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Abstract. This research develops and expands the concept of risk-premium to a multivariate 
environment, providing an operational framework for the analysis of mean-variance 

optimizers’ attitudes towards exogenous uncertainty. Firstly, it digresses over possible 
approximations to the risk premium. Secondly, importance and properties of the variance of 
the objective function are highlighted. Thirdly, impact of uncertainty on the objective 

function and on control variables of mean-variance agents is confronted with that of 
expected function optimizer’s. The analysis is also applied to ex-post flexible or adjustable 

environments with respect to the decision variables. Production theory examples are briefly 
sketched. Innovation in tools include matrix algebra results and representation of higher 
than second moments – with reference to the multinormal as a special case -, and implicit 

rules of first-order condition point-wise optimization of functions of expected value and of 
variance of other functions. 
Keywords. Multivariate Uncertainty, Multivariate Risks, Risk-Premium and Risk-aversion, 

Background Noise, Firm’s Valuation, Mean-Variance, Commitment under Uncertainty. 
JEL. D80; D21. L14; L15. G11; G12. C60, C61, C69. C10.  

 

1. Introduction 
ultivariate analysis in the theory of uncertainty is highly technical 
and often redounds in unintuitive outcomes. It is the purpose of this 
research to contribute to the understanding of its mechanics and 
frameworking.  

Even in the univariate domain, where the role of concavity of the objective 
function is graphically understood, the quantitative measurement of the 
response to uncertainty only becomes perceptible through the mathematical 
development of the properties of the risk-premium – of how much of a given 
asset or income is the individual willing to forego to avoid the randomness. 
The risk-premium provides a measure of the impact of uncertainty on the 
expected value of a given function in the metric of one of its arguments. 
Through its inspection, the Arrow (1965) and Pratt (1964)’s absolute (and 
relative) measure of risk-aversion measure emerge as conditioning the 
magnitude of passive impact on expected utility, Kimball’s (1990) prudence of 
the effect of risk on control/decision variable of an optimizing agent, Gollier 
and Pratt’s (1996) temperance and Martins’ (2004) providence assessing 
background uncertainty. 

On the other hand, von Neumann-Morgenstern agents – expected function 
maximizers –are not the only prototypes simulating individual’s behavior in 
the presence of uncertainty dealt with in the economics literature. Non-
expected utility theories count recent applications in resolving empirical 
paradoxes (Starmer, 2000). In the finance area, the mean-variance approach – 
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see Tobin (1958) and Markowitz (1959) 2  -, that encompasses the eclectic 
treatment as a special case, is probably the most well-known, with relevance 
in asset-pricing formation research3 among others. Applications in production 
theory have also followed4. Its contrast with expected utility preferences has 
been the subject of recent studies in risk and insurance theory – Ormiston and 
Schlee (2001), Lajeri-Chaherli (2002) and Eichner and Wagener (2003). 

Naturally, an inquiry into the properties and adequate definition of a risk-
premium under the assumption would stand as useful, and its multivariate 
generalization as fundamental - and became the main goal of this article. 
Historically, it continues the sequel of Duncan’s (1977), Karni’s (1979), 
Kihlstrom, Romer and Williams’ (1981) 5 and others’ work, searching for an 
appropriate multivariate risk representation – for von Neumann-Morgenstern 
agents. 

Under multiple variable interaction, matrix representation, with more 
compact outcomes than the underlying summations, products and others, 
becomes useful. Yet, notation and properties of its algebra do not seem to have 
had a consistent use in mathematical applications. A first task was to develop 
theorems applicable to the analysis, mostly on matrix differentiation rules 
involving vectorization and Kronecker products – honouring Dhrymes’ (1978) 
matrix calculus legacy. Among others, a tractable Taylor’s expansion form – 
invariably essential in risk theory approximations - was derived; and third and 
fourth moment matrix representations for the multivariate normal. 

An application of the principles yielded the representation of the expected 
value but also of the variance of a function of uncertain multiple, possibly 
correlated arguments. The development of the latter is important for the 
understanding of the impact of exogenous variability on the behavior of a 
mean-variance entity. Importance of higher-order derivatives and moments of 
the exogenous randomness(es) distribution becomes visible – without reliance 
on higher than second-order expansions, subject explored for the bivariate 
case in Martins (2004), for example.  

Features of optimal decisions become more complex under uncertain 
environments. The subject has been studied in microeconomic consumption 
and production theory; general conclusions can only be derived with a 
multivariate representation which we were set to inspect. We staged two 
scenarios – constant controls decided before the realization of the random 
event; and ex-post decision-making. If ex-ante commitment implies control 
variable stability – with optimal decisions completely sterilizing indirect 
effects of uncertainty on the objective function -, ex-post flexibility offers the 
potential to use the control variables in order to reduce the actual (total) 
“direct” maximand’s fluctuations. 

Ex-post flexibility in the control variables would get the expected-value 
mazimizer back to the exogenous uncertainty background, now referred to a 
 
2 Allais - (1979), as cited in Starmer (2000) – proposed a model in which individuals’  

preferences “may also depend on the second moment of utility, that is, the variance 
of utility about the mean”. One can say that some of the former theories propose 
preferences over the mean and variance of a certain random variable. 

3 Also, the Capital Asset Pricing Model - Sharpe (1964), Lintner (1965) and Black (1972) 
among others. Duffie (1991) presents a recent version and overview of similar 
material. 

4 See Karni and Schmeidler (1991) for a recent survey. 
5 Also Keeney (1973), inspecting independence. 
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deterministic optimal – optimized – indirect problem. If the randomness(es) 
is (are) added to the decision variables, it turns the expected-function 
mazimizer into a deterministic optimizer on the expected value – it allows for 
the neutralization of the effect of any risk. That may not be the case for a 
mean-variance agent. Moreover, in some contexts, even if no other defence is 
available, point-wise pure discarding of utility may be a meaningful option 
and, if capable of being sufficiently variance diminishing, have a place in 
optimal planning of the latter. 

The exposition is organized as follows: in section 1, we advance general 
notation and develop expected value and variance equivalences. Section 2, 
digresses over operational definitions of the risk-premium in the multivariate 
case. Section 3 explores the properties of optimal controls under uncertain 
backgrounds. Section 4 generates analogous conclusions for ex-post 
adjustable decision contexts. Section 5 advances general statements on the 
implications of combining the several backgrounds. Some applications to 
production theory are noted in section 6. The exposition ends with some 
concluding remarks. (Theorems of matrix algebra are compiled in Appendix 1, 
Taylor’s expansion in vector form advanced in Appendix 2, multivariate 
normal moment matrices developed in Appendix 3.) 

 

2. Notation: Multivariate Risk Exposure and Moments 
of Multi-Argument Function 

Admit a general (uni-dimensional) function of r attributes, represented by 

the column vector Z, (Z). We adopt Dhrymes (1978) conventions with respect 
to matrix operations – they are stated in Appendix 1.  

Consider a column vector X of dimension r. Using Taylor’s expansion – see 

Duncan (1977) -, (Z + X) can be approximated by: 
 

(Z + X)  =  (Z)  + 
Z




  X  + 

1

2!
 X’ 

2

´Z Z



 
 X + ...    (1) 

 

Z




 is the row-vector with r elements containing the first derivatives of 

(Z) with respect to each of the r Zi’s – it is the gradient of (Z). 
2

´Z Z



 
 

denotes the (symmetric) Hessian matrix of (Z), the matrix of second 
derivatives. 

Let X denote an r-dimensional multivariate random variable, of mean E[X] 

=  and variance-covariance (symmetric) matrix Cov(X) = E[(X - ) (X - )’] = 
E[X X’] - ’ = V; 

i
 denotes the element of the i-th row of ; 

ij
, the element in 

the i-th row and j-th column of V. d denotes the column vector of differentials of 

the several 
i
’s. Also dvec(V) is a rrx1 column vector containing the rxr 

differentials of the variances and covariances of X; of course, when assessing 
effects of out of the diagonal terms of V, one has to add two of dvec(V)’s 
factoring elements. 

It is easily established that, provided the elements of X are small: 
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Proposition 1: 
Z




  

1

2
 

'
2

´
vec

Z Z

  
  

   

 

 

 = 
Z




  

1

2
 tr[

2

´Z Z



 
 ] 

 

Proof: Denote 
Z




 by G (a row-vector with r elements) and 

2

´Z Z



 
 by H 

(a symmetric square matrix of order r). Taking the expectation of (1.1), only 

the last term, involving E[X’ 
2

´Z Z



 
 X] = E[X’ H X] would not be obvious. X’ 

H X is a scalar, hence equal to its trace. E[X’ H X] = E[tr(X’ H X)]; as tr(A B) = 
tr(B A) as long as operations are conformable, E[tr(X’ H X)] = E[tr(H X X’)] = 
tr(H E[X X’]) = tr[H (V +  ’)]. Using Proposition A.3 of Appendix 1, and noting 
that H symmetric: 

 
(1.2) E[X’ H X] = vec(H)’ vec(V +  ’) = vec(V +  ’)’ vec(H) 
 
We can deduce that: 
 

(1.3) 
[ ( )]

( )

E Z X

vec V

 


    

1

2
 

'
2

´
vec

Z Z

  
  

   
 

 
Notice that the effect of an exogenous change in the level of the 

deterministic arguments Z on expected utility is given by (using Proposition 
A.5 in the Appendix 1): 

 

(1.4) 
[ ( )]E Z X

Z

 


  =  

Z




 

2

´Z Z

 
 
  

 + 
1

2
 

2

( ')
´

tr V
Z Z

Z




 
  

  


 = 

 =  
Z




 

2

´Z Z

 
 
  

 + 
1

2

2

´Z Z

Z

 
  

  


  

 
However, with the same order approximation we only capture the first two 

 
 

(1.5) 
[ ( )]E Z X



 


  =  

Z




 

2

´Z Z

 
 
  
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Proof: Using the rule of the derivative of the trace of the product rule of 

Proposition A.8 in Appendix 1, letting A = 
2

´Z Z

 
 
  

recover that 

2

'
´

tr
Z Z






  
   

   


 

2

´Z Z

 
 
  

.  

 
Third derivatives condition (1.4); second ones (1.5). Yet, the two effects 

should coincide under infinite (full) approximations. 
 
Also of interest would be the variance of the function. Ignoring higher than 

second-order terms, taking the covariance of the right hand-side of (1.1), we 
conclude - using the fact that if a is a constant and x and y random variables, 
Var(x + y + a) = Var(x) + Var(y) + 2 Cov(x, y): 

 

 Var[ (Z + X)]    Var(G X) + 
1

4
 Var(X’ H X) + Cov(G X, X’ H X) 

 
One can show that: 
 

Proposition 2: 
Z




 V 

'Z




 +  

+
1

4
(

'
2

´
vec

Z Z

  
  

   

2

´
vec

Z Z

 
 
  

- 

2

´
vec

Z Z

 
 
  

}
2
) + 

 + 
Z




 E[X’ (XX’)] 

2

´
vec

Z Z

 
 
  

 - 
Z




 [vec(V + ’)]’

2

´
vec

Z Z

 
 
  

 

=  

 =  Var[ (Z + X)]    

'

'
vec

Z Z

     
     

 vec(V)  +  

+
1

4
 

'
2

´
vec

Z Z

  
  

   
{E[(XX’) (XX’)]- vec(V + ’)[vec(V + ’)]’}

2

´
vec

Z Z

 
 
  

 + 

 + 
Z




 {E[X’ (XX’)] -  [vec(V + ’)]’} 

2

´
vec

Z Z

 
 
  

     

 
Proof: The first term has a trivial correspondence: Var(G X) = G Var(X) G’ 

if G is deterministic. We can use the fact that tr(A B) = tr(B A) and Proposition 
A.3 in Appendix 1 to develop the same first term in the second correspondence. 

The second term can be developed in the following way: 
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Var(X’ H X) = E[X’ H X X’ H X] - E[X’ H X]2. Using (1.2), we can recognize 
the squared term. E[X’ H X X’ H X] = E[tr(X’ H X X’ H X)] = E[tr(X X’ H X X’ 
H)]. Using the trace of the product rule of Proposition A.4 of Appendix 1, we 

 
As for the third term, Cov(G X, X’ H X) = E{(G X – G )(X’ H X - E[X’ H X])} 

= E{G X (X’ H X - E[X’ H X])} - G  E(X’ H X - E[X’ H X])} = G E[X X’ H X] – G 
 E[X’ H X])}. E[X’ H X] is given on (1.2). E[G X X’ H X] = E[tr(G X X’ H X)] = 

E[tr(X X’ H X G)]; applying again the trace of the product rule, E[tr(X X’ H X 

a row vector, vec(G’) = vec(G) = G’: 
 
(1.6) E[G X X’ H X] = vec(H)’ E[(XX’) X] G’ = G E[X’ (XX’)] vec(H) 
 
However - see Proposition E.4 of Appendix 2: 
 
 E{(X - – -  
 
Third centered moments are related to the asymmetry or skewness in the 

distribution of X – so, also that matrix, but in a more distant correspondence. 
It is easily shown that for a null expected value multivariate normal - 
symmetric around zero -  

Also - see Proposition E.7 of Appendix 2: 
 
E{[XX’- – -  
 
One can now deduce, using Propositions A.1, A.5 and A.7 of Appendix 1 that: 
 

(1.7) 
[ ( )]

( )

Var Z X

vec V

 


    

'

'
vec

Z Z

     
     

 + 

 + 
1

4
 vec[

2

´
vec

Z Z

 
 
  

'
2

´
vec

Z Z

  
  

   
]’ {

[( ') ( ')]

( )

E XX XX

vec V

 


 -  

  - rr] - [Irr  

 + vec[
2

´
vec

Z Z

 
 
   Z




]’ {

[ ( ')]

( )

E X XX

vec V

 


 - rr)}  

 
For the zero mean multivariate normal – see Proposition G.4 in Appendix 

3 - the last term disappears and we are left with: 
 

(1.8) 
[ ( )]

( )

Var Z X

vec V

 


    

'

'
vec

Z Z

     
     

 + 

 + 
1

4
 vec[

2

´
vec

Z Z

 
 
  

'
2

´
vec

Z Z

  
  

   
]’ {

[( ') ( ')]

( )

E XX XX

vec V

 


 -  

 - rr] - [Irr  
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[( ') ( ')]

( )

E XX XX

vec V

 


 can be computed from Proposition G.5 in Appendix 3.  

Sensitivity to Z implies the development of higher order differentiation 
(using Proposition A.6 of Appendix 1): 

 

(1.9) 
[ ( )]Var Z X

Z

 


  =  2 

Z




 V 

2

´Z Z



 
 + 

 + 
Z




 - 

2

´
vec

Z Z

Z

  
   

   


 +  

 + 

'
2

´
vec

Z Z

  
  

   

 - 
2

´Z Z



 
 +  

+
1

2
 

'
2

´
vec

Z Z

  
  

   

- 

2

´
vec

Z Z

Z

  
   

   


 

 
 

3. Multivariate Risk-Premium 
3.1. von-Neumann-Morgenstern Multivariate Risk-Premium: 
Definitions 

arguments. It easily follows that we can define the column vector m such that: 
 
(2.1) (Z - m)  =  E[ (Z + X)] 
 
Let E[X] = 0. Then m stands for a multivariate risk premium defined over 

the quantities of all the arguments of (.). Considering the Taylor expansion 
of - m) to the first order only: 

 

(2.2) - - 
Z




 m  

 
Replacing in (2.1), we deduce that: 
 

(2.3) 
Z




 -  

 

Z




 m – the sum of the elements of vector m weighted by their marginal 

contribution to the function  – is a measure of the difference between the 
function evaluated at the expected value of the argument and the expected 
value of the function. 
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Replacing Proposition 1, we infer that 
 

(2.4) 
Z




  m  = - 

1

2
 

'
2

´
vec

Z Z

  
  

   

 vec(V) 

 
As it stands, several m’s are compatible with the equation. According to the 

settings, we can re-define m in one of the arguments of Z – say, a risk-less asset 
-, i.e., let m = [ 0  0 …  mi  0 … 0 ]’. Then: 

 
Proposition 3: The premium to general multivariate risks 
1. can be defined in the metric of a particular asset as: 

(2.5) mi  =  - 
1

2
 

1

iZ




 
 
 

 

'
2

´
vec

Z Z

  
  

   

 vec(V)   

2. reacts to variances and covariances according to: 

(2.6) i

jk

m






 = - 

2

j k

i

Z Z

Z







 





   i

jj

m






 = - 

1

2
 

2

2

j

i

Z

Z













    

 
We recognize in (2.6) the roles of the Arrow-Pratt measure of absolute risk 

aversion – “absolute concavity” - of (Z), -

2

2

j

i

Z

Z













, and of -

2

j k

i

Z Z

Z







 





 - measuring 

“absolute substitutability” between Zj and Zk (Z), given that a 

high (positive) 
2

j kZ Z



 
 suggests complementarity between the two 

arguments, inspected by Duncan (1977), Karni (1979) and Martins (2004) -, 
determining the impact of the effect of changes in the second moments of the 
distribution of X on the size of the risk-premium. 

 
Alternatively, we could re-define the risk premium as the scalar v such that 

m = v [1 1 … 1]’ = v L, where L denotes the column vector [1 1 … 1]’ – it implies a 
decrease v in the certain consumption of all goods simultaneously that would 
leave the consumer indifferent to the actual randomness he faces. 

 

(2.7) v  =  - 
1

2
 

1

L
Z




 
 
 

 

'
2

´
vec

Z Z

  
  

   
 vec(V)   

 
Then: 
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(2.8) 
jk

v






 = - 

2

j kZ Z

L
Z







 





   
jj

v






 = - 

1

2
 

2

2

jZ

L
Z













    

 
. An alternative view of risk aversion can be inferred if, following the 

decomposition of Proposition 1, if we look at the trade-off between elements 
of  and elements of V that sustain a given – fixed – expected utility level. 
Considering (1.3) and (1.5), we can write: 

 

 0  =  
Z




  

2

´Z Z

 
 
  

 
1

2
 

'
2

´
vec

Z Z

  
  

   

 dvec(V)  

that is: 
 

(2.9) [
Z




 

2

´Z Z

 
 
  

-  
1

2
 

'
2

´
vec

Z Z

  
  

   

 dvec(V) 

 
With a second-order approximation, if we only consider the effect of the 

i - say, the/a risk-less asset -, it will depend on the means of 

the other X’s. It is immediate to conclude that: 
 
Proposition 4: The sensitivity of an agent towards uncertainty can be 

ascertained by the trade-off measuring how much he must be given in 
expected value of a given commodity to accept an increase in the moments of 
the random variables distribution,  

1. defined as: 

(2.10) i = - 
1

2
 

1

'
'i iZ Z Z

 




  
 

   
 

'
2

´
vec

Z Z

  
  

   
 

dvec(V)   
2. reacting to particular moments according to: 

(2.11) i

jk








 = - 

2

2

'
'

j k

i i

Z Z

Z Z Z



 




 

 


  

   i

jj








 = - 

1

2
 

2

2

2

'
'

j

i i

Z

Z Z Z



 






 


  

    

 
The denominator of (2.11) appears more complex than in (2.6), but the role 

of the numerator remains unaltered. Moreover, if we evaluate the trade-off 
around  = 0, the two expressions coincide.  

Of course, more complex approximations – using expansion to higher order 
as in Appendix 2 – would generate more refined definitions. Then attention 



Journal of Economics and Political Economy 

A.P. Martins, JEPE, 12(1), 2025. pp.1-39 

10 

should be given to third and fourth moments, as performed for the bivariate 
case in Martins (2004), for example. Then, the equivalence of the two 
definitions evaluated at  = 0 may not hold. 

 
. A final contrast with the premium to a risk j when subject to background 

noise can be made. Using only Taylor’s expansion, such premium to a risk, say, 
Xj added to Zj, denoted by nj, would be such that: 

 
 E[ (Z1 + X1, Z2 + X2, ..., Zj – nj, ..., Zr + Xr)]  =  E[ (Z + X)]  

 
Denote by Z-j the (r-1)x1 vector containing all other elements of Z except Zj; 

Vj the (r-1)x1 vector containing the j-th column of V to the exception of line j, 

jj – Vj 1j 2j j-1,j j+1,j rj ]’; and V-j the covariance matrix of 

X-j, the vector containing all the elements of X but Xj. By analogy with (2.3), 

we infer now that: 
 

(2.13) 
jZ




 nj    E[ (Z-j + X-j, E(Zj + Xj)]  - E[ (Z + X)]  

 

jZ




 nj, the partial premium nj weighted by its marginal contribution to 

, measures the difference between the expected value of the function over 
the r-1 arguments evaluated at the expected value of Zj + Xj and the (general) 

expected value of the function. 
Expanding and decomposing both sides of (2.12) - allowing matrix partition 

for the right hand-side -, as the terms 
1

2
 

'
2

´j j

vec
Z Z



 

  
       

 vec(V-j) cut, we 

would arrive at: 
 

(2.14) nj  =  - 
1

2
 

1

jZ




 
   

 (
2

2

jZ




 jj + 2 

2

j jZ Z







 
 Vj)   

 
Relying on Taylor’s expansion to a second-order approximation only, due 

to its polynomial properties, nj jk’s, k=1,2,…,r, but in 

the same fashion as the global multivariate premium defined in the metric of 
Zj, mj, would 6, i.e.: 

 
 
6 That may not be hold if we use higher-order Taylor’s expansion approximations and 

(or) higher than second-order moment matrices (moments) of the distribution of X 
depend on (the elements of) V. This would be the case for a multivariate normal, for 

example – see Martins (2004). 
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(2.15) 
j

jk

n






 = 

j

jk

m






 for k = 1, 2, …, r    ;        but 

j

lk

n






  

 
We would have that: 
 

(2.16)     mj  =  

1

jZ




 
   

 {
1

r

i

i i

n
Z








  + 

1

2
 

'
2

´
d

vec
Z Z

    
   
      

 vec(Vd)} 

 

where Vd and 
2

´
d

Z Z

 
 
  

 stand for V and 
2

´Z Z



 
 respectively with the 

diagonal elements replaced by 0´s.  
The expression suggests that the maximizer will more likely insure the 

whole joint risks rather than one at a time – he is more negatively affected by 
the whole, in terms of expected value, than by the sum of the partial risks (he 
is made better-off by discarding the whole risks simultaneously rather than 

each of them unilaterally) and mj
jZ




 > 

1

r

i

i i

n
Z








  - for: 

- positively correlated risks around arguments that are complements, i.e., 

for which 
2

k lZ Z



 
 > 0. 

- negatively correlated risks around arguments that are substitutes, i.e., for 

which 
2

k lZ Z



 
 < 0. 

Identical conclusions would be driven from setting in (2.9) all elements of 
 but j, and in dvec(V) all but those elements in dVj to 0 – and evaluating 

the expression at  = 0.  
In this research, we concentrate on the role of a global risk-premium. 
 

3.2. Mean-Variance Compatible Risk-Premium 
Under mean-variance approaches, agents respond to the expected value of 

a function but also to its variance. Potentially, they maximize, say, U{
X)], Var }. We will denote the first partial derivative of U(., .) with 
respect to the first argument by U1(., .), to the second by U2(., .) and the second 

partial derivatives in accordance. 
Consider a standard consumer and let Z be univariate, representing 

income, with X having null mean. A von Neumann-Morgenstern expected 
utility function expanded to the second order would imply: 

 

(2.17) E ]  =  
1

2
 

2

2Z




 Var(X)   

 
If the consumer maximizes expected utility, he cares about E[Z + X] = Z – 

positively, provided 
Z




 > 0 -, and about the Var(Z + X) = Var(X). If he is risk-
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averse, 
2

2Z




 < 0 and he obviously reacts negatively to the latter. Hence, a truly 

mean-variance behavior of a von Neumann Morgenstern individual towards 
(Z + X) is suggested by the right hand-side of (2.17). 

One can say that mean-variance approaches generalize the reasoning made 
towards (Z + X) to the function  itself, and (but) frees any connection 
between the impact of the mean and of the variance7: admit optimization is 
oriented by a function of U{E ], Var ]}, potentially embedding 
more or less risk aversion than just E ] accommodates – or than an 
hypothetical representation E{G ]}, with G(.) being a particular 
function 8, would (which would still be a von Neumann-Morgenstern case). It 
is useful for production theory where a profit function  of several 
arguments and measured in money metrics is empirically meaningful, but 
utility derived from the several consumers/investors is not. A “direct” risk-
premium g, would obey: 

 
(2.18)   U{E ] - g, 0}  =  U{E ], Var ]} 
 
Expanding the left hand-side in the first argument around E ] to 

the first-order: 
 
 U{E ] - g, 0} = U{E ], 0} - U1{E ], 0} g 

 
In line with (2.3) and (2.13) we could write: 
 
(2.19) U1{E ], 0} g = U{E ], 0} - U{E ], Var ]} 

 
g when weighted by the marginal utility with respect to the first argument 

affers the difference betweem the utility function evaluated at zero variance 
and at its actual value. 

Expanding also the right hand-side of (2.18) in the second argument around 
0, admitting Var ] to be small, we derive: 

 

(2.20) g   - 2

1

{ [ ( )],0}

{ [ ( )],0}

U E Z X

U E Z X








 Var[ (Z + X)]   

or:  g  - 

2

2 22

1

1
{ [ ( )],0} [ ( )] { [ ( )],0}{ [ ( )]}

2

{ [ ( )],0}

U E Z X Var Z X U E Z X Var Z X

U E Z X

   



    



 
 

7 Under (2.17), if 
Z




 is the impact of an unitary increase of the mean, of the variance 

must be 
1

2
 

2

2Z




.  

8  Even if this presided to Tobin (1958)’s derivation - relying on a probability 
distribution dependent on the mean and the variance of the argument of the 
function the expected value of which was maximized.  
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Interestingly, if we only take first-order approximations, g is dependent of 

E ], and, at a given value of it, proportional to Var ]. If 
ultimately, the ramdomness X is determining the variance of 

provided 2

1

{ [ ( )],0}

{ [ ( )],0}

U E Z X

U E Z X








 is invariant to E ], the determinants of 

Var ] condition the risk-premium in a similar pattern.  

The expression also suggests why - 2

1

{ [ ( )], [ ( )]}

{ [ ( )], [ ( )]}

U E Z X Var Z X

U E Z X Var Z X

 

 

 

 
, 

(minus) the marginal rate of substitution between the second and first 
arguments of U(.,.) has been identified – see Ormiston and Schlee (2001), 
Lajeri-Chaherli (2002), Eichner and Wagener (2003) 9 - as the analog to the 
absolute risk-aversion Arrow-Pratt measure 10. Under the current scenario, 
such definition becomes insufficient: 

Even if 2

1

{ [ ( )],0}

{ [ ( )],0}

U E Z X

U E Z X








 was constant, g cannot be assumed 

proportional to the risk-premium of a von Neumann-Morgenstern agent that 
reacts to higher order moments – say, uses Taylor expansion to the 4-th order 
-, once the functional relations would be much changed. That is, g should 
compare with  

 

 (Z) - E[ (Z + X)]    
Z




 m   - 

1

2
 

'
2

´
vec

Z Z

  
  

   
 vec(V)  

 
where m denotes the (a) EU agent premium vector of (2.4). Admitting only 

a first order importance - and independence of 2

1

{ [ ( )],0}

{ [ ( )],0}

U E Z X

U E Z X








 from 

E[ ] -, changes in V affect the mean-variance utility at the rate of the 
square of first derivatives of – as we can infer from (1.7) and (1.8) -, 
whereas for the von Neumann-Morgenstern agent, the first effects are 
weighted by second derivatives of .  

To compare both risk-premia, redefine it in the new utility function in the 
metric of Z as the rx1 vector p: 

 
(2.21)   U[ – p), 0]  =  U{E ], Var ]} 
 

 
9  Only Lajeri-Chaherli constitutes the variance as second argument of the mean-

variance utility function, the other authors using the standard-deviation instead. 

This latter approach becomes more tractable when analyzing preferences over 
portfolio composites, once some form of invariance to proportional changes is 
directly preserved with it. For our purposes, the former is more convenient. 

10 In fact, for a “direct mean-variance” – with the variance by second argument - over 

a univariate random variable, its size would be comparable – see (2.11) - with that of 

1

2
 the Arrow-Pratt absolute measure of the alternative univariate utility function of 

the classical expected utility maximizer.  
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The current definition would also incorporate the fact that a null variance 
of E ] – present in the left hand-side - may only be achieved through 
a constant X = 0. Developing the left hand-side to the first order we conclude: 

 

(2.22) U1{ ], 0} 
Z




p = U{ ], 0} - U{E ], Var

+ X)]} 
 
Developing also the righ hand-side to the first order: 
 

U[ ,0] - U1[ , 0] 
Z




p = U{E ],0} + U2{E ], 0} 

Var ] = 
 =  U[ ,0] + U1[ ,0] {E  - } +  

 + (U2[ ,0] + U21[ ,0] {E  - }) Var ] 11 

 

Noting that - E   
Z




 m: 

 

(2.23) 
Z




p  =  

Z




 m + (- 2

1

[ ( ),0]

[ ( ),0]

U Z

U Z




 + 21

1

[ ( ),0]

[ ( ),0]

U Z

U Z




 

Z




 m) 

Var[ (Z+X)]   
 
Beyond the risk aversion embedded in the concavity of , there will be 

now the “direct” effect captured in the second argument of the MV utility 
function U(.,.). Then, considering a particular asset to define the premium, 
and p = [ 0  0 …  pi  0 … 0 ]’, we conclude: 

 
Proposition 5: 1. The risk-premium of a “mean-variance” agent will relate 

to a von Neumann-Morgenstern’s according to:  

(2.24)     pi = mi +{-

1

iZ




 
 
 

2

1

[ ( ),0]

[ ( ),0]

U Z

U Z




+ 21

1

[ ( ),0]

[ ( ),0]

U Z

U Z




mi}Var[ (Z+X)]  

2. The trade-off with expected value of a relative commodity could be 
expressed as i, relating to that of the expected function maximizer, d i, as:  

(2.25) i= i+

1

'
'i iZ Z Z

 




  
 

   
{- 2

1

[ ( ),0]

[ ( ),0]

U Z

U Z




+ 21

1

[ ( ),0]

[ ( ),0]

U Z

U Z



 iZ





d i}dVar ] 

 
There will be an added term to compensate relative to the von Neumann-

Morgenstern entity. Being U21[ ,0] negligible, such term is positive 

 
11 Of course, a direct – and more complete - second-order Taylor expansion of the right 

hand-side would add terms in the square of the variance and in square the of 
-  that its size is negligible relative to the other 

terms. 
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provided 2

1

[ ( ),0]

[ ( ),0]

U Z

U Z




 < 0, and at given Z or for a constant 2

1

[ ( ),0]

[ ( ),0]

U Z

U Z




, 

influenced in an approximately proportional fashion by Var ]. 
Of course, Var ] depends also on the moments of the distribution of 

X, including second moments as noted in Proposition 2. Ultimately, risk-
aversion is dictated by how the elements of V influence pi after such 

correspondence – and that of mi through (2.5) - is internalized (replaced in 

(2.24)), as well as any impact of V in higher (third or fourth) moments of the 
particular distribution of X. 

Some clarifying words about the mean-value formulation above – and that 
will be studied in this research – should be added: 

Firstly, we remind (and caution) the reader that the utility function U{E
+ X)], Var ]} is a mean-variance utility function towards . By 
comparing it with E ], we are in fact contrasting the corresponding 
agent with a risk-neutral von Neumann- Morgenstern entity towards that 
same argument – or, in general, of form E ]. 

Secondly, hypothetically, a generalized multivariate “mean-variance” unit 
could be forwarded as a maximizer of U[E(Z + X), Cov(Z + X)] = U(Z + , V), 
where we conform with previous notation – E[X] = , Cov(X) = V. Inspection 
of its properties will be pursued elsewhere. 

Finally, and as a theoretical contribution to the modeling of individual 
behaviour towards risk – multivariate or not -, one studies the formulation 
U{E ], Var ]}, a multivariate “mean-variance utility” utility 
function, an alternative to the standard expected utility - E ] – 
maximizer, being  the equivalent function maximized in the absence of 
uncertainty. Such behavioral hypothesis was used before in economic 
modelling – the use of higher moments of utility was previously proposed by 
Allais (1979) and Hagen (1979), cited in Starmer (2000): in this research, some 
of its consequences are inspected. 

 
 

4. Optimal Decisions under Uncertain Background 
4.1. The Multivariate Conditions under Ex-Ante Commitment 

Under certain contexts, the vector Z may be controllable. An expected value 
maximizing entity will choose Z such that (1.4) is set to zero (we admit E[X] = 
0) 12: 

 

(3.1) 
[ ( )]E Z X

Z

 


 =  

Z




 + 

1

2
 

2

´
tr V

Z Z

Z

 
  

  


  = 0 

 
12 We might have as well considered a departure from the expansion of the functions 

in the vector 
( )Z X

Z

 


 around Z, take its expected value and perform E[

( )Z X

Z

 


] = 0, deriving conclusions henceforth. It appeared as a less tractable 

format. 
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or 
Z




 + 

1

2
 vec(V)’ 

2

´Z Z

Z

 
  

  


 = 0  ;      

'Z




 + 

1

2
 

2

´

'

Z Z

Z

 
  

  


 vec(V)  

=  0 
 
The mean-variance agent chooses Z such that: 
 

(3.2) U1{E[ , Var[ } 
[ ( )]E Z X

Z

 


  +  

 +  U2{E[ , Var[ } 
[ ( )]Var Z X

Z

 


  = 0 

 
The marginal rate of substitution between the two arguments of U(.,.) is 

equated to the symmetric of the ratio of the elements of 
[ ( )]E Z X

Z

 


 by the 

analogous ones of 
[ ( )]Var Z X

Z

 


. That is, the Z’s are leveled in such a way 

that for any i: 
 

(3.3) 

[ ( )]

[ ( )]
i

i

E Z X

Z

Var Z X

Z





 



 



  =  - 2

1

{ [ ( )], [ ( )]}

{ [ ( )], [ ( )]}

U E Z X Var Z X

U E Z X Var Z X

 

 

 

 
 

 

Admit that Z is univariate. If U2 < 0, as long as 
[ ( )]Var Z X

Z

 


 > 0, U(., .) 

is already decreasing with the argument, Z, at the point chosen by the expected 

function maximizer – at 
[ ( )]E Z X

Z

 


 = 0, (3.2) is negative. Then, the mean 

variance agent chooses a smaller Z. 
 
Proposition 6: The “mean-variance” agent (with U2 < 0) is expected to 

choose:  
1. Lower levels of the deterministic controls, Z, if (for which) 

[ ( )]Var Z X

Z

 


 > 0 

2. Higher levels of the deterministic controls, Z, if (for which) 

[ ( )]Var Z X

Z

 


 < 0 

than the von Neumann-Morgenstern one. 
 
From the decomposition (1.9) and for the univariate case, if the effect of the 

first term in the right hand-side of (1.9) dominates, we conclude for the second 

case provided that 
Z




> 0 and 

2

'Z Z



 
 < 0 – i.e., 

[ ( )]Var Z X

Z

 


 < 0. 
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Take a univariate distribution. If 
[ ( )]E Z X

Z

 


 increases with an 

exogenous parameter 
(second-order conditions ensure a negative second derivative of E[

 
For example, consider a change in the covariance matrix elements. The 

change in the optimal decisions will conform with (3.1) and obey: 
 

(3.4) {2
2

´Z Z



 
 + [vec(V)’  Ir] 

2

´

'

Z Z

Z

Z

  
  

   
 
 
  


} dZ + 

2

´

'

Z Z

Z

 
  

  


 

dvec(V) = 0  

or dZ = - {2
2

´Z Z



 
+ [vec(V)’  Ir] 

2

´

'

Z Z

Z

Z

  
  

   
 
 
  


}-1 

2

´

'

Z Z

Z

 
  

  


 

dvec(V) 
 

ij jj, on 

Z, is given by (using Proposition A.5 of Appendix 1): 
 

(3.5) dZ = - 2 {2
2

´Z Z



 
 r] 

2

´

'

Z Z

Z

Z

  
  

   
 
 
  


}-1 

2

'

i jZ Z

Z

 
     


 

ij    

dZ =  - {2 
2

´Z Z



 
 r] 

2

´

'

Z Z

Z

Z

  
  

   
 
 
  


}-1 

2

2

'

jjZ

Z

 
    


 jj   
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That is, the effect on the optimal factor k, dZk, is determined by the 

elements of the column vector 

2

'

i jZ Z

Z

 
     


 or 

2

2

'

jjZ

Z

 
    


, weighted by the 

elements of the k-th row of A = {2
2

´Z Z



  r] 

2

´

'

Z Z

Z

Z

  
  

   
 
 
  


}-1: 

 

(3.6) dZk = - 2 


r

l

kla
1

 
3

i j lZ Z Z



  
 ij    k = - 



r

l

kla
1

 

3

2

jj lZ Z



 
 jj  

 
This is consistent with Kimball (1990) assessment of the importance of the 

measure of absolute prudence, weighting third-order derivatives and 
conditioning the impact of uncertainty on the control variables themselves. 

Notice also that A (or its inverse) must be negative-definite for (3.1) to 
guarantee a maximum.  

For the mean variance entity, a more complicated requirement is imposed. 

If U2 < 0, if 
[ ( )]E Z X

Z

 


 and 

[ ( )]Var Z X

Z

 


 

- provided 
the effects weighted by the second derivatives of U are small). If 

[ ( )]E Z X

Z

 


 and 

[ ( )]Var Z X

Z

 


 

effect may be positive or negative, depending on the size of U1 and U2 that 

weight each of the two cross derivatives (and of second derivatives). 

Due to the requirement 
[ ( )]E Z X

Z

 


 = 0, the indirect impact of 

uncertainty, i.e., of vec(V) on the maximal expected utility becomes zero and 
the total effect simple to derive – it coincides with (1.3), measured at the 
optimal controls: in any of the two cases: 

 
Proposition 7: The effect of uncertainty on the maximand of an entity with 

(ex-ante) control over exogenous variables is:  
1. indistinguishable from that of an exogenous effect of a change in the 

distribution of X on the relevant maximand. 
2. assessable in a symmetric way by the numerator of the conventional risk-

premium definition, by the premium itself if a particular metric is called for 
its evaluation 
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4.2. Mean-Variance Opportunity Frontier 
A meaningful intermediate decision problem of the mean-variance agent 

would determine vector Z that minimizes Var ] subject to a certain 
E ] is achieved. Or vice-versa. That is, solve: 

 

(3.7) 
Z

Min   Var[ (Z + X)]   

 s.t.:         E[ (Z + X)]      
 
or equivalently in lagrangean form 
 

(3.8)  
,Z

Min


  L(Z, )  =  Var[ (Z + X)]  +   {   -  E[ (Z + X)]} 

 
where  denotes the multiplier. F.O.C. imply: 
 

(3.9) 
L

Z




  =  

[ ( )]Var Z X

Z

 


  -   

[ ( )]E Z X

Z

 


  =  0 (a (1 x n) vector) 

(3.10) 
L






  =    -  E[ (Z + X)]  =  0  (a scalar) 

 

Admit the approximation  
[ ( )]E Z X

Z

 


 E  X)], where u 

may be represented by a value smaller than 1) – a measure of the elasticity of 
the expected value with respect to the control variables (if all Zi’s increase by 

x%, E ] would rise – proportionately - u x%) – or the returns to scale 
of E ] with respect to Z. Then, in the optimal solution: 

 

(3.11) *  =  
1

u
 

[ ( )]Var Z X

Z

 


 Z  

 

Replacing in (3.9), 
[ ( )]Var Z X

Z

 


 = 

1

u
 

[ ( )]Var Z X

Z

 


 Z 

[ ( )]E Z X

Z

 


. Then: 

 

(3.12) 
[ ( )]Var Z X

Z

 


 { Z 

[ ( )]E Z X

Z

 


  -  r } = 0 

 
Z is set in such a way that (u ) is an eigenvalue of the left hand-side matrix; 

as the latter, being the product of a vector by its transpose, has rank 1, Z will 

be such that (u ) will be the unique non-zero eigenvalue of Z 
[ ( )]E Z X

Z

 


 

and 
[ ( )]Var Z X

Z

 


 to the corresponding “left” eigenvector 13 – equal to the 

 
13 I thank an anonymous referee for this remark. 
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the transposed eigenvector of the transposed matrix, 
[ ( )]

'

E Z X

Z

 


 Z’. For a 

zero mean variable X, using (1.4): 
 

(3.13) Z
[ ( )]E Z X

Z

 


= Z [

Z




+

1

2

2

´
tr V

Z Z

Z

 
  

  


] = Z[

Z




 +

1

2
vec(V)’

2

´Z Z

Z

 
  

  


] 

 

[ ( )]Var Z X

Z

 


 is given by (1.9). Transposing (3.12), denoting {Z 

[ ( )]E Z X

Z

 


  -  r}’ = {

[ ( )]

'

E Z X

Z

 


 Z’ - r} by A and 

[ ( )]

'

Var Z X

Z

 


 by W, (3.13) has the form Y = A W = 0. Using Proposition A.5 

of Appendix 1, we now require for any change in Z and vec(V) and/or  forming 
 that: 

 

(3.14) 
Y






  r) 

A






 + A 

W






 = 0 

 
The properties of the new solution turned out difficult to disentangle. An 

increase in  only will imply: 

dvec(A’) = dvec{Z
Z




 + 

1

2
 Z vec(V)’ 

2

´Z Z

Z

 
  

  


}/dZ  dZ  -  u vec(Ir) d    

 
A change in elements of V can be inspected through the implicit change in 

. Developing the vector form of the left hand-side with 
Proposition A.1 of Appendix 1: 

Using Proposition A.1.1, A.5 and D.2.1 in the Appendix 1: 
 

[ ( )]vec Z
Z

Z







 = 

[( ) ]
'

rI Z
Z

Z


 




 = (

'Z




 r) + (Ir 

2

´Z Z

 
 
  

  

 
Using Proposition A.2 of Appendix 1 – vector of the product rule: 
 

 vec[ Z vec(V)’ 

2

´Z Z

Z

 
  

  


]  =  {Ir 

2

´Z Z

Z

 
  

  


]   

 
Through Proposition A.1, A.5 and D.2.1 in the Appendix 1: 
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dvec{Zvec(V)’

2

´Z Z

Z

 
  

  


}/dZ = {vec[

2

´Z Z

Z

 
  

  


 Irr} [vec(Ir)  vec(V)  

Ir] + 

 + {Ir 

2

´Z Z

Z

Z

  
  

   
 
 
  


  

 
For V, an intermediate result is: 
 

dvec{Z vec(V)’

2

´Z Z

Z

 
  

  


}/dvec(V)  =  {vec[

2

´

'

Z Z

Z

 
  

  


]’ [vec(Ir rr  

 
We can confront this expression with that of the von Neumann-

Morgenstern agent, implicit in (3.4). It has obvious similarities, but it is 
weighed by Z. 

 
 

5. The Value of Ex-post Flexibility 
5.1. The von Neumann Morgenstern Entity 

Suppose the expected function maximizing agent can react – contingent 
on, point-wise - to X. Then, it sets Z such that: 

(4.1) 
( )Z X

Z

 


 =   0 

 
Then it will choose Z as a function of X such that: 
 
(4.2)  Z = Z(X) = Y - X 
where Y is the constant for which: 

(4.3) 
( )Y

Z




 =   0 

 
It will always be the case, no matter what value X takes, that:  
 
(4.4) (Z + X)  =  (Y)  
 

 
(4.5) E[Z] = Y          ;       Var[ (Z + X)]  =  0 
 
Obviously – see Martins (2004a), if the risks surround the decision 

variables: 
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Proposition 8: The flexible von Neumann-Morgenstern agent will:  
1. balance any randomness X by a corresponding compensation in Z, 

rendering the objective function completely stable. 
2. exhibit an expected policy E[Z] = Y higher (lower) than the ex-ante 

committed agent iff dZ / dvec(V) < (>) 0 for the latter. 
 

5.2. The Mean-Variance Agent 
Consider a mean-variance unit. On the one hand, even if it cannot control 

Z, provided it can react after observing X, we can admit that it has the ability 
(Z + X). Such ability is never used by an 

expected value maximizer, of course. But will by the current entity. It has now 
a series of decisions y = y(X), a random variable the probability distribution of 
which will be in line with that of X. 

it: 
 

(4.6)   
y

Max   U{E[ (Z + X) - y], Var[ (Z + X) - y]}  = 

 =  U(E[ (Z + X) - y], E{[ (Z + X) - y]2} - E[ (Z + X) - y]2)   

  = U( 
b

a

[ (Z + X) – y] f(X) dX, 
b

a

[ (Z + X) - y]2 f(X) dX – { 
b

a

[ (Z + X) - 

y] f(X) dX}2)  
 


b

a

 denotes r integral signs limited by the elements of vectors a and b, and 

dX stands for the product of the r differentials of the X’s. A first thing to notice 
is the oddity of the problem: the controls are a continuum of values. But one 
can find variational problems in the theory of risk – see Karni (1979) assessing 
risk-sharing across states of nature 14 . The most unfamiliar feature is the 
dependency of the objective functional on expectations of functions of the 
control itself. 

It is easily visualized through the development of the integrals that the 
optimal y’s will be such that: 

 
(4.7) 
- U1{E[ (Z+X) – y], Var[ (Z+X) - y]} f(X) - U2{E[ (Z+X) - y], Var[ (Z+X) - y]} 

  {2 [ (Z + X) - y] f(X)  -  2 E[ (Z + X) - y] f(X)} = 0 
 
y – or rather y(X), once they are conditional on X - will react to X according 

to: 
 

 
14 Our argument is different from his, of course: we are assessing throwing away utility 

– not the argument of the function - after the random event occurs. As noted, the 

von-Neumann Morgenstern entity – that Karni overviews - would not accept to do 
it. 
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(4.8) y – E[y] = (Z + X) - E[ (Z + X)] + 
1

2

1

2

{ [ ( ) ], [ ( ) ]}

{ [ ( ) ], [ ( ) ]}

U E Z X y Var Z X y

U E Z X y Var Z X y

 

 

   

   
 

 
Then, taking expectations we conclude that the y’s will be set in such a way 

to guarantee: 
 

(4.9)     1

2

{ [ ( ) ], [ ( ) ]}

{ [ ( ) ], [ ( ) ]}

U E Z X y Var Z X y

U E Z X y Var Z X y

 

 

   

   
  = 0 

or 
(4.10) U1{E[ (Z+X)] – E[y], Var[ (Z+X) - y]} = 0 

 

and, because 1

2

{ [ ( ) ], [ ( ) ]}

{ [ ( ) ], [ ( ) ]}

U E Z X y Var Z X y

U E Z X y Var Z X y

 

 

   

   
 is indeed 

constant, we can conclude from – squaring and taking expectations… - (4.8) 
that: 

 
(4.11)  Var(y) = Var[ (Z + X)] = Cov[y, (Z + X)] 
 

- as expected - and: 
 
(4.12) Var[ (Z+X) - y] = 0 
 
E[y] will be such that: 
 
(4.13) U1{E[ (Z+X)] – E[y], 0} = 0 

 
implying: 
 

U1{E[ (Z+X)], 0} - U11{E[ (Z+X)], 0} E[y] + 
1

2
 U111{E[ (Z+X)], 0} E[y]2 +... = 

0 
 
An approximation to the first order will require that optimally: 
 

(4.14) E[y]  =  1

11

{ [ ( )],0}

{ [ ( )],0}

U E Z X

U E Z X








  

 
As long as U(.,.) is convex in the first argument, E[y] > 0. (But then we might 

have a minimum with the policy – for a maximum, U12{E[ – y], 

Var[ - y]} must be sufficiently negative.) 
We did not complicate the problem considering | y | subtracted from the 

function, or impose the restriction y > 0, using Khun-Tucker conditions - nor 
requiring E[y] > 0. Nevertheless, a negative y with E[y] > 0 may be accountingly 
meaningful: if the firm could interchange revenue allocation between periods, 
it would understate profits in good times, and overstate in bad times, 
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transferring results in accordance to (4.8) - which implies that an optimal 
– y, constant: 

 
(4.15) E[ (Z + X)] – E[y] = (Z + X) – y  
 
The agent will be willing to pay (loose) as much as g, the direct risk-

+ X) - - for it. An expected value-maximizing entity would have 
no interest in engaging in such practices. 

 
Proposition 9: A mean-variance agent that can react after the realization 

of the random event (even if not through Z, the exogenous deterministic 
variable):  

1. may find it utility-yielding to “throw away” profits and even expected 
profits. 

2. will choose the optimal dissipation to be increasing in the state of nature 
–  

3. may find desirable to accommodate through the policy all the 
 

 
Consider that Z can also be chosen by the agent. Then, it will solve a joint 

infinite series of conditional decisions in y and Z such that: 
 

 
,Z y

Max   U{E[ (Z + X) - y], Var[ (Z + X) - y]}   

 
The F.O.C. with respect to y still hold. That will imply that the entity will 

use y to cushion all variability in “net” profits. If it does, it chooses Z such that: 
 

(4.16) 
Z

Max   U{E[ (Z + X) - y], 0}   

setting Z’s such that: 
 

(4.17) 
( )Z X

Z

 


  =  0 

 
that is, it will mimic the behavior of a von Neumann-Morgenstern utility 

maximizer towards Z. 
 
Consider that Z can be chosen by the agent but policy y is not meaningful: 
 

 
Z

Max   U{E[ (Z + X)], Var[ (Z + X)]} =  

 =  U(E[ (Z + X)], E{[ (Z + X)]2} - E[ (Z + X)]2)   

= U{ 
b

a

(Z + X) f(X) dX, 
b

a

(Z + X)2 f(X) dX – [ 
b

a

[ (Z + X) f(X) dX]2}  

 
It is easily visualized that the optimal Z’s will obey: 
 
(4.18) [U1{E[ , Var[ } + U2{E[ , Var[ } 
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  {2 (Z + X)  -  2 E[ (Z + X)]}] 
( )Z X

Z

 


 f(X) = 0 

 
Then Z will be set in such a way that either 
 

(4.19) 
( )Z X

Z

 


 = 0 

 

and Z is always equal to Y – X, where Y is the value for which 
( )Y

Z




 = 0 – 

X) is completely eliminated. 
Or: 
 

(4.20) (Z + X) = E[ (Z + X)] - 
1

2

1

2

{ [ ( )], [ ( )]}

{ [ ( )], [ ( )]}

U E Z X Var Z X

U E Z X Var Z X

 

 

 

 
 

 
Again, the optimal Z’s would make Z + X constant. Yet, taking expectations 

we conclude that for this solution to hold all over the domain, the Z’s would 
be set in such a way to guarantee: 

 

(4.21)     1

2

{ [ ( )], [ ( )]}

{ [ ( )], [ ( )]}

U E Z X Var Z X

U E Z X Var Z X

 

 

 

 
  = 0 

 
That will also require – replacing it in (4.20) - that Z will be such that: 
 
(4.22) (Z + X) = E[ (Z + X)] 
and, as 
(4.23) U1{E[ , Var[ } = U1{E[ , 0} = 0 

 
we enter structure (4.16) again. 
We conclude that the transfer is, in any case, completely accomplished if 

ex-post adjustability of the control variable to which the risk is added is 
available. Then, adjustability through y becomes redundant. 

 
Proposition 10: A mean-variance agent that can react after the realization 

of the random and choose Z, the variable to which it is added to: 
1. achieves the same solution as the expected-value maximizer. 
2. Proposition 8 applies, comparisons valid with the von Neumann-

Morgenstern ex-ante committed agent. 
3. dispenses with other smoothing tools. 
 

6. Mixed Environments: A Final Comment 
To reproduce particular environments, we may want to combine the three 

types of situations – that is, in Z = (Z1, Z2, Z3), there will be variables Z1, which 

the agent can but endure, others, Z2, that he can decide before the realization 

of the added risk, and others, Z3, that he can adjust after the randomness is 

observed. 
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The von Neumann-Morgenstern individual will: 
 

(5.1) 
2 3,Z Z

Max         E[ (Z + X)]  =  
1

1

b

a


2

2

b

a


3

3

b

a

(Z + X) f(X) dX 

 
F.O.C are of two types: a unique one with respect to Z2: 

 

(5.2) 
1

1

b

a


2

2

b

a


3

3

b

a

 
2

( )Z X

Z

 


 f(X) dX = 0 

 
Infinite ones for Z3: 

 

(5.3) 
1

1

b

a


2

2

b

a

 
3

( )Z X

Z

 


 f(X) dX1 dX2 = 0 

 
From (5.3), a continuum of conditional optimal of policies are derived for 

Z3, function of X3, of the common Z2, and of the parameters of the joint 

distribution of X = (X1, X2, X3). It can then be replaced in (5.2) to solve for Z2. 

If the distribution of the vector X3 is independent of that of the vector (X1, X2) 

- i.e., if we can write f(X) = f(X1, X2, X3) = f12(X1, X2) f3(X3), where f12(X1, X2) 

and f3(X3) denote the marginal probability distributions -, (Z3 + X3) is a 

constant vector in the optimal policies and the randomness in that sum is 
always neutralized. Yet, that constant level will not be the one for which 

( )Z X

Z

 


 = 0, unless 

3

( )Z X

Z

 


 is invariant to (does not depend on) (Z1 

+ X1, Z2 + X2)…  

Notice that if f(X) = f(X1, X2, X3) = f12(X1, X2) f3(X3), we can use the 

expansion of Proposition 1 applied only to (Z1, Z2), take the derivative with 

respect to Z3 and equate it to zero to approximate (5.3), but not otherwise. 

 
For a mean-variance agent: 
 

(5.4) 
2 3,Z Z

Max   U{E[ (Z + X)], Var[ (Z + X)]} =  

 =  U(E[ (Z + X)], E{[ (Z + X)]2} - E[ (Z + X)]2)   

= U{ 
1

1

b

a


2

2

b

a


3

3

b

a

(Z + X) f(X) dX, 
1

1

b

a


2

2

b

a


3

3

b

a

(Z + X)2f(X)dX – [ 
1

1

b

a


2

2

b

a


3

3

b

a

[ (Z + X)f(X) dX]2} 
 
It is easily visualized that the optimal Z’s will obey: 
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(5.5) 
1

1

b

a


2

2

b

a


3

3

b

a

[U1{E[ , Var[ } + U2{E[ , 

Var[ } 

    -  2 E ]}] 
2

( )Z X

Z

 


 f(X) dX = 0 

 

(5.6) 
1

1

b

a


2

2

b

a

 [U1{E[ , Var[ } + U2{E[ , 

Var[ } 

  {2 (Z + X)  -  2 E[ (Z + X)]}] 
3

( )Z X

Z

 


 f(X) dX1 dX2 = 

0 
 
Expressions become more complicated, but constancy of (Z3 + X3) in case 

of statistical independence is preserved. It will, however, differ from that of a 
expected value maximizer. And that will still be true if no ex-ante control is 
available as long as some additive uncertainty surrounds out-of-decision range 
variables. 

 

7. Production Theory Applications 
We admit a firm that produces output, q, sold at price P and employing r 

inputs, of quantities Li , i=1,2,…,r, represented by a column vector L, at unit 

(column-vector) cost w, of element wi. Its technology is represented by a 

production function q = F(L), continuous, increasing, quasi-concave and 
differentiable to several orders in L.  

Under certainty, it has a deterministic cost function C(q, w) continuous, 
increasing, concave and differentiable to several orders in q, a profit function 
(P, w), both enjoying the usual properties 15 and compatible with technology 

F(L).  
Uncertainty has been apposed to the firm’s problem in several contexts 16 - 

Aiginger (1987) surveys several scenarios, and a recent univariate inquiry can 
be found in Martins (2007). 

 
7.1. Price Uncertainty under Ex-post Flexibility 

The firm acts towards prices optimizing the profits after observing the 
randomness. Obviously, the expected value maximizing firm will react to X 
according to (P + X1, w + Xr) that takes the role of (Z + X) and the 

conclusions of section 2 apply. (P + X1, w + Xr) is convex in (P, w) and general 

risk-loving behaviour towards the randomness – negative risk-premium – is 
expected. As for the particular problem, the convexity of the objective function 
is related to the magnitudes of the slopes of 
 
15 See Varian (1992), for example. 
16 Oi (1961), Sandmo (1971), Feldstein (1971), Rothemberg and Smith (1971), Batra and 

Ullah (1974). 
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- supply, once 
( , )P w

P




 = qS(P, w) 

- input derived demands, once -
( , )P w

w




 = LD(P, w) 17 

they will determine the size order of the impact of uncertainty on the 
maximand. Of course, the size of the impact of uncertainty on the expected 
supply and demand themselves is determined by their own concavity in the 
corresponding arguments – being negative when the functions are concave, 
positive when convex. 

Notice, however, that the mean-variance firm – staying on the market long 
enough to experience the fluctuations of the profits - may not find it optimal 
to react according to (P + X1, w + Xr). The firm may trade expected profits by 

less volatile income. Then, it may enter into the scenario of section 4.2.: we 
conclude that a mean-variance entity with ex-post flexibility may find it 
optimal to engage in charitable contributions in good states. If the variability 
comes from the input prices, in which case it is likely that Uw < 0, and we 

consider a vector Y subtracted to X, it would be more likely that second order 
conditions will be satisfied with such a policy; then firms would be willing to 
pay higher employee compensations in good times, for example. 

 
6.2. Quantity Uncertainty under Ex-ante Commitment 

Under ex-ante commitment with respect to the control variables, the firms 
are in the environment of section 3 and (Z) becomes P F(L) – w L. Uncertainty 
added to the control variables has the size of the effect on the maximand 
determined by that of the simple addition of the randomness, evaluated at the 
optimal control. It is determined by the concavity of the production function 
itself. 

The firm equates the value of expected marginal product – the expected 
inverse factor demands - to factor prices: 

 

(6.1) P  
[ ( )]E F L X

L

 


  =  P  E[

( )F L X

L

 


]  =  w 

 

Then L will move in the same way as 
[ ( )]E F L X

L

 


 reacts to uncertainty. 

The more concave (less convex) the inverse demands – and potentially also 

demands, once they are negatively sloped - are 18, the more 
[ ( )]E F L X

L

 


 

decreases with uncertainty at a given level L. To compensate a rise in 
uncertainty – being inverse demands negatively sloped -, if the marginal 
product function is concave (convex), a lower (higher) level of the input will 
be sought. 

Analogous lines would allow the interpretation of the effect of uncertainty 
in X affecting the cost function C(q + X). Then: 
 
17 Both from Hotelling’s lemma. 
18 See Carroll & Kimball (1996) for an assessment of the role of the concavity of the 

inter-temporal consumption function under uncertainty. 
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- the impact on expected profits of a rise in uncertainty in q will be more 
negative the more convex is the cost function – the higher the slope of the 

marginal cost function, the lower the slope of output supply qS(P), its inverse 
function. 

- as the firm sets: 
 

(6.2) P  =  
[ ( )]E C q X

q

 


  =  E[

( )C q X

q

 


] 

 
The more concave (less convex) is the marginal cost function – the more 

convex is the supply, its inverse function, once it is positively sloped -, the 
higher will be the increase in q required to balance an increase in uncertainty. 
If marginal cost is convex (concave), the optimal q decreases (increases) with 
uncertainty. 

 

7. Conclusion 
Matrix representation of risk-premium and corresponding first differentials 

with respect to exogenous parameters of multivariate random variables was 
presented. They are useful to generate theoretical conclusions of several 
economic applications, but also to simulate empirically the effect of risk 
exposure in any environment, once functional forms are specified. More 
distantly, the principles used and developed in the text may reveal themselves 
useful for algorithms requiring numerical differentiation - potentially, with 
application in initial-value generation in non-linear optimization. 

We concluded about the importance and role of third and higher order 
derivatives in the analysis of risk-aversion and decision-making under 
uncertain backgrounds. General features of both issues’ crucial vectors diverge 
for an expected-value maximizer and a mean-variance one. In general, higher 
moments and derivatives (differentiation) are recommended for the latter to 
achieve the same order approximation of the results. Reliance on Taylor’s 
expansion – common in the risk literature – also originated a straight-forward 
connection between the multivariate measure of the aversion in the attitude 
to multivariate risks and the (partial) aversion to each of the elementary risks 
subject to background uncertainty. 

In general, and as intuitively expected, a mean-variance (“utility”) entity 
potentially exhibits a “compound-premium”, weighing the expected value but 
also the variance impact of an exogenous noise. Interestingly, if given the 
possibility of transferring utility across states of nature, a rational mean-
variance agent with a sufficiently convex utility in the expected value 
argument, will approach the von Neumann-Morgenstern attitude. 

Subject to uncertainty, whenever possible – with ex-post adjustment of 
control variables or by other means –, both types of agents will try to reach the 
maximum value of the function of the expected value of the (random or not) 
arguments. With enforcing contracts with respect to the controls, the 
expected optimal maximand reacts to uncertainty as the expected function 
would in the absence of optimization – but at the optimal level of the control 
variables.  

With ex-post flexibility with respect to decision variables to which the risk 
is added, uncertainty is completely countervailed – and the optimized 
function completely stabilized. 
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Production applications under some of the relevant environments – as 
consumption could have also been – were briefly overviewed. The 
conditioning effect of concavity, slopes of supply and factor demand were 
appropriately related to the response to uncertainty by a competitive firm. 
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Appendix 1.  
We use: 

Convention 1. Let A be an m x n matrix the elements of which depend on the r 

A






 (a Jacobian matrix) is a mn x r matrix that has in 

the i-th row and j-th column element the derivative of i-th element of the vector 
vec(A) – created juxtaposing consecutively the n columns of A in a single “column” - 

with respect to the j-th element of v  

 
A






  =  

( )vec A






  

 

Convention 2. We will write  
´

A






 = 

'
A



 
 
 

. 

 

Convention 3. We will denote by    

2

´

A

 



 
 = 

'
A





  
   

   


 = 

'
A

vec




  
   

   


. 

 

For example, if m = n = 1, 
A






 = [

1

A





 2

A






 … 

r

A






] and 

2

´

A

 



 
 is the Hessian 

matrix of the function A, matrix with typical element [

2

i j

A

 



 
]. Being A a scalar, 

2

´

A

 



 
 = 

2

´

A

 



 
; 

2

´ j

A

 



 
 = [

2

1 j

A

 



 
 

2

2 j

A

 



 
 … 

2

r j

A

 



 
]’. 

 
We refer below useful propositions on matrix algebra used in the text. I

j
 denotes 

an identity j x j matrix. 
. Quoting from Dhrymes (1978), often used results: 

 
Proposition A.1. (Dhrymes, 1978, Proposition 86, p. 519). Let A be m x n and B n x 

s. Then: 
1.  vec(A B)  =  (I

s
 

m
) vec(A) 

(Hence:) 2.  vec(A)  =  (I
n

 
n m

) vec(I
m

) 

 

Proposition A.2. (Dhrymes, 1978, Corollary 22, p. 519).  
 vec(A

1
 A

2
 A

3 1
A

2
)] vec(A

3
) 

 
Proposition A.3. (Dhrymes, 1978, Proposition 88, p. 521). 
 tr(A B)  =  vec(A’)’ vec(B) = vec(B’)’ vec(A) 

 
Proposition A.4. (Dhrymes, 1978, Remark 45, p. 522). 
   tr(A

1
 A

2
 A

3
 A

4
)  =  vec(A

2
’)’ (A

1
’ A

3
) vec(A

4
) = vec(A

4
’)’ (A

3
’ A

1
) vec(A

2
) 

 
Proposition A.5. (Dhrymes, 1978, Proposition 93, p. 525). Let Y = A X, where Y is 

m x 1, A is m x n, X is n x 1, with both A and X dependent on the vector , r x 1.  
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Y






  

m
) 

A






 + A 

X






  

 
Proposition A.6. (Dhrymes, 1978, Proposition 96, p. 527) Let Z be mx1, A mxn and 

 

 
( ' )Z AX






  =  X’ A’ 

Z






 + Z’ A 

X






       and 

2 ( ' )

'

Z AX

 



 
 = 

'
Z



 
 
 

A
X






 + 

'
X



 
 
 

A’
Z






 + (X’ A’  I

r
)

2

'

Z

 



 
 + (Z’ A  I

r
)

2

'

X

 



 
 

 
Proposition A.7. (Dhrymes, 1978, Proposition 100, p. 532) Let A be mxn, X nxq, B 

 

 
( )tr AXBZ






  =  vec(A’ Z’ B’)’ 

( )vec X






 + vec(B’ X’ A’)’ 

( )vec Z






 

 
Proposition A.8. (Dhrymes, 1978, Proposition 101, p. 532) Let A and B are square 

matrices m x m and q x q respectively, and only X – which is qxm - depends on the rx1 
 

 
( ' )tr AX BX






  

( )vec X






 

 
. Others: 
 

Proposition B.1. Being A an (mxn) matrix (see the result in Hamilton, 1994, p. 
733): 

1. I
r
  (I

s
  A)  =  I

rs
  A  

2. (A  I
r
)  I

s
  =  A  I

rs
  

Proof: Use the fact that, for any matrices A, B and C,  A  B  C  =  A  (B  C).   
 

Proposition B.2. Being X an nx1 column vector and Z an rx1 one: 
1. X  Z’  =  X Z’   
2. X’  Z  =  (X Z’)’  =  Z X’  =  Z  X’ 
3. X  Z’  =  Z’  X    

4. X  X’  =  X’  X  =  X X’  

n
) X  =  (I

r
  

 
Proposition B.3. Being X a column vector:        (Proofs: Use B.2.4. ) 

 

 
 
Proposition B.4. Being X a column vector:         (Proofs: Use B.2.4. and B.2.5.) 

 
 

 
 

Proposition C.1. Let X be an nx1 vector and A a pxs matrix. Then,  
1. vec(A  X)  =   X  
2. vec(X  A)  =  vec(A  X’)  =  [(I

s
  X)  A] vec(I

s
) = (X’  A’  I

np
) vec(I

np
)  
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3. vec(I
s
  X)  =  vec(I

s
 X  

4. vec(X  I
s
)  =  vec(I

s
  X’)  =  [(I

s
  X)  I

s
] vec(I

s
)  =  (X’  I

sns
) vec(I

ns
)   

(Proofs: Use A.1.2.) 
 
Proposition C.2. Let A be an mxn matrix and B an rxs one - (A  B) is mr x ns. 

Then, vec(A  B) = 
1. [I

ns
  (A  I

r
)] vec(I

n
  B) 

2. [(I
n

  B’)  I
mr

] vec(A  I
r
) 

3. [I
ns

  (I
m

  B)] vec(A  I
s
)  =  (I

nsm
  B) vec(A  I

s
) 

4. [(A’  I
s
)  I

mr
] vec(I

m
  B)  =  (A’  I

smr
) vec(I

m
  B) 

 
Proof: Use the fact that (A  B) = (A  I

r
) (I

n
  B) = (I

m
  B) (A  I

s
) and Proposition 

A.1.1. 
 
Proposition D.1. Let a be a scalar and B an (mxn) matrix, both functions of the 

elements of an (rx1) vector . Then: 

 
 aB






  =  

 vec aB






  =  vec(B) 

a






 + a 

B






 

 
Proposition D.2. Being X an (nx1) vector dependent on a (rx1) vector  and A a 

pxs matrix independent of : 

1. 
 A X



 


  =  

 vec A X



 


  

X






      (Proof: Obvious from 

C.1.1.) 

2. 
 X A



 


  =  

 vec X A



 


  =  {[vec(

X






)]’  A’  I

np
} [I

r
  vec(I

np
)]   

3. 
 sX I



 


  =  

 svec X I



 


  =  {[vec(

X






)]’  I

sns
} [I

r
  vec(I

ns
)]   

4. 
  



 


  =  I

r
 

r
   

 
Appendix 2.  

Taylor’s expansion to the fourth order of any function (Z) around neighbourhood 
X of a given level Z generates (see an approximation to the third order in sum notation 
in Hamilton 1994, p. 738):  

 

(A.1)  (Z + X)  =  (Z)  + 
Z




  X  + 

1

2!
 

'
2

´
vec

Z Z

  
  

   
 (X  X) +  

 

 +  
1

3!
 

'
2

´Z Z
vec

Z

   
   

     
  
     

 (X  X  X)  + 
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 +  
1

4!
 

'
2

´Z Z

Z

vec
Z

    
    

     
   
   

    
    
  
  
  
  
  

 (X  X  X  X)  +  ...  =  

 

 =  (Z)  + 
Z




  X  + 

1

2!
 X’ 

2

´Z Z



 
 X +  

 

+ 
1

3!
 vec(XX’)’ 

2

´Z Z

Z

 
  

  


 X  + 

1

4!
 vec[(XX’)  X]’ 

2

´Z Z

Z

Z

  
  

   
 
 
  


 X  +  ...   

 

Proposition E. 
E[(X - -  

1. E[XX’] = V + ’ 
2. E{[(X - ) (X - ’]  (X - )} = E{(X X’- X ’ – X’ + ’)  (X - )} = 

 = E{[(X - ) (X - ’]  X} – (V  ) = 
 = E[(X X’- X ’ – X’ + ’)  X] – (V  ) = 
 = E[(X X’- X ’ – X’)  X] – [(V - ’)  ] = 
 = E[(X X)’  X] - E[(X ’)  X] - E[( X’)  X] – [(V - ’)  ]  

 = E[(X X)’  X] - [ ’  vec(V+ ’)] – (   V)  – (V  )  
 = E[(X X)’  X] - [vec(V+ ’)  ’] – (   V)  – (V  )  
 = E[(X X)’  X] - vec(V+ ’) ’ – (   V)  – (V  )  

3. E{[XX’ – E(XX’)]  (X - )} = E[(XX’)  (X - )] = E[(XX’)  X] – [(V + ’) ] 
4. E{(X - )  [XX’ - E(XX’)]} = E[(X - )  (XX’)] = E[X  (XX’)] – [  (V + ’)] 
5. E{[XX’ – E(XX’)] (X- )’} = E[(XX’) (X- )’] = E[(XX’)  X’] – [(V + ’) ’] 
6. E{(X- )’  [XX’ - E(XX’)]} = E[(X- )’  (XX’)] = E[X’  (XX’)] – [ ’ (V + ’)] 

7. E{[XX’ – E(XX’)]  [XX’ – E(XX’)]} = E{(XX’)  [XX’ – E(XX’)]} =  
 =  E[(XX’)  (XX’)] – [(V + ’)  (V + ’)] 
8. E{[(X - ) (X - ’]  (X - ) (X - ’} = E{(X X’- X ’ – X’ + ’)  (X - ) (X - ’} = 

E{(X X’- X ’ – X’)  (X - ) (X - ’} + ( ’)  V  
= E{[(X (X - ’]  (X - ) (X - ’} -  E{(X - )’  [(X - ) (X - ’]} =  
= E{(X X’)  [(X - ) (X - ’}- E[(X ’)  [(X - ) (X - ’]} -  E{(X - )’  [(X - ) (X 

- ’]} = E[(X X’)  (X X’)] - E[(X X’) ( X’)] - E[(XX’)  (X ’)] + [(V+ ’) ( ’)] – 

- E[(X ’)  (XX’ ] + E[(X ’)  ( X’)] + E[(X ’)  (X ’)] - [(  ’)  ( ’)] - 
-  E{(X - )  [(X - ) (X - ’]}’ = 
= E[(X X’)  (X X’)] - E[(X X’)  X’]   - E[(XX’)  X]  ’ + [V  ( ’)] – 
- ’  E[X  (XX’ ] + ’  (V+ ’)   + ’  vec(V+ ’)  ’ - 

-  { E[(X X)’  X] - [ ’  vec(V+ ’)] - (   V)  – (V  ) }’ = 
= E[(X X’)  (X X’)] - E[(X X’)  X’]   - E[(XX’)  X]  ’ + [V  ( ’)] – 
- ’  E[X  (XX’ ] + ’  (V+ ’)   + ’  vec(V+ ’)  ’ - 

-  { E[(X X)’  X’] - [   vec(V+ ’)’] - ( ’  V)  – (V  ’) } = 
= E[(X X’)  (X X’)] - E[(X X’)  X’]   - E[(XX’)  X]  ’ + [V  ( ’)] – 
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- ’  E[X  (XX’ ] + ’  (V+ ’)   + ’  vec(V+ ’)  ’ - 
-  { E[(X X)’  X’] - [vec(V+ ’)’  ]- ( ’  V)  – (V  ’) } 
 

Appendix 3.  
Consider that X is a nx1 vector with multivariate normal distribution with E[X] =  

and Cov(X) = V. As is well known, denoting t by the (nx1) vector of arguments, its 

moment generating function is: 

 M(t)  =  exp( ’ t + 
'

2

t V t
) 

Proposition F. Then: 

1. 
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M t

t


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2

t V t
) (  + V t) 
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t t



 
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t V t
) [(  + V t) (  + V t)’ + V] 

3. 
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M t
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t

 
  

  


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t V t
) ({[I

n
  (  + V t)] (  + V t) + vec(V)} (  + V t)’ + 

 + [(  + V t)’  I
nn

] [vec(I
n

)  V] + [I
n

  (  + V t)] V ) = 

 =  exp( ’ t + 
'

2

t V t
) ({[(  + V t)  (  + V t)] + vec(V)} (  + V t)’ + 

 + [(  + V t)  V] + [V  (  + V t)]) 

 =  exp( ’ t + 
'

2

t V t
) ({vec[(  + V t)(  + V t)’] + vec(V)} (  + V t)’ + 

 + [(  + V t)  V] + [V  (  + V t)]) 

Proof: vec(

2 ( )

'

M t

t t



 
) = exp( ’ t + 

'

2

t V t
) {[I

n
  (  + V t)] (  + V t) + vec(V)}. Then, 

apply rule of differentiation of Propositions A.5 and D.2.1. and use B.2.5. 
Note that [(  + V t)’  I

nn
] [vec(I

n
)  V] = {[(  + V t)’  I

n
] vec(I

n
)}  V = (  + V t)  

V. (Use A.1.2.) 
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nnn
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
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 


  + [vec(V)  V] ) = 

= exp( ’t +
'

2

t V t
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 + exp( ’t +
'

2

t V t
) ( {V  vec[(  +Vt)(  +Vt)’ + V]} + 

 + [(  +Vt)’  I
nnn

] [vec(I
n

)  {[V  (  +Vt)] + [(  +Vt)’  I
nn
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] + 
 + (I

nn
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nnn
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Proof: vec(
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Using Proposition C.2 and A.5. 

 
Proposition G. We will have that: 
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If  = 0, E[(X X’)  X] = 0. Hence, for the multivariate normal, E{[(X- - -
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If  = 0,  = [V vec(V)] + (I
nn

V) 
[( ) ]nvec Vt I

t

 
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(at t=0) + 

[vec(V) V] = [V vec(V)] + (I
nn
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nnn
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. It is easy to use the expressions to show that for a null means normal: E[X

1
 X

2
 X

3
] 

= 0; E[X
1
 X

2
 X

3
 X

4 12
 

34
 

13
 

24
 

23
 

14
 – see, for example, Dhrymes, 1978, p. 

371 -
ij

 is the element of the i-th row j-th column of the symmetric matrix V. 
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