊𝑡 −𝑖

𝐿

𝑞

𝑖=1

+  ∑ 𝛾𝑡−𝑗

𝑚−1

𝑗=0

𝑋𝑡 −𝑗
𝐻 + 𝑢𝑡  

 
Principal Component Analysis 
 
The following authors have significantly contributed to PCA as we know it today: 

Hotelling (1933), Sinharay (2010) and Aït-Sahalia and Xiu (2015, 2017). In general, PCA 
estimates covariance matrices from large datasets. These covariance matrices explain 
a large portion of the variances, which are very useful for modelling. We apply PCA to 

extract 𝑘 principle factors from the dataset. 
 

𝑦𝑖𝑗 =  𝑧𝑖𝑘 𝛽1𝑗 + 𝑧𝑖2𝛽2𝑗 + 𝑧𝑖3𝛽3𝑗 + 𝜀𝑖𝑗  

 
where 𝑦𝑖𝑗  is the value of the 𝑖𝑡ℎ observation on the jth variable, 𝑧𝑖𝑘  is the 

𝑖𝑡ℎ observation on the 𝑘𝑡ℎ  common factor, 𝛽1𝑗  is the set of factor loadings and 𝜀𝑖𝑗 is 

the residual term.  
 

Table 5. Indicators 

 
Source: Central Bank of Suriname 

 
 
 
 
 
 
 

Industry Type of Indicator
Number of 

Indicators

Agriculture Production 7

Mining Production 2

Manufacturing Production and real turnover 6

Utilities Production 2

Construction Production and real turnover 4

Banking Financial data 5

Hotel & Restaurants Overnight stays and real turnover 2

Transport, Storage & 

Communication
Volumes and turnover 4

Wholesale & Retail Trade Real turnover and imports 10

Government Employees and expenditures 2
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Table 6. Variance and Proportion of Extracted Factors 

 
Estimated with software package EViews 11 

 
Table 7. Goodness-of-fit Summary 

 
Note: the parsimony ratio and the measures reported in the sections of the absolute and 

incremental fit indices indicate that the model fits the data adequately. 

 
Evaluation Statistics 
Root Mean Squared Error (RMSE):      

 

√∑
(𝑦𝑖 −  𝑦𝑖

)2

𝑛

𝑛

𝑖=1

 

 
where 𝑦�̂�  at time 𝑡 is the nowcast and 𝑦𝑡  is the actual observation.  

Adjusted R-squared value:  
 

1 −
(1 − 𝑅2)(𝑁 − 1)

𝑁 − 𝑃 − 1
 

Factor Variance Cumulative Proportion Cumulative

F1 6.854 6.854 0.279 0.279

F2 4.185 11.039 0.171 0.450

F3 3.265 14.304 0.133 0.583

F4 2.126 16.430 0.087 0.670

F5 1.898 18.328 0.077 0.747

F6 1.871 20.199 0.076 0.823

F7 1.840 22.038 0.075 0.898

F8 1.265 23.303 0.052 0.950

F9 1.229 24.532 0.050 1.000
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𝑅2 = 1 −  
∑ (𝑦𝑖 − 𝑦𝑖)

2
𝑖

∑ (𝑦𝑖 − 𝑦)2
𝑖

 

 

where 𝑅2  quantifies the variance of 𝑦𝑖 , p is the number of predictors and N is 
sample size.  

 
Akaike Information Criterion (AIC):          

   
−2 log(𝐿) +  2𝑘 

 
Log-likelihood function (L): 
 

𝐿 = −
𝑁

2
log(2𝜋) −

𝑁

2
log(𝜎 2) −

1

2𝜎 2
∑(𝑦𝑖 − 𝛽𝑥 𝑖

)2

𝑁

𝑖 =1

 

 
where k is the number of parameter estimates and L the maximum likelihood 

function of the model.  
Bayesian Information Criterion: 
 

2 log(𝐿) + 𝑘log(𝑁) 
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