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Abstract. This research develops and expands the concept of risk-premium to a multivariate
environment, providing an operational framework for the analysis of mean-variance
optimizers’ attitudes towards exogenous uncertainty. Firstly, it digresses over possible
approximations to the risk premium. Secondly, importance and properties of the variance of
the objective function are highlighted. Thirdly, impact of uncertainty on the objective
function and on control variables of mean-variance agents is confronted with that of
expected function optimizer’s. The analysis is also applied to ex-post flexible or adjustable
environments with respect to the decision variables. Production theory examples are briefly
sketched. Innovation in tools include matrix algebra results and representation of higher
than second moments — with reference to the multinormal as a special case -, and implicit
rules of first-order condition point-wise optimization of functions of expected value and of
variance of other functions.
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1. Introduction
ultivariate analysis in the theory of uncertainty is highly technical
and often redounds in unintuitive outcomes. It is the purpose of this
research to contribute to the understanding of its mechanics and
frameworking.

Even in the univariate domain, where the role of concavity of the objective
function is graphically understood, the quantitative measurement of the
response to uncertainty only becomes perceptible through the mathematical
development of the properties of the risk-premium - of how much of a given
asset or income is the individual willing to forego to avoid the randomness.
The risk-premium provides a measure of the impact of uncertainty on the
expected value of a given function in the metric of one of its arguments.
Through its inspection, the Arrow (1965) and Pratt (1964)’s absolute (and
relative) measure of risk-aversion measure emerge as conditioning the
magnitude of passive impact on expected utility, Kimball’s (1990) prudence of
the effect of risk on control/decision variable of an optimizing agent, Gollier
and Pratt’s (1996) temperance and Martins’ (2004) providence assessing
background uncertainty.

Onthe other hand, von Neumann-Morgensternagents - expected function
maximizers —-are not the only prototypes simulating individual’s behavior in
the presence of uncertainty dealt with in the economics literature. Non-
expected utility theories count recent applications in resolving empirical
paradoxes (Starmer, 2000). In the finance area, the mean-variance approach -
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see Tobin (1958) and Markowitz (1959) -, that encompasses the eclectic
treatment as a special case, is probably the most well-known, with relevance
in asset-pricing formation research3 among others. Applications in production
theory have also followed*. Its contrast with expected utility preferences has
been the subject of recent studiesin risk and insurance theory - Ormiston and
Schlee (2001), Lajeri-Chaherli (2002) and Eichner and Wagener (2003).

Naturally, an inquiry into the properties and adequate definition of a risk-
premium under the assumption would stand as useful, and its multivariate
generalization as fundamental - and became the main goal of this article.
Historically, it continues the sequel of Duncan’s (1977), Karni’s (1979),
Kihlstrom, Romer and Williams’ (1981)5and others’ work, searching for an
appropriate multivariate risk representation - for von Neumann-Morgenstern
agents.

Under multiple variable interaction, matrix representation, with more
compact outcomes than the underlying summations, products and others,
becomes useful. Yet, notation and properties of its algebra do not seem to have
had a consistent use in mathematical applications. A first task was to develop
theorems applicable to the analysis, mostly on matrix differentiation rules
involving vectorization and Kronecker products - honouring Dhrymes’ (1978)
matrix calculus legacy. Among others, a tractable Taylor’s expansion form —
invariably essential in risk theory approximations - was derived; and third and
fourth moment matrix representations for the multivariate normal.

An application of the principles yielded the representation of the expected
value but also of the variance of a function of uncertain multiple, possibly
correlated arguments. The development of the latter is important for the
understanding of the impact of exogenous variability on the behavior of a
mean-variance entity. Importance of higher-order derivatives and moments of
the exogenous randomness(es) distribution becomes visible — without reliance
on higher than second-order expansions, subject explored for the bivariate
case in Martins (2004), for example.

Features of optimal decisions become more complex under uncertain
environments. The subject has been studied in microeconomic consumption
and production theory; general conclusions can only be derived with a
multivariate representation which we were set to inspect. We staged two
scenarios — constant controls decided before the realization of the random
event; and ex-post decision-making. If ex-ante commitment implies control
variable stability — with optimal decisions completely sterilizing indirect
effects of uncertainty on the objective function -, ex-post flexibility offers the
potential to use the control variables in order to reduce the actual (total)
“direct” maximand’s fluctuations.

Ex-post flexibility in the control variables would get the expected-value
mazimizer back to the exogenous uncertainty background, now referred to a

2 Allais - (1979), as cited in Starmer (2000) - proposed a model in which individuals’
preferences “may also depend on the second moment of utility, that is, the variance
of utility about the mean”. One can say that some of the former theories propose
preferences over the mean and variance of a certain random variable.

3 Also, the Capital Asset Pricing Model - Sharpe (1964), Lintner (1965) and Black (1972)
among others. Duffie (1991) presents a recent version and overview of similar
material.

4 See Karni and Schmeidler (1991) for a recent survey.

5 Also Keeney (1973), inspecting independence.
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deterministic optimal - optimized - indirect problem. If the randomness(es)
is (are) added to the decision variables, it turns the expected-function
mazimizer into a deterministic optimizer on the expected value - it allows for
the neutralization of the effect of any risk. That may not be the case for a
mean-variance agent. Moreover, in some contexts, even if no other defence is
available, point-wise pure discarding of utility may be a meaningful option
and, if capable of being sufficiently variance diminishing, have a place in
optimal planning of the latter.

The exposition is organized as follows: in section 1, we advance general
notation and develop expected value and variance equivalences. Section 2,
digresses over operational definitions of the risk-premium in the multivariate
case. Section 3 explores the properties of optimal controls under uncertain
backgrounds. Section 4 generates analogous conclusions for ex-post
adjustable decision contexts. Section 5 advances general statements on the
implications of combining the several backgrounds. Some applications to
production theory are noted in section 6. The exposition ends with some
concluding remarks. (Theorems of matrix algebra are compiled in Appendix 1,
Taylor’s expansion in vector form advanced in Appendix 2, multivariate
normal moment matrices developed in Appendix 3.)

2. Notation: Multivariate Risk Exposure and Moments
of Multi-Argument Function

Admit a general (uni-dimensional) function of r attributes, represented by
the column vector Z, y(Z). We adopt Dhrymes (1978) conventions with respect
to matrix operations - they are stated in Appendix 1.

Consider a column vector X of dimension r. Using Taylor’s expansion - see
Duncan (1977) -, y(Z + X) can be approximated by:

oy 1 ., ow
Z+X) = y(Z — X+ =X X+...
Y(Z+X) = y(Z) + R TR R (1)

oy . : . o
Y s the row-vector with r elements containing the first derivatives of

oL

2

oy
0oL
denotes the (symmetric) Hessian matrix of y(Z), the matrix of second
derivatives.

Let X denote an r-dimensional multivariate random variable, of mean E[X]
= p and variance-covariance (symmetric) matrix Cov(X) = E[(X - p) (X-p)’] =
EXX]-uw =V; B denotes the element of the i-th row of p; Sjp the element in

y(Z) with respect to each of the r Z/s - it is the gradient of y(Z).

the i-th row and j-th column of V. du denotes the column vector of differentials of
the several },li’S. Also dvec(V) is a rrx1 column vector containing the rxr

differentials of the variances and covariances of X; of course, when assessing
effects of out of the diagonal terms of V, one has to add two of dvec(V)’s
factoring elements.

It is easily established that, provided the elements of X are small:
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2
Proposition1:  E[B(Z + X)] A(Z) + 4 + 1 vec 0 W,
oZ 2 020Z

vec(V +0AM) =
2
=0(Z) +6—W +£tr[ aw,
oZ 2 0Z0Z

(V+om)]

2

Proof: Denote ov by G (a row-vector with r elements) and oy - by H
oz 007

(a symmetric square matrix of order r). Taking the expectation of (1.1), only

2
the last term, involving E[X’ ai—awz X] = E[X’ H X] would not be obvious. X

H X is a scalar, hence equal to its trace. E[X'H X] = E[tr(X'H X)]; as tr(A B) =
tr(B A) as long as operations are conformable, E[tr(X'H X)] = E[tr(H X X’)] =
tr(HE[XX’]) = tr[H (V+B®)]. Using Proposition A.3 of Appendix 1, and noting
that H symmetric:

(1.2) E[X H X] =vec(H)  vec(V +BX) = vec(V +B X)) vec(H)

We can deduce that:

3) Ely@Z+X)] , 1 [ec(a_vfﬂ
ovec(V) 2 0L0Z

Notice that the effect of an exogenous change in the level of the
deterministic arguments Z on expected utility is given by (using Proposition
A.5in the Appendix1):

N |-

(1.4

o e oy +n,[aWJ
oz oz

oy
otr + '
[GZGZ'(V uu)}

oz

a( o )
0° 0262
= 6_w + 0 —V/ + ivec(vJ,’)’—
0z 0207 2 oz

However, with the same order approximation we only capture the first two
terms when assessing a change in [2:

%wa+xn=§g+w(ﬁwj

5) ou oz 0z07

A.P. Martins, JEPE, 12(1), 2025. pp.1-39



Journal of Economics and Political Economy
Proof: Using the rule of the derivative of the trace of the product rule of
2

Oy
o207

Proposition A.8 in Appendix 1, letting A = [ ], X=0,B=10=0 we

recover that

oy
otr| | —— '
[(MJW} ,(azw]
=2 .

o 020z

Third derivatives condition (1.4); second ones (1.5). Yet, the two effects
should coincide under infinite (full) approximations.

Also of interest would be the variance of the function. Ignoring higher than
second-order terms, taking the covariance of the right hand-side of (1.1), we

conclude - using the fact that if a is a constant and x and y random variables,
Var(x +y + a) = Var(x) + Var(y) + 2 Cov(x, y):

Var[B(Z + X)] @ Var(G X) + % Var(X'H X) + Cov(G X, X’ H X)

One can show that:

v oV,
oL oL’

+ % ( {vec( Oy H E[(XX)E(XX")] Vec( Oy j - {[vec(V + m)]

Proposition 2: Var[A(Z + X)]

0207’ 0207

2
vec a"”, }2)+
0207

+ 2—; E[XA(XX)] Vec(az_l//j - a—w[vec(V+’)]’veC( o’y j

020" ) oz 0207

= Var[@(Z + X)] [vec(%g—;jﬂ vec(V) +

+ % |:Vec(8§2(;/;'j:| {E[(XX)E(XX)]- vec(V + PI)[vec(V + )]}
VEC[ aZW,J +
0LdZ
oy - N P 82l//
+ ra {(E[X®(XX')] -8 [vec(V + )]} Vec(azaz,j

Proof: The first term has a trivial correspondence: Var(G X) = G Var(X) G
if G is deterministic. We can use the fact that tr(A B) = tr(B A) and Proposition
A.3in Appendix1 to develop the same first termin the second correspondence.

The second term can be developed in the following way:
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Var(X HX) = E[X’H XX’ H X] - E[X’'H X]2. Using (1.2), we can recognize
the squared term. E[X HX X' HX] = E[tr(X HX X’ H X)] = E[tr(XX'H X X
H)]. Using the trace of the product rule of Proposition A.4 of Appendix1, we
canderive that E[tr(XX'H X X'H)] = E{vec(H)’ [(XX)&(XX)] vec(H)}=vec(HY
E[(XX)A(XX')] vec(H).

As for the third term, Cov(G X, X’ HX) = E{(G X - GB)(X’ H X - E[X’ H X])}
_E{GX(XHX-E[XHX])}-GBEXHX-E[X HX])}=GE[XX HX]-G
E[X HX])}. E[X'H X] is given on (1.2). E[G X X' H X] = E[tr(G X X' HX)] =
E[tr(X X' H X G)]; applying again the trace of the product rule, E[tr(X X H X
G)] =E{vec(H) [(XX)EX] vec(G)} = E{vec(G’)’ [XA(XX")] vec(H)}. Also, as G is
a row vector, vec(G’) = vec(G) =G”:

(1.6) E[G XX HX] =vec(H) E[(XX')EX] G’ = G E[XT(XX’)] vec(H)
However - see Proposition E.4 of Appendix 2:
E{(X-B)2[(XX - E(XX) ]} RE[XB(XX)] -@ [vec(V + )]

Third centered moments are related to the asymmetry or skewness in the
distribution of X - so, also that matrix, but in a more distant correspondence.
It is easily shown that for a null expected value multivariate normal -
symmetric around zero - that E[XT(XX’)] = o.

Also - see Proposition E.7 of Appendix 2:

E{[XX-E(XX) JBI(XX'~E (XX)]JE2E [ (XX)B(XX)] - vec(VAER) [vec(V4EE) |

One can now deduce, using Propositions A.1, A.5and A.7 of Appendix1 that:

» vty E0) [ 20 20
ovec(V) 0L' 0Z

+ i VeC[VEC(LV/,j {VGC( azl//,j:| ' { aE[(XX I)®(XX ')] )
4 0207 0207 ovec(V)
- [vec(V+m) BT ]-[1 B vec(V+02)]}+
o’y oy (CEIX®OX)]
020Z" ) oZ ovec(V)

+ vec| VGC( @el.)}

For the zero mean multivariate normal - see Proposition G.4 in Appendix
3 - the last term disappears and we are left with:

(1.8) varly (Z + X)] {Vec(a—wa—wﬂ +
ovec(V) 0L' oZ

L Vec[vec( 52%”,] {Vec[ Wﬂ J CELY@O0
4 0207 0207 ovec(V)

- [vec(V) Irr] - [Irrvec(V)]}
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SE[(XX ) ® (XX V]
ovec(V)

Sensitivity to Z implies the development of higher order differentiation
(using Proposition A.6 of Appendix1):

can be computed from Proposition G.5 in Appendix 3.

Narfy(Z+X)] _ oy, o’y

(19) oz oz ozar
2
0 vec[ 0 ‘//,J
oy [E[XT(XX)] -B [vec(V + @) ]’} ozoz )] ,
_ ? -2 lv ?0?
Tz oz

62(// | (K N - HEAIRY 62l//
+ {Vec{azaz,ﬂ {E[XB(XX)] -@ [vec(V + )]’} 3707 +

+ % |:vec( ZW,J:| {E[(XX)A(XX)]- vec(V + BF)[vec(V + &)]}

3. Multivariate Risk-Premium
3.1. von-Neumann-Morgenstern Multivariate Risk-Premium:
Definitions

Consider Proposition 1. Admit that B(Z) is positively related to any of its
arguments. It easily follows that we can define the column vector m such that:

(2.1) A(Z-m) = E[A(Z +X)]
Let E[X] = 0. Then m stands for a multivariate risk premium defined over

the quantities of all the arguments of [(.). Considering the Taylor expansion
of A(Z - m) to the first order only:

oy

. Z- Z)-—
(2.2) (Z - m) (Z) = m
Replacing in (2.1), we deduce that:
oy
(2.3) — ™ O WIEZ+X)]-E[BZ+X)]

0 . : .

a—? m - the sum of the elements of vector m weighted by their marginal
contribution to the function (.) - is a measure of the difference between the
function evaluated at the expected value of the argument and the expected

value of the function.
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Replacing Proposition 1, we infer that

oy 1 & )]
2. — m =- — |[VeC vec(V
(2:4) oz 2 { (azazﬂ )

As it stands, several m’s are compatible with the equation. According to the
settings, we can re-define m in one of thearguments of Z - say, a risk-less asset
-, le,letm=[0 0.. m; 0..0 |’. Then:

Proposition 3: The premium to general multivariate risks
1. can be defined in the metric of a particular asset as:

a1 , -
(2.5) m; = -% (Z—‘Z'VJ [Vec[éig;'ﬂ vec(V)
2. reacts to variances and covariances according to:
o’y o’y
(2.6) om =- 02,02, if j 2 k; om 1 ilz
ol ay do; 2 Oy
0L, 0Z,

We recognize in (2.6) the roles of the Arrow-Pratt measure of absolute risk

o’y o’y
. o z’ 07,0, ,
aversion - “absolute concavity” - of B(Z), -———, and of - - measuring
oy o
0Z, 0Z,

“absolute substitutability” between Z j and Z, in function B(Z), given that a

2

high (positive) suggests complementarity between the two

0Z,0Z,
arguments, inspected by Duncan (1977), Karni (1979) and Martins (2004) -,
determining the impact of the effect of changes in the second moments of the
distribution of X on the size of the risk-premium.

Alternatively, we could re-define the risk premium as the scalar v such that
m=v [11..1] =v L, where L denotes the column vector [11 ... 1] - it implies a

decrease vin the certain consumption of all goods simultaneously that would
leave the consumer indifferent to the actual randomness he faces.

L (ow Ve 2]
(2.7) vV = > (GZ Lj [Vec[(ﬂZ@Z'H vec(V)

Then:
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o'y o'y
0Z .0Z 0z °

(2.8) ol =- 1% ifjmk; v =-i !
00 w, ooy 2 Oy,

oL oL

. An alternative view of risk aversion can be inferred if, following the
decomposition of Proposition 1, if we look at the trade-off between elements
of @ and elements of V that sustain a given - fixed - expected utility level.
Considering (1.3) and (1.5), we can write:

2 2 '
o= qmim |2 |am+ L |vec| 2 || dvecv)
oz 0207 2 020z

that is:

2 2 '
(2.9) [a—"” +0 a—w ]del = - l vec 0 W, dvec(V)
oz 0207 2 0207

With a second-order approximation, if we only consider the effect of the
change in one [, - say, the/a risk-less asset -, it will depend on the means of

the other X’s. It is immediate to conclude that:

Proposition 4: The sensitivity of an agent towards uncertainty can be
ascertained by the trade-off measuring how much he must be given in
expected value of a given commodity to accept an increase in the moments of
the random variables distribution,

1. defined as:

-1 2 '
(2.10) daz. = - 1 8_(//_'_#,—81// vec GW,
1 2 \ 0L 0L '0Z, 0L0Z
dvec(V)
2. reacting to particular moments according to:
oy
oL 0Z.0Z ou.
(2.11) A ! k2 if j @ k; iz—l
Gajk 8l+ﬂ, 0w aaﬂ 2
oZ, 0Z'0Z;
o’y
oz’
2
al+ﬂ' 0 i
oL, 0L '0Z,

The denominator of (2.11) appears more complex than in (2.6), but the role
of the numerator remains unaltered. Moreover, if we evaluate the trade-off
around = o, the two expressions coincide.

Of course, more complex approximations - using expansion to higher order
as in Appendix 2 - would generate more refined definitions. Then attention

A.P. Martins, JEPE, 12(1), 2025. pp.1-39
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should be given to third and fourth moments, as performed for the bivariate
case in Martins (2004), for example. Then, the equivalence of the two
definitions evaluated at @ = o may not hold.

. A final contrast with the premium to a risk j when subject to background
noise can be made. Using only Taylor’s expansion, such premium to a risk, say,
Xj added to Zj’ denoted by nj, would be such that:

E[(ZI+X1, Zz+X2’ ey Zj—nj, .y Zr+Xr)] = E[B(Z +X)]

Denote by Z_j the (r-1)x1vector containing all other elements of Z except Zj;

Vj the (r-1)x1 vector containing the j-th column of V to the exception of line j,

ie, ofjj - Vj’ = [lj 2]- j—1,j j+1,j rj I'; and V_j the covariance matrix of

X-j’ the vector containing all the elements of X but Xj' By analogy with (2.3),

we infer now that:

(2.13) STW m; E[(Z_j +X—j’ E(Zj +Xj)] -E[A(Z +X)]

]

67l// n, the partial premium n, weighted by its marginal contribution to
i
[(.), measures the difference between the expected value of the function over

the r-1arguments evaluated at the expected value of Zj + Xj and the (general)

expected value of the function.
Expanding and decomposing both sides of (2.12) - allowing matrix partition

2
for the right hand-side -, as the terms 1 vec a—w vec(V .) cut, we
2 0Z_0Z_; L
would arrive at:
1 ( oy * k% o’y
. .= - — e _ .. _— V
(1) R (azj} 27t e, VY

Relying on Taylor’s expansion to a second-order approximation only, due
to its polynomial properties, nj responds only to the r jk,s’ k=1,2,...,r, but in

the same fashion as the global multivariate premium defined in the metric of

Zj’ mj, would ¢, i.e.:

6 That may not be hold if we use higher-order Taylor’s expansion approximations and
(or) higher than second-order moment matrices (moments) of the distribution of X
depend on (the elements of) V. This would be the case for a multivariate normal, for
example - see Martins (2004).
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on. om. on;

(2.15) ! = — ! fork=1,2,..,1 ; but =oforanyl, k@j
ank O-jk ao—”(

We would have that:

0 0 |
(2.16) m; = ( W] {Z n; {Vecﬂﬁzg;'l}} Vec(Vd)}

2

where Vd and oy
02072

2
- | stand for V and 0 W, respectively with the
d 0207

diagonal elements replaced by o’s.

The expression suggests that the maximizer will more likely insure the
whole joint risks rather than one at a time - he is more negatively affected by
the whole, in terms of expected value, than by the sum of the partial risks (he
is made better-off by discarding the whole risks simultaneously rather than

oy < oy

each of them unilaterally) and m, — > n, - for:

loz, <7 oz

- positively correlated risks around arguments that are complements, i.e.,
2

for which oy >
0Z,0Z,

- negatively correlated risks around arguments that are substitutes, i.e., for
82
0Z,0Z,

Identical conclusions would be driven from setting in (2.9) all elements of
dAbut dj’ and in dvec(V) all but those elements in de to o - and evaluating

which

<o.

the expression at@ = o.
In this research, we concentrate on the role of a global risk-premium.

3.2. Mean-Variance Compatible Risk-Premium

Under mean-variance approaches, agents respond to the expected value of
a function but also to its variance. Potentially, they maximize, say, U{E[P(Z +
X)], Var[B(Z + X)]}. We will denote the first partial derivative of U(., .) with
respect to the firstargument by U1(" .), tothe second by U 2(., .) and the second

partial derivatives in accordance.

Consider a standard consumer and let Z be univariate, representing
income, with X having null mean. A von Neumann-Morgenstern expected
utility function expanded to the second order would imply:

2

(2.17) E@(Z+X)] =

If the consumer maximizes expected utility, he cares about E[Z + X] =Z -

positively, provided (Z—;/ >0 -, and about the Var(Z + X) = Var(X). If he is risk-

A.P. Martins, JEPE, 12(1), 2025. pp.1-39
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oy

averse, 2 <o and heobviously reacts negatively to the latter. Hence, atruly

mean-variance behavior of a von Neumann Morgenstern individual towards
(Z +X) is suggested by the right hand-side of (2.17).

One can say that mean-variance approaches generalize the reasoning made
towards (Z + X) to the function B(Z + X) itself, and (but) frees any connection
between the impact of the mean and of the variance”: admit optimization is
oriented by a function of U{E[B(Z + X)], Var[B(Z + X)]}, potentially embedding
more or less risk aversion than just E[B(Z + X)] accommodates - or than an
hypothetical representation E{G[&(Z + X)]}, with G(.) being a particular
function 8, would (which would still be a von Neumann-Morgenstern case). It
is useful for production theory where a profit function B(Z + X) of several
arguments and measured in money metrics is empirically meaningful, but
utility derived from the several consumers/investors is not. A “direct” risk-
premium g, would obey:

(2.18) U{E[A(Z + X)] - g, 0} = U{E[B(Z + X)], Var[&(Z + X)]}

Expanding the left hand-side in the first argument around E[?(Z + X)] to
the first-order:

U{E[B(Z + X)] - g, o} = U{E[B(Z + X)], o} - UI{E[(Z +X)],0}g

In line with (2.3) and (2.13) we could write:

(2.19) Ul{E[(Z +X)], 0} g =U{E[A(Z + X)], o} - U{E[A(Z + X)], Var[R&(Z + X)]}

g when weighted by the marginal utility with respect to the first argument
affers the difference betweem the utility function evaluated at zero variance
and at its actual value.

Expanding also the right hand-side of (2.18) in the second argument around
0, admitting Var[?(Z + X)] to be small, we derive:

UAE[y(Z + X)], 0} Var[A(Z + X)]

UAE[y(Z +X)],0}
or: g -

UA{E[w (Z + X)],0pvVar[y(Z + X)] +;U22{E[W(Z +X)1, 0{Var[y(Z + X)1}’

(2.20) g [l -

UA{E[y(Z + X)],0}

7 Under (2.17), if % is the impact of an unitary increase of the mean, of the variance

1 %y

must be — -
2 0L

8 Even if this presided to Tobin (1958)’s derivation - relying on a probability

distribution dependent on the mean and the variance of the argument of the

function the expected value of which was maximized.
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Interestingly, if we only take first-order approximations, g is dependent of
E[@(Z + X)], and, at a given value of it, proportional to Var[&(Z + X)]. If
ultimately, the ramdomness X is determining the variance of B(Z + X),

U AE[w(Z + X)].0
U{E[y(Z + X)],0}

Var[?(Z + X)] condition the risk-premium in a similar pattern.

UAE[w(Z + X)] . Varly(Z + X)1}
UAELy (Z + X)]Varly(Z + X)I} '

(minus) the marginal rate of substitution between the second and first
arguments of U(.,.) has been identified - see Ormiston and Schlee (2001),
Lajeri-Chaherli (2002), Eichner and Wagener (2003) ¢ - as the analog to the
absolute risk-aversion Arrow-Pratt measure . Under the current scenario,
such definition becomes insufficient:

UAE[w(Z + X)1.0}
UA{E[w(Z + X)],0}

proportional to the risk-premium of a von Neumann-Morgenstern agent that
reacts to higher order moments - say, uses Taylor expansion to the 4-th order
-, once the functional relations would be much changed. That is, g should
compare with

provided is invariant to E[@(Z + X)], the determinants of

The expression also suggests why -

Even if

was constant, g cannot be assumed

2

(Z) - E[A(Z + X)] (Z m % {vec[ oy ﬂ vec(V)

020Z°

where m denotes the (a) EU agent premium vector of (2.4). Admitting only
UAEI(Z+ X010}
U{EW(Z+ X)],0}
E[B(Z + X)] -, changes in V affect the mean-variance utility at the rate of the
square of first derivatives of B(Z + X) - as we can infer from (1.7) and (1.8) -,
whereas for the von Neumann-Morgenstern agent, the first effects are
weighted by second derivatives of Z(Z + X).

To compare both risk-premia, redefine it in the new utility function in the
metric of Z as the rx1 vector p:

a first order importance - and independence of

(2.21) U[XZ - p), o] = U{E[A(Z + X)], Var[A(Z + X)]}

9 Only Lajeri-Chaherli constitutes the variance as second argument of the mean-
variance utility function, the other authors using the standard-deviation instead.
This latter approach becomes more tractable when analyzing preferences over
portfolio composites, once some form of invariance to proportional changes is
directly preserved withit. For our purposes, the former is more convenient.

1© In fact, for a “direct mean-variance” - with the variance by second argument - over
a univariate random variable, its size would be comparable - see (2.11) - with that of

E the Arrow-Pratt absolute measure of the alternative univariate utility function of

the classical expected utility maximizer.
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The current definition would also incorporate the fact that a null variance
of E[@(Z + X)] - present in the left hand-side - may only be achieved through
a constant X = o. Developing the left hand-side to the first order we conclude:

(2.22) Ul{[E(Z+X)], o} Z_Z p = U{E[E(Z+X)], o} - U{E[@A(Z+X)], Var[A(Z
+X)1}

Developing also the righ hand-side to the first order:

UEZ).0] - U,02), o] L p = UEEZXLo) + U,EEZX)), o

Var[®(Z+X)] =
= Ula(Z),0] + Ul[(Z),o] {E[@(Z+X)] -2(Z)} +

+ (UZ[(Z),O] + U21[(Z)’0] {E[@(Z+X)] -2(Z)}) Var[&(Z+X)] *

Noting that PI(Z) - E[A(Z+X) ] Z? m:

(2.23) 8_1//P - 8_@1/ m + (_Uz[l//(Z),O] + U,.[v(Z),0] a_l// m)
| oz oz Uv(2).0 * Uw(2).0

Var[2(Z+X) ]

Beyond the risk aversion embedded in the concavity of ?(Z), there will be
now the “direct” effect captured in the second argument of the MV utility
function U(.,.). Then, considering a particular asset to define the premium,

andp=[o0 o.. p; 0..0], weconclude:

Proposition 5: 1. The risk-premium of a “mean-variance” agent will relate
to a von Neumann-Morgenstern’s according to:

a_wj‘l U,[y(2),0] Uplw(2).0]
5z,) Uly(2),0]" Uly(2).0]

2. The trade-off with expected value of a relative commodity could be
expressed as d, relating to that of the expected function maximizer, di, as:

(s:25) dB-dis (5_‘”+ ol j [ Ualv(@).0 | Uaily(2).01 oy
Uly(2).01 * Uly(2).0] oz,

(2.24) p; =m, +{-( mi}Var[(Z+X)]

oz, Y oziez
di}dVar [A(Z+X)]

There will be an added term to compensate relative to the von Neumann-
Morgenstern entity. Being U [@(Z),0] negligible, such term is positive

1 Of course, a direct —and more complete - second-order Taylor expansion of the right
hand-side would add terms in the square of the variance and in square the of
{E[@(Z+X)] - B(Z)}. We are assuming that its size is negligible relative to the other
terms.
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M < 0, and at given Z or for a constant M,
U, [w(2),0] U,[w(2).0]
influenced in an approximately proportional fashion by Var[#(Z+X)].

Of course, Var[?(Z+X)] depends also on the moments of the distribution of
X, including second moments as noted in Proposition 2. Ultimately, risk-
aversion is dictated by how the elements of V influence p, after such

provided

correspondence - and that of m, through (2.5) - is internalized (replaced in

(2.24)), as well as any impact of V in higher (third or fourth) moments of the
particular distribution of X.

Some clarifying words about the mean-value formulation above - and that
will be studied in this research - should be added:

Firstly, weremind (and caution) the reader that the utility function U{E [A(Z
+X)], Var[A(Z + X)]} is a mean-variance utility function towards@(Z + X). By
comparing it with E[B(Z + X)], we are in fact contrasting the corresponding
agent with a risk-neutral von Neumann- Morgenstern entity towards that
same argument - or, in general, of form E[A(Z + X)].

Secondly, hypothetically, a generalized multivariate “mean-variance” unit
could be forwarded as a maximizer of U[E(Z + X), Cov(Z + X)] = U(Z + @, V),
where we conform with previous notation - E[X] =@, Cov(X) = V. Inspection
of its properties will be pursued elsewhere.

Finally, and as a theoretical contribution to the modeling of individual
behaviour towards risk — multivariate or not -, one studies the formulation
U{E[@(Z + X)], Var[B(Z + X)]}, a multivariate “mean-variance utility” utility
function, an alternative to the standard expected utility - E[B(Z + X)] -
maximizer, being #(Z) the equivalent function maximized in the absence of
uncertainty. Such behavioral hypothesis was used before in economic
modelling - the use of higher moments of utility was previously proposed by
Allais (1979) and Hagen (1979), cited in Starmer (2000): in this research, some
of its consequences are inspected.

4. Optimal Decisions under Uncertain Background
4.1. The Multivariate Conditions under Ex-Ante Commitment

Under certain contexts, the vector Z may be controllable. An expected value
maximizing entity will choose Z such that (1.4) is set to zero (we admit E[X] =

0) =
CE[w(Z+ X 0 1 0202
. EW@+X) _ oy |1
oz oz 2 oz
2We might have as well considered a departure from the expansion of the functions
| ow(Z+X) |
in the vector 8—2 around Z, take its expected value and perform E[
oy(Z+X) g :
a—z] = 0, deriving conclusions henceforth. It appeared as a less tractable
format.
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8[ 821// j
0207
a—l// + l Vec(V)’ — <2 -0 ; al/l

oz 2 oz oz

The mean-variance agent chooses Z such that:

I CEly(Z+X)] |
oz
Var[y(Z + X)] o

oz

(3.2) Ul{E[(Z +X)], Var[B(Z + X)

+ U{E[A(Z + X)], Var[&(Z + X)]}

The marginal rate of substitution between the two arguments of U(.,.) is

equated to the symmetric of the ratio of the elements of w by the

. That is, the Z’s are leveled in such a way

analogous ones of 8Var[l//a(ZZ +X)l

that for any i:

L +X)]
(33) 9Z; _ U {Ely(Z + X)],Var[y(Z + X)I}
>3 Narly(Z+X)] ~ U{E[p(Z + X)L Varly(Z + X)I}
0z,
Admit that Z is univariate. If U2 <0, aslong as 8Var[z/:3(zz + X >0, U(,.)

is already decreasing with theargument, Z, at the point chosen by the expected

ot Bl (Z + X)]

oz
variance agent chooses a smaller Z.

function maximizer — = 0, (3.2) is negative. Then, the mean

Proposition 6: The “mean-variance” agent (with U, < o) is expected to
choose:

1. Lower levels of the deterministic controls, Z, if (for which)
oVar[y(Z + X)] oo

oz
2. Higher levels of the deterministic controls, Z, if (for which)

Varly(Z+X)1 __

oz
than the von Neumann-Morgenstern one.

From the decomposition (1.9) and for the univariate case, if the effect of the
first term in the right hand-side of (1.9) dominates, we conclude for the second

2
case provided that 8_1// >0 and oy <o-ie., ovarfy (Z + X)] <o.
oz 020" oz
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OE[w (Z + X)]
oz

exogenous parameter [, the optimal Z of an expected utility maximizer
(second-order conditions ensure a negative second derivative of E[A(Z + X)]
with respect to Z) increases with 2.

For example, consider a change in the covariance matrix elements. The
change in the optimal decisions will conform with (3.1) and obey:

2
(o]
a N -/

Take a wunivariate distribution. If increases with an

oz' ( azw j
o’y 0207
. —_— V)1 dZ + B———=
(3-4) {2 zoz [vec(V)E2 1] 57 } dZ + L
dvec(V) =0
2
ez
0 , ,
2 020Z"
or dZ = - {28_1//,+ [vec(V)ERII ] !
0L0Z r oz oz'
dvec(V)

The sign effect of the change in a single element of vec(V), dij or d]- > on
Z, is given by (using Proposition A.5 of Appendix1):

2
ol 2V
620z
oz a[ oy ]
2 0Z,0Z.
OV [vec(VyemL] 1 )
020z r 6z 0z
icd
0297’
8 N = 7/

oz a[azy/]
2 072
d7 = oy yl i/ g

2 oy veeWERL] oz z Y

35  dZ=-2{2
dgy; ifi@j;
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That is, the effect on the optimal factor k, de, is determined by the

5 oy 5 oy
0Z,0Z 8Zj2j

elements of the column vector or , weighted by the
oz' oz'
5 0207
oz’
82!// , -1
elements of the k-th row of A = {2 ——— + [vec(V) 1 ] |
0207 r oz
(3.6) dZ=-zia 63—'/’01.. ifimj; dz =-ia
3
V_ i,
82;62, )]

This is consistent with Kimball (1990) assessment of the importance of the
measure of absolute prudence, weighting third-order derivatives and
conditioning the impact of uncertainty on the control variables themselves.

Notice also that A (or its inverse) must be negative-definite for (3.1) to
guarantee a maximum.

For the mean variance entity, a more complicated requirement is imposed.

If U, <o, if w increases (decreases) with @and 5Val’[1//a(ZZ + X1

decreases (increases) with @, Z will likely increase (decrease) with @ - provided
the effects weighted by the second derivatives of U are small). If

CEW(Z+X)] __, Varly(Z+X)]
oz oz

effect may be positive or negative, depending on the size of U  and U, that

react in the same way to [, the sign

weight each of the two cross derivatives (and of second derivatives).
OE[y (Z + X)]

oL
uncertainty, i.e., of vec(V) on the maximal expected utility becomes zero and
the total effect simple to derive - it coincides with (1.3), measured at the
optimal controls: in any of the two cases:

Due to the requirement = o, the indirect impact of

Proposition 7: The effect of uncertainty on the maximand of an entity with
(ex-ante) control over exogenous variables is:

1. indistinguishable from that of an exogenous effect of a change in the
distribution of X on the relevant maximand.

2. assessable in a symmetric way by the numerator of the conventional risk-
premium definition, by the premium itself if a particular metric is called for
its evaluation

A.P. Martins, JEPE, 12(1), 2025. pp.1-39

18



Journal of Economics and Political Economy
4.2. Mean-Variance Opportunity Frontier
A meaningful intermediate decision problem of the mean-variance agent
would determine vector Z that minimizes Var[Z(Z + X)] subject to a certain
E[@(Z + X)] is achieved. Or vice-versa. That is, solve:

(3.7) Mzin Var[2(Z + X) ]
s.t.: E@(Z +X)] >

or equivalently in lagrangean form

(3.8) l\éllﬂn L(Z, 1) = Var[A(Z +X)] + A {@ - E[A(Z +X)]}

where A denotes the multiplier. F.O.C. imply:

oL _ Vary(z+X)] _, GEly(@Z+X)]

(3.9) 7 = 57 o7 = o (a (1x n) vector)
oL
(3.10) ) = [0 - E[B(Z+X)] = o (ascalar)
OE[y(Z + X)]

Admit the approximation Z @u E[@A(Z + X)], where u

oz
denotes a constant (for linear functionsP(Z), it is 1; for concave functions, it
may be represented by a value smaller than 1) - a measure of the elasticity of
the expected value with respect to the control variables (if all Z ['sincrease by

x%, E[A(Z + X)] would rise - proportionately - ux%) - or the returns to scale
of E[A(Z + X)] with respect to Z. Then, in the optimal solution:

1 ovar[y(Z +X)] 7

(3.11) 2E = = =
Replacing in (3.9), 8Var[z/:3(ZZ+X)] - i avar[l/:a(zz+X)] 7

OE[w(Z + X)] Then
oz '

oVarl[y (Z + X)] (z E[y(Z+X)]

G12) oz oz

uIr}=o

Z is set in such a way that (ul) is an eigenvalue of the left hand -side matrix;
as the latter, being the product of a vector by its transpose, has rank 1, Z will

OE[y (2 + X)]
oz

be such that (u @) will be the unique non-zero eigenvalue of Z

oVar[y(Z + X)]
oZ

and to the corresponding “left” eigenvector 3 - equal to the

3] thank an anonymous referee for this remark.
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OE[w(Z + X)]
oz’

the transposed eigenvector of the transposed matrix, Z’. For a

zero mean variable X, using (1.4):

82
E[w(Z + X 1 * (025V/Z'Vj 1
Za [w(Z+ )]=Z [6_'7”+_ ] =Z[al/l +=vec(V)

G13) oz oz 2 oz az
2
ol 2V
020Z |
oz
aVal’[l/é(ZZ+X)] is given by (1.9). Transposing (3.12), denoting {Z
OE[y (Z + X)] ul}*={w Z -uB@l} by A and
oz r oz '
8Val’[l/(;ézl +X)] by W, (3.13) hastheform Y = AW = 0. Using Proposition A.5

of Appendix 1, we now require for any change in Z and vec(V) and/or @forming
that:

oY oA oW
. — = (WBL) — +A~—— =0
(3.14) o ( o 2 oa

The properties of the new solution turned out difficult to disentangle. An
increase in @ only will imply:
of oV
0207’

A change in elements of V can be inspected through the implicit change in
vec(V) at a fixed @. Developing the vector form of the left hand-side with
Proposition A.1 of Appendix 1:

Using Proposition A.1.1, A.5and D.2.1in the Appendix 1:

dvec(A’) =dvec{Zg—Z +% Zvec(V) }dz dZ - uvec(Ir) da

oy oy
ovec(Z-2-)] (I, ®Z) ] 2
oL _ 0Z =(a—‘/’1)+(12)[a‘/’,]
6z 0z oz' U 620z

Using Proposition A.2 of Appendix 1 - vector of the product rule:

2 2
ol 2V ol 2V
6z6Z 0zz’)

oz oz

vec[ Z vec(V)’ ] = {Ir [Z vec(V)']} vec[

Through Proposition A.1, A.5and D.2.1in the Appendix1:
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o) )
dvec{Zvec(V)’ % HAZ ={vec| % I Irr} [Vec(Ir) BAvec(V)

2
o)
5 N -/

oz

Ir] +

+ {Ir [Z vec(V)']} 57

For V, an intermediate result is:

i) i)
dvec{Z vec(V)’ % }dvec(V) = {Vec[% I [Vec(lr) Irr]} Z

We can confront this expression with that of the von Neumann-
Morgenstern agent, implicit in (3.4). It has obvious similarities, but it is
weighed by Z.

5. The Value of Ex-post Flexibility
5.1. The von Neumann Morgenstern Entity

Suppose the expected function maximizing agent can react — contingent
on, point-wise - to X. Then, it sets Z such that:

oy(Z+X) o

(4.1) 7

Then it will choose Z as a function of X such that:

(4.2) Z=72(X)=Y-X
whereY is the constant for which:
oy (Y)
) —“— 2= 0
(4.3) 27

It will always be the case, no matter what value X takes, that:
(4-4) A(Z +X) = @A(Y)

IfE[X]=0=o0:
(4.5) E[Z]=Y ; Var[fA(Z+X)] = o

Obviously - see Martins (2004a), if the risks surround the decision
variables:

AP. Martins, JEPE, 12(1), 2025. pp.1-39

21



Journal of Economics and Political Economy
Proposition 8: The flexible von Neumann-Morgenstern agent will:
1. balance any randomness X by a corresponding compensation in Z,
rendering the objective function completely stable.
2. exhibit an expected policy E[Z] = Y higher (lower) than the ex-ante
committed agent iff dZ / dvec(V) < (>) o for the latter.

5.2. The Mean-Variance Agent

Consider a mean-variance unit. On the one hand, even if it cannot control
Z, provided it can react after observing X, we can admit that it has the ability
to throw away a “chunk’, y, of B(Z + X). Such ability is never used by an
expected value maximizer, of course. But will by the current entity. It has now
a series of decisions y = y(X), a random variable the probability distribution of
which will be in line with that of X.

Admit that X @ f(X), a <X < b. The entity will choose y’s in such a way that

it:
(4.6) M;’:lx U{E[B(Z +X) - y], Var[A(Z + X) -y]} =
= U(E[B(Z +X) - y], {[&(Z +X) - y]*} - E[A(Z + X) - y]?)
b b b
=U([ [B(Z+X) -yl fX) dX, | [B(Z+X)-y]* fX) dX - {] [B(Z+X) -

yl f(X) dX}?)

b
I denotes r integral signs limited by the elements of vectors a and b, and
a
dX stands for the product of the r differentials of the X’s. A first thing to notice
is the oddity of the problem: the controls are a continuum of values. But one
can find variational problems in the theory of risk - see Karni (1979) assessing
risk-sharing across states of nature 4. The most unfamiliar feature is the
dependency of the objective functional on expectations of functions of the
control itself.
It is easily visualized through the development of the integrals that the
optimal y’s will be such that:

(4.7)
- Ul{E[(Z+X) -yl, Var[A(Z+X) - y]} f(X) - UZ{E[(Z+X) -y], Var[B(Z+X) - yl}
{2 [A(Z +X) -y] f(X) - 2E[A(Z +X) -y] {(X)} =0

y - or rather y(X), once they are conditional on X - will react to X according
to:

14 Our argument is different from his, of course: we are assessing throwing away utility
- not the argument of the function - after the random event occurs. As noted, the
von-Neumann Morgenstern entity — that Karni overviews - would not accept to do
it.
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(48) y - Eyl = Bz + X) - E@Z + X)] + %

UAE[w(Z +X) -yl Varfy(Z +X) -yI}
UAE[W(Z +X) -yl Var[y(Z +X) -y}

Then, taking expectations we conclude that the y’s will be set in such a way
to guarantee:

UAELy(Z + X) -yl Varly(Z+ X)-yl} _

(+9) UAEIy(Z +X) -yl Varly(Z + X)—yI}
or
(4.10) Ul{E[(Z+X)] - Ely], Var[@(Z+X) -y]} = o

UAE[w(Z + X) —y].Var[y(Z + X) - y1}

U {Elw(Z + X) -yl Var[y(Z + X)-yI}
constant, we can conclude from - squaring and taking expectations... - (4.8)

that:

is indeed

and, because

(4.11) Var(y) = Var[B(Z + X) ] = Covly, B(Z + X)]

insuring perfect correlation between y and B(Z + X) - as expected - and:

(4.12) Var[B(Z+X) -y] = o

E[y] will be such that:

(4.13) U {E[@(Z+X)] - E[y], o} =0
implying:

Ul{E[(Z+X)], o} - UH{E[(Z+X)], o} Ely] + % Um{E[(Z+X)], o} Ely]*+..=

An approximation to the first order will require that optimally:

UAE[w(Z + X)].0}
U {Ely (2 + X)1,0}

(4.14) Ely] =

AslongasU(.,.) isconvexin the firstargument, E[y] > 0. (But then we might
have a minimum with the policy - for a maximum, U _{E[B(Z+X) - y],

Var[(Z+X) - y]} must be sufficiently negative.)

We did not complicate the problem considering | y | subtracted from the
function, or impose the restriction y > o, using Khun-Tucker conditions - nor
requiring E[y] > 0. Nevertheless, a negative y with E[y] > o may be accountingly
meaningful: if the firm could interchange revenue allocation between periods,
it would understate profits in good times, and overstate in bad times,
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transferring results in accordance to (4.8) - which implies that an optimal
policy will render “net” utility, 2(Z + X) -y, constant:

(4.15) E[A(Z +X)] - Ely] =B(Z + X) - y

The agent will be willing to pay (loose) as much as g, the direct risk-
premium of (2.20), for the possibility. Ideally, it will loose E[y] of expected B(Z
+X) - of E[A(Z + X)] - for it. An expected value-maximizing entity would have
no interest in engaging in such practices.

Proposition 9: A mean-variance agent that can react after the realization
of the random event (even if not through Z, the exogenous deterministic
variable):

1. may find it utility-yielding to “throw away” profits and even expected
profits.

2. will choose the optimal dissipation to be increasing in the state of nature
- in the observed B(Z + X).

3. may find desirable to accommodate through the policy all the
randomness of A(Z + X).

Consider that Z can also be chosen by the agent. Then, it will solve a joint
infinite series of conditional decisions in y and Z such that:

Max U{E[(Z + X) - y], Var[B(Z +X) -y}

The F.O.C. with respect to y still hold. That will imply that the entity will
usey to cushion all variability in “net” profits. If it does, it chooses Z such that:

(4.16) MZaX U{E[RA(Z +X) - y], o}
setting Z’s such that:

W(EZ+X) _

(4.17) =7

that is, it will mimic the behavior of a von Neumann-Morgenstern utility
maximizer towards Z.

Consider that Z can be chosen by the agent but policy y is not meaningful:

MZaX U{E[B(Z + X)], Var[&(Z + X)]} =

= U(E[®(Z +X)], E{[A(Z + X)]*} - E[A(Z + X)]*)

b b b
- U{j B(Z + X) f(X) dX, j B(Z + X)? f(X) dX - [j [B(Z + X) f(X) dX]?}

It is easily visualized that the optimal Z’s will obey:
(4.18) [Ul{E[(Z+X)], Var[B(Z+X)]} + UZ{E[(Z+X)], Var[2(Z+X)]}
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RBEZ+X) - 2 E[Z + X)) % £(X) = 0
Then Z will be set in such a way that either
ow(Z+X
(4.19) oy(Z+X) _ o

oL

op(Y) _
Vi

and Z is always equal to Y - X, where Y is the value for which

and the variance of A(Z + X) is completely eliminated.
Or:

_ 1 U{Ew(Z + X)].Var[y(Z + X)I}
2 UAE[w(Z + X)]Varly(Z + X)]}

(4.20) A(Z + X) = E[B(Z + X)]

Again, the optimal Z’s would make Z + X constant. Yet, taking expectations
we conclude that for this solution to hold all over the domain, the Z’s would
be set in such a way to guarantee:

UAEY(Z + X)) Varfy(Z + X)I} _ |
UAE[w(Z + X)],Varly(Z + X)1}

(4.21)

That will also require - replacing it in (4.20) - that Z will be such that:

(4.22) A(Z +X) = E[A(Z + X)]
and, as
(4.23) Ul{E[(Z+X)], Var[@(Z+X)]} = UI{E[(Z+X)], o}=o0

we enter structure (4.16) again.

We conclude that the transfer is, in any case, completely accomplished if
ex-post adjustability of the control variable to which the risk is added is
available. Then, adjustability through y becomes redundant.

Proposition 10: A mean-variance agent that can react after the realization
of the random and choose Z, the variable to which it is added to:

1. achieves the same solution as the expected-value maximizer.

2. Proposition 8 applies, comparisons valid with the von Neumann-
Morgenstern ex-ante committed agent.

3. dispenses with other smoothing tools.

6. Mixed Environments: A Final Comment
To reproduce particular environments, we may want to combine the three
types of situations - thatis, in Z = (Z . Z » Z 3), there will be variables Z P which

the agent can but endure, others, Z . that he can decide before the realization
of the added risk, and others, Z 3 that he can adjust after the randomness is

observed.
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The von Neumann-Morgenstern individual will:

b2 3
(5.1) Max E[A(Z + X)] = j j _[I(Z+X)f(X)dX

F.O.C are of two types: a unique one with respect to Z 5

(5.2) j j j a‘”(Z“LX) f(X) dX =0

& &

Infinite ones for Z 3:

b, b,
(5.3) j j w f(X) dX, dX, =0

&

From (5.3), a continuum of conditional optimal of policies are derived for
Z 3 function of XB’ of the common Z,, and of the parameters of the joint

distribution of X = (Xl, X 5 X 3). It can then be replaced in (5.2) to solve for Z 5
If the distribution of the vector X 3 is independent of that of the vector (X1’ X 2)
- i.e., if we can write f(X) = f(X1’ X, XB) = le(Xl, Xz) fB(XB)’ where le(Xl, Xz)
and f S(XB) denote the marginal probability distributions -, (Z S+ X 3) is a

constant vector in the optimal policies and the randomness in that sum is
always neutralized. Yet, that constant level will not be the one for which

M = 0, unless M is invariant to (does not depend on) (Z

oz 0Z, 1
+X,, Zz+X2)“'

Notice that if f(X) = f(Xr X, XB) = f1z(X1’ Xz) f3(X3), we can use the

expansion of Proposition 1 applied only to (Z ,Z,), take the derivative with

respect to Z 3 and equate it to zero to approximate (5.3), but not otherwise.

For a mean-variance agent:
(5.4) |>/|6;X U{E[R(Z + X)], Var[B(Z + X)]} =
= U(E[@(Z +X)], E{[A(Z + X)]*} - E[A(Z + X)]?)
b, b, by b, b, by b, b, b
=U{j j j A(Z + X) £(X) dx,j j j (Z+X)2f(X)dX—['[ j j

& & & @ &4 &

[@(Z + X)f(X) dX]?}

It is easily visualized that the optimal Z’s will obey:
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(55) T bj bf [U(E[@(Z+X)], VarB(Z+X)]} + U_{E[(Z+X)]
Varla el
BEZ+X) - 2 E[AZ +X))] %:X) F(X) dX = o
(56) T bj [U{EB(Z+X)], Var[(Z+X)]} + U {E[R(Z+X)]
VarBzex))
B(Z+X) - 2 E[AZ +X)])] %Z:X) £(X) dX, dX, =
0

Expressions become more complicated, but constancy of (Z 3t X3) in case

of statistical independence is preserved. It will, however, differ from that of a
expected value maximizer. And that will still be true if no ex-ante control is
available as long as some additive uncertainty surrounds out-of-decision range
variables.

7. Production Theory Applications
We admit a firm that produces output, g, sold at price P and employing r
inputs, of quantities Li , i=1,2,...,1, represented by a column vector L, at unit

(column-vector) cost w, of element w;. Its technology is represented by a

production function q = F(L), continuous, increasing, quasi-concave and
differentiable to several orders in L.

Under certainty, it has a deterministic cost function C(q, w) continuous,
increasing, concave and differentiable to several orders in g, a profit function
(P, w), both enjoying the usual properties > and compatible with technology
F(L).

Uncertainty has been apposed to the firm’s problem in several contexts ' -
Aiginger (1987) surveys several scenarios, and a recent univariate inquiry can
be found in Martins (2007).

7.1. Price Uncertainty under Ex-post Flexibility

The firm acts towards prices optimizing the profits after observing the
randomness. Obviously, the expected value maximizing firm will react to X
according to B(P + X, W+ Xr) that takes the role of B(Z + X) and the

conclusions of section 2 apply. B(P + X , w + X ) is convex in (P, w) and general

risk-loving behaviour towards the randomness — negative risk-premium - is
expected. As for the particular problem, the convexity of the objective function
is related to the magnitudes of the slopes of

15 See Varian (1992), for example.
16 Oi (1961), Sandmo (1971), Feldstein (1971), Rothemberg and Smith (1971), Batra and
Ullah (1974).
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oI1(P,w) _ S

- supply, once P,w
pply p q° (P, w)

- input derived demands, once - = LD(P, w) 7

oI1(P,w)
ow

they will determine the size order of the impact of uncertainty on the
maximand. Of course, the size of the impact of uncertainty on the expected
supply and demand themselves is determined by their own concavity in the
corresponding arguments — being negative when the functions are concave,
positive when convex.

Notice, however, that the mean-variance firm - staying on the market long
enough to experience the fluctuations of the profits - may not find it optimal
to react according to BI(P + X p WX 1r). The firm may trade expected profits by

less volatile income. Then, it may enter into the scenario of section 4.2.: we
conclude that a mean-variance entity with ex-post flexibility may find it
optimal to engage in charitable contributions in good states. If the variability
comes from the input prices, in which case it is likely that U <o, and we

consider a vector Y subtracted to X, it would be more likely that second order
conditions will be satisfied with such a policy; then firms would be willing to
pay higher employee compensations in good times, for example.

6.2. Quantity Uncertainty under Ex-ante Commitment

Under ex-ante commitment with respect to the control variables, the firms
are in the environment of section 3 and #(Z) becomes P F(L) - w L. Uncertainty
added to the control variables has the size of the effect on the maximand
determined by that of the simple addition of the randomness, evaluated at the
optimal control. It is determined by the concavity of the production function
itself.

The firm equates the value of expected marginal product - the expected
inverse factor demands - to factor prices:

(6.1) p EIFUL+XT _ p g dF(L+X),
oL oL
OE[F(L+ X)]
oL
The more concave (less convex) the inverse demands - and potentially also
. OE[F(L+ X)]
oL
decreases with uncertainty at a given level L. To compensate a rise in
uncertainty - being inverse demands negatively sloped -, if the marginal
product function is concave (convex), a lower (higher) level of the input will
be sought.
Analogous lines would allow the interpretation of the effect of uncertainty
in X affecting the cost function C(q + X). Then:

Then L will move in the same way as reacts to uncertainty.

demands, once they are negatively sloped - are®, the mor

17 Both from Hotelling’s lemma.
8 See Carroll & Kimball (1996) for an assessment of the role of the concavity of the
inter-temporal consumption function under uncertainty.
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- the impact on expected profits of a rise in uncertainty in q will be more
negative the more convex is the cost function - the higher the slope of the

marginal cost function, the lower the slope of output supply qS(P), its inverse
function.
- as the firm sets:

(6.2) P OE[C(q+ X)] _ E[8C(q+X)]
aq aq
The more concave (less convex) is the marginal cost function - the more
convex is the supply, its inverse function, once it is positively sloped -, the
higher will be the increase in q required to balance an increase in uncertainty.
If marginal cost is convex (concave), the optimal q decreases (increases) with
uncertainty.

=. Conclusion

Matrix representation of risk-premium and corresponding first differentials
with respect to exogenous parameters of multivariate random variables was
presented. They are useful to generate theoretical conclusions of several
economic applications, but also to simulate empirically the effect of risk
exposure in any environment, once functional forms are specified. More
distantly, the principles used and developed in the text may reveal themselves
useful for algorithms requiring numerical differentiation - potentially, with
application in initial-value generation in non-linear optimization.

We concluded about the importance and role of third and higher order
derivatives in the analysis of risk-aversion and decision-making under
uncertain backgrounds. General features of both issues’ crucial vectors diverge
for an expected-value maximizer and a mean-variance one. In general, higher
moments and derivatives (differentiation) are recommended for the latter to
achieve the same order approximation of the results. Reliance on Taylor’s
expansion - common in the risk literature - also originated a straight-forward
connection between the multivariate measure of the aversion in the attitude
to multivariate risks and the (partial) aversion to each of the elementary risks
subject to background uncertainty.

In general, and as intuitively expected, a mean-variance (“utility”) entity
potentially exhibits a “compound-premium”, weighing the expected value but
also the variance impact of an exogenous noise. Interestingly, if given the
possibility of transferring utility across states of nature, a rational mean-
variance agent with a sufficiently convex utility in the expected value
argument, will approach the von Neumann-Morgenstern attitude.

Subject to uncertainty, whenever possible - with ex-post adjustment of
controlvariables or by other means -, both types of agents will try to reach the
maximum value of the function of the expected value of the (random or not)
arguments. With enforcing contracts with respect to the controls, the
expected optimal maximand reacts to uncertainty as the expected function
would in the absence of optimization - but at the optimal level of the control
variables.

With ex-post flexibility with respect to decision variables to which the risk
is added, uncertainty is completely countervailed - and the optimized
function completely stabilized.
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Production applications under some of the relevant environments - as
consumption could have also been - were briefly overviewed. The
conditioning effect of concavity, slopes of supply and factor demand were
appropriately related to the response to uncertainty by a competitive firm.
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Appendixi.

We use:
Convention 1. Let A be an m x n matrix the elements of which depend on the r

element column vector @. Then — (a Jacobian matrix) isa mn x r matrix that has in
(04

the i-th row and j-th column element the derivative of i-th element of the vector
vec(A) - created juxtaposing consecutively the n columns of A in a single “column” -
with respect to thej-th element of vector &:

OA  ovec(A)
oa oa
. . oA (OA)
Convention 2. We will write - = —.
o ox
O%A o ox
Convention 3. We will denote by - = — = .
oada ox oa
_ OA _OA OA  OA O°A _
For example, ifm=n=1, — = and — is the Hessian
oo Oa Oa, O«, oada
. . o . oA _
matrix of the function A, matrix with typical element [————]. Being A a scalar,
oo, 0
oO°A o°A o°A o0°A oO°A o0°A

)

badd  dada’ oa’0a; ) da0a; Oa0a;  Oada; .

We refer below useful propositions on matrix algebra used in the text. Ij denotes

an identityj x j matrix.
. Quoting from Dhrymes (1978), often used results:

Proposition A.1. (Dhrymes, 1978, Proposition 86, p. 519). Let A be m xn and B n x
s. Then:

1. vec(A B) = (IS @A) vec(B) = (B'[@ Im) vec(A)
(Hence:) 2. vec(A) = (In A) vec(In) =(A Im) veC(Im)

Proposition A.2. (Dhrymes, 1978, Corollary 22, p. 519).
VeC(A1 A2 A3) = I (AlAz)] Vec(AB)

Proposition A.3. (Dhrymes, 1978, Proposition 88, p. 521).
tr(A B) = vec(A’) vec(B) =vec(B’) vec(A)

Proposition A.4. (Dhrymes, 1978, Remark 45, p. 522).
tr(A. A_A_A ) = vec(A") (A'BA_) vec(A ) =vec(A ') (A_BA) vec(A)
172737 27 YT 4 47 3T 2

Proposition A.5. (Dhrymes, 1978, Proposition 93, p. 525). Let Y = A X, where Y is
m x 1, Aism x n, Xisn x 1, with both A and X dependent on the vector B, r x 1.
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o oA X
- (XBL) — +A—
oa m da oa

Proposition A.6. (Dhrymes, 1978, Proposition 96, p.527) Let Z be mxi, A mxn and
X nxi, A isindependent of the rx1 vector B. Then

o(Z'AX) ., 0L . oX
— = =XA — +7 A — and
oa oa oa
2 1 ! ' 2
O(Z'AX) (923, X (KN Z  wren-2Z Ao
oada' oa) Oa oa oa " dada' r
9*X
oaoa'

Proposition A.7. (Dhrymes, 1978, Proposition 100, p. 532) Let A be mxn, X nxq, B
gxr and Z rxm. If X and Z are functions of the rx1 vector @ Then
otr(AXBZ ovec(X ovec(Z
(AXBZ) vy VES(X) | Bvec(Z)
oa oa oa

Proposition A.8. (Dhrymes, 1978, Proposition 101, p. 532) Let A and B are square
matrices m x m and q x q respectively, and only X - which is gxm - depends on the rx1
vector (. Then

otr(AX 'BX)
oa

= vec(X)'[(A’@B) + (AT B')] ovec(X)

. Others:

Proposition B.1. Being A an (mxn) matrix (see the result in Hamilton, 1994, p.
733):
LI m(I BA) =1 _BA
T s rs
2 (ABL)mI = ABI
T s rs

Proof: Use the fact that, for any matrices A, Band C, ABBEC = AR (B&AC).

Proposition B.2. Being X an nx1 column vector and Z an rx1 one:
1L.XBZ = X7

2.XBZ = (XZ) =172X =728X

3.XB7 = 7278X

4.XBX = XBX = XX

5.vec(XBZ) = (Z In) X = (Ir X)Z =Z@X (Proof: Use A.1.1.)

Proposition B.3. Being X a column vector: (Proofs: Use B.2.4. )
L(XX)BX = XB(XX)
2. [ XEBXX)] = XB(XX) = (XX)BX

Proposition B.4. Being X a column vector: (Proofs: Use B.2.4. and B.2.5.)
1L XBX = vec(XX’)

2. XBXBX = vec[(XX') BX] = vec[X B (XX')]

3. XBXBXEX = vec[(XX') B (XX)]

Proposition C.1. Let X be an nx1 vector and A a pxs matrix. Then,

1. vec(A@X) = vec(A) @X
2.vec(X@BA) = vec(ABX') = [(Is X)BA] Vec(Is) =X'BA Inp) VeC(InP)
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3. Vec:(Is X) = VeC(Is) X

4. vec(X Is) = Vec(Is X) = [(Is X) Is] Vec(IS) =X Isns) vec(l
(Proofs: Use Aa.2.)

)

ns

Proposition C.2. Let A be an mxn matrix and B an rxs one - (A @ B) is mr x ns.
Then, vec(A @ B) =
1[I (ABL)] vec(I_ @B)
ns I\ n

2. [(In B’) Imr] vec(A Ir)
3. [Ins (Im B)] vec(A IS) = (Insm B) vec(A Is)
4. [(A IS) Imr] Vec(lm B) = (A Ismr) Vec(Im B)

Proof: Use the fact that (AEB) = (Al Ir) (In B) = (Im B) (A Is) and Proposition
Aaa.

Proposition D.1. Let a be a scalar and B an (mxn) matrix, both functions of the
elements of an (rx1) vector B. Then:
o(aB ovec(aB oa oB
( ) = ( ) = vec(B) — +a —
oa oa o o

Proposition D.2. Being X an (nx1) vector dependent on a (rx1) vector B and A a
pxs matrix independent of [

O(A®X)  ovec(A®X)

1. =

oX )
vec(A) (Proof: Obvious from

Py oa oa
Ci1)
O(X®A ovec( X ® A
N ( ) _ ( ) _ {[Vec(%)]’A’I L Bvec(_ )]
oa oa Ja et P
(X ®I ovec(X ®1 oX
N ( — ) _ (aa ) _ {[Vec(a)]’lsns} [Irvec(lns)]
(a®a)
4. e | + @031
o ! '
Appendix 2.

Taylor’s expansion to the fourth order of any function B(Z) around neighbourhood
X of a given level Z generates (see an approximation to thethird order in sum notation
in Hamilton 1994, p. 738):

-
(An) a2+ %) = 12 + L x + = |vee| 2| xax)
oz 2! 0207
of &V
1 0207
v gy qvee| ———= (XBXEBX) +
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2
|2t
8 N "/

oz

+ — | vec XpXpX@X) + .. =
41 oz

2
oy X . 1 X 0 l//,
oz 2! 0Z0Z

5 821// oz
0L0Z" 1

X + — vec[(XX") @ X] X + ..
oz 41 oz

1
+ a vec(XX’)

Proposition E. Let X be an rx1 random vector for which E[X] = @ and Cov(X) =
E[(X - B) (X -BZ] = V. Then:
L EXX =V +B@
2 E{[(X-0) (X-I@] B8 (X-0)}=E{XX-XT -BX + ) B (X-0)} =
=E{{(X-B) X-m@] BX}-(VERD) =
- E[(XX-XZ -BX’ + ) BX] - (VD) =
- E[(XX- X2 -BX) B X] - [(V -02) 3] =
— E[(XX) B X]- E[(X?) B X] - E[(EX’) B X] - [(V - ET) B ]
= E[(XX) BX]- [@ Bvec(V+ER)] - (@EV) - (VED)
= E[(XX) BX]- [vec(V+E) BE] - (@EV) - (VED)
=E[(XX)BX]-vec(V+2X) & - (@AV) - (VD)
3. E{[XX’' - E(XX)]@ (X -B)} = E[(XX’) B (X -B)] = E[(XX") BX] - [(V + &) (]
4. E{(X-B) B [XX -EXX)[} =E[(X -B) B (XX)] = E[X B (XX)] - [@&A(V + )]
5. E{[XX’ - E(XX)[m(X-@)’} = E[(XX)A(X-B)'] = E[(XX) B X’] - [(V + 7) ET]
6. E{(X-B)B [XX - E(XX")]} = E[(X-B)E (XX)] = E[X' B (XX)] - [@ B(V + )]
7. E{[XX’ - E(XX)] B [XX’ - E(XX)]} = E{(XX) B [XX’ - E(XX’)]} =
= E[(XX) B (XX)] - [(V +2) ;& (V + )]
8. E{{[(X-0) X-m1Z] B (X-0) (X-m} = E{(XX-XZ -BX' +&) B (X -0) (X - @} =
E{(XX'- X2 - BX) B (X -0) (X -E7} + (@) BV
- E{[(X (X-m2] B (X -B) (X - 7} - 0 E{(X -0)’ B [(X -B) (X -ET]} =
= E{(XX) B [(X-B) (X-m}- E[(XE) B[(X -0) (X -z7]} - E{(X -B) 8 [(X -8) (X
-m]} =E[(X X))@ (X X')] - E[(X X)a(EX')] - E[(XX) B (X2)] + [(V+e2)aEe)] -
-E[(X @)@ (XX'E] + E[(X @)@ (EX)] + E[(X &) B (X2)] - [(BE) B (ER)] -
- E{(X-2) 8 [(X -B) (X -]} =
—E[(XX) B (XX)]-E[(XX)BX]B8- E[(XX)EX]BE + [V B (I)] -
- REXEXXE] +7 B (V+2) + 1 B vec(V+ER) B -
- {E[(XX)BX] - [@ Bvec(V+E)] - (@AV) - (VED) } =
=E[(XX)BXX)]-E[(XX)aX]@B-E[XX)BX]BE + [VE EX)] -
-FREXDXXE] +@ B (V+27) + B vec(V+ER) B -
- {E[(XX)BX']- @B vec(V+ET)] - (@BAV) - (VAER) } =
—E[(XX) B (XX)]-E[(XX)BX]B8- E[(XX)2X]BE + [V B (I)] -
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-FREXE XX+ B (V+2T) + Bvec(V+2) BIE -
e { E[(X X)' B X'] - [vec(V4ER) BEl- @ BV) - (VED) }

Appendix 3.

Consider that X is a nx1 vector with multivariate normal distribution with E[X] =
and Cov(X) = V. As is well known, denoting t by the (nx1) vector of arguments, its
moment generating function is:

M(t) = exp(® t+ ¢ Vt)

Proposition F. Then:

L M =exp(@ t+ ¢ Vt)(+Vt)
ot'
2 1
2. 8(3IM—'8('[t) =exp(® t+ %) (@+VE)@+Vt) +V]
a[aZM(t)}
ot'ot t'Vt
3. T =exp(@ t+ T) ({[In A@+Vt)] @+Vt)+vec(V)} @+Vit)+
+[@+VE)DE Inn] [Vec(ln) av]+ [Irl @+VH]Vv)=
= exp( t+ tvt YH{(@+VH)E@E+ V)] +vec(V)} @+ Vi) +
+[(@+V)RV]+[VE@E+ V)]
= exp( t+ tvt ) ({vec[@ + VE)@+ V)] +vec(V)} @+ Vi) +
+[@+V)RV]+[VE@E+ V)]
M (t) OtV
Proof: vec( : ) =exp(@ t+ ) {[In @+Ve)]@+Vt)+ vec(V)}. Then,

apply rule of differentiation of Propositions A.5 and D.2.1. and use B.2.5.
Note that [(B + V t)’ Inn] [VeC(In) V]i={[@+Vt) In] VeC(In)} V=@@+Vt)

V. (Use Aa.2.)

a{azlvl(t)}
) L avat
ot

t ) {{(@ +Vt) Bvec[(B +Vt)(@+Vt) + V]} +

t
4. ot = exp(@t +

+vec[(B+Vt)AV] +vec[VE@+ V)] @+Vt) +

t ) ({VEvec[(@ +Vt)([@ +Vt) + V]} +

t
+ exp(T't +

ovec[(u+Vt) ® (u+Vt)1 "

+ [([@+Vt) IIl p

Iln] {VeC(In)

ovec[(VI)® 1 ] .

+(vm Inn) P

[vec(V) BV]) =

t ) { {(@+VE) Bvec[(@ +Vt)([@+Vt) + V]} +

t
= exp(@'t +

+vec[(B+Vt)AV]+vec[VE@E+ V)] (@+Vt) +
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tvt ) ({VEvec[(@ +Vt)(@ +Vt) + V]} +

+ exp(T't +

+ [(@ +Vt) Innn] [Vec(In) {Iva@+Vvt)] + [(@ +Vt) Inn] [VeC(In)]}

1+
+ (Inn V) [vec(V) Innn] [In Vec(Inn)] + [vec(V) BV])
3 O*M (t)
ot'ot t'Vt
Proof: vec( T ) =exp(® t+ ) {{In BAvec[(B +Vt)(@ +Vt) + V]}(@ +Vt)
+

+vec[(@ +Vt)AV] +vec[VE@+Vt)]} =

= exp( t +t ¢ ) {[(@ +Vt) Inn] vec[(@ + Vt)[@+Vt) + V] +

+vec[(B+Vit)BAV] +vec[VE@+Vi)]} =
t'Vi

=exp(@ t + ) {{@+Vt) Bvec[(B +Vt)([@+Vt) + V]} +

+vec[(B+Vt)BV] +vec[VE@+Vt)]}
Using Proposition C.2 and A.5.

Proposition G. We will have that:
1. M(o) =1
2. M =E[X] =0
6t 1
2
. IM(O) _ E[X X'] = B + V.
ot'ot

a{azM(O)}
ot'ot
4. T = Elvec(X X)BX'] =E[(XX)BX] = EXB(XX)] =

= (1,08 B+vee(V)] B + @B ) [vee(l ) BV] + (I BE) V =
(@RE) + vec(V)] B + [(& In) In] [Vec(ln) V]l+(VRR) =

(@BE) +vec(V)] B + @BV) +(VRED) =
=vec(®@ + V)T + (@EV) + (VEE)
If@ = o, E[(X X") @X] = 0. Hence, for the multivariate normal, E{[(X-B)(X-EZ] B (X-
@)} = o always.

foe
JLave |

ot'

5. ot = E{vec[(X X)BX]BX'} =

(D8 vec(@ + V)] + vec(@DV) + vec(V IO} B+
+ [V Bvec(E® + V)] +
+@ Innn) [Vec(ln) {(van) + @ Inn) [VeC(In) VI +

+ (Irlrl V) [vec(V)’ Innn] [Irl Vec(Inn)] + [vec(V) B V]
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) ovec[(VI)®1,] (

ot
[vec(V)EV] = [VBvec(V)] + (Inn V) [vec(V) Innn] [In Vec(Inn)] + [vec(V) B V]

If @ = o, E{vec[(XX’) @ X] @ X’} = [VEvec(V)] + (Irlrl at t=0) +

. It is easy to use the expressions to show that for a null means normal: E[Xl X2 X3]
= 0; E[X1 X2 X3 X4] = 12 34 + 13 24 + 23 14 - see, for example, Dhrymes, 1978, p.

371 -, where ij is the element of the i-th row j-th column of the symmetric matrix V.
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