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Abstract. The derivation of the maximum entropy distribution of particles in boxes yields 

two kinds of distributions: a "bell-like" distribution and a long-tail distribution. The first one 
is obtained when the ratio between particles and boxes is low, and the second one - when 
the ratio is high. The obtained long tail distribution yields correctly the empirical Zipf law, 
Pareto's 20:80 rule and Benford's law. Therefore, it is concluded that the long tail and the 
"bell-like" distributions are outcomes of the tendency of statistical systems to maximize 
entropy.  
Keywords. Maximum Entropy, Long tail distribution, 20:80 Pareto's rule, Zipf Law, 

Benford's law, Bell-like distribution. 
JEL. C62.  

 

1. Introduction 
ccording there are two common distributions in life: The first one is 
the "bell-like" distribution, which is found in the distribution of IQ, 
human heights, human age at death etc. This "almost universal" 

distribution was introduced for the first time by Moivre in the 18th century and 
explored by Laplace and Gauss around 1800. 

As opposed to the bell curve distribution, many quantities are distributed 
unevenly (Bak, 1996). For example, the probability to live in a big city is higher 
than the probability to live in a small village. Similarly, the probability to be 
poor is higher than the probability to be rich. Although intuitively it is logical 
for cities' population and wealth to have a bell curve distribution, it is not so. 
Their distributions are uneven and are characterized by a long tail to the right, 
in which few have a lot and many have quite a little. These distributions were 
observed by Pareto, Zipf, Newcomb and Benford about a century later and 
received their name accordingly: Zipf law (Zipf, 1949; Miller, & Newman, 1958), 
Pareto's rule (Pareto 1897; Jurgan, 1951), and Benford's law (Newcombs, 1881; 
Benford, 1938). 

The first to discover it was Pareto. In 1896 he observed that the ownership 
of lands in Italy is distributed among the population in the ratio of around 
20:80, namely, about 20% of the population own about 80% of the land. From 
his observations of other countries as well, he concluded that this ratio is 
general. Mussolini embraced the Italian Marquis Pareto because he believed 
that the Pareto's rule proves nature's preference of the fittest. Zipf - a Harvard 
professor of linguistics - found out that the ratio between the first most 
frequent word and the second one, in any text in many languages, is two. 
Similarly, the ratio between the second most frequent word and the fourth one 
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is also two, etc. He claimed that the shortest and most "efficient" words appear 
more frequently (Zipf, 1949). 

Zipf believed in the evolutionary philosophy, i.e. the most "useful" and 
"efficient" words are the winners, in the spirit of "the survival of the fittest". 
On the other hand, many people and political movements believe that Pareto's 
rule is unfair and the wealth should be shared more equally, namely, as in the 
bell curve distribution. The discovery of Newcomb about the uneven 
frequency of digits in logarithmic table in 1881 (Newcomb, 1881), (the higher 
the value of a digit, the lower its frequency) raises some doubts as for the real 
reason for the uneven distributions. Later, in 1938, Benford confirmed 
Newcomb's uneven distribution of digits in a wide range of numerical data 
(Benford, 1938). He attempted, unsuccessfully, to present a formal proof to 
Newcomb's equation, see Eq. (12). Since then, this distribution was found also 
in prime numbers (Cohen, 1984), physical constants, Fibonacci numbers and 
many more (Kossovsky, 2012). 

In this paper it is argued that the "bell-like" distribution and the long tail 
distribution are the boundaries of the same probability distribution. This 
probability function is obtained by a fair and unbiased random distribution of 
particles in boxes. 

We consider a set of N boxes scoring P particles; it is assumed that all the 
boxes have an equal probability to score a particle, namely, the probability of 
a box to score a particle is = 1/𝑁  . Therefore, the probability to score n 

particles is 𝑞𝑛 = (
1

𝑁
)𝑛. It is clear that 𝑞𝑛 < 𝑞. This is the basic reason why the 

rich are fewer than the poor. In the case of  𝑃 ≪ 𝑁,  where a multiple score is 
negligible, the “bell-like” distribution is obtained; and in the case of 𝑃 ≫ 𝑁, a 
long tail distribution is obtained. 

 

2.  How P particles are distributed in N boxes? 
The answer to it is not new: the particles are distributed in a way that 

maximizes the entropy (Planck, 1901). 
According to Boltzmann, entropy is proportional to the maximum possible 

number of the different configurations (microstates) of a set. Namely, 
 
𝑆 = ln Ω          (1) 
 
(we take here the Boltzmann constant kB≡ 1). A microstate is one possible 

distinguishable configuration of a set of boxes and particles. Boltzmann 
entropy is obtained from the Gibbs-Shannon entropy by assuming that all the 
microstates have an equal probability. The Gibbs-Shannon entropy is given 
by: 

 

𝑆 = − ∑ 𝑝𝑗
Ω
𝑗=1 ln𝑝𝑗          (2) 

 
where 𝑝𝑗  is the probability of the microstate 𝑗  and Ω  is the number of 

microstates to be maximized. If all the microstates have an equal probability, 
namely,𝑝𝑗 = 1/Ω , Boltzmann entropy  ln Ω  is obtained. 

Therefore, the distribution of particles that maximizes Boltzmann entropy 
means an equal probability to any configuration as well as an equal probability 
to any particle to be in any box. 
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The number of microstates (different configurations) of 𝑃 particles in 𝑁 
states is given by the Planck expression (Planck, 1901) namely, 

 

Ω(𝑃, 𝑁) =
(𝑁+𝑃−1)!

𝑝!(𝑁−1)!
           (3) 

 
To visualize the problem we start with a numerical example; namely, 

calculating the distribution of 3 particles in 3 boxes that maximizes entropy. 
According to Eq. (3) the number of microstates Ω(3,3) = 10 as follows: 

 
|300| 030| 003| 210| 201| 120| 021| 102| 012| and |111|. 
 
We see that although each box has an equal chance to score 1, 2, or 3 

particles, the boxes with 1 particle appear 9 times, those with 2 particles appear 
6 times, and those with 3 particles appear 3 times. The relative frequency of 
the boxes with one particle in a set of three boxes is therefore f(1)=0.5; with 
two particles f(2)=0.333and with three particles f(3)=0.166. 

To calculate the relative frequencies f(n), we designate 𝑛 = 𝑃/𝑁, where 𝑛 
is the number of particles in a box, and apply the Stirling's formula  

lnN!≅N ln N−N . We obtain (Planck, 1901) from Eqs.(1) and (3) that, 
 

𝑆 ≅ 𝑁{(1 + 𝑛) ln(1 + 𝑛) − 𝑛 ln 𝑛} ≅ ∑ {(1 + 𝑛) ln(1 + 𝑛) − 𝑛 ln 𝑛}𝑁
𝑛=1   (4) 

 
Now we write the Lagrange equation, 
 

𝐹(𝑛) ≅ ∑ {(1 + 𝑛) ln(1 + 𝑛) − 𝑛 ln𝑛}𝑁
𝑛=1 − 𝛽{𝑃 − ∑ 𝑛𝜙(𝑛)}𝑁

𝑛=1    (5) 
 
The first term on the RHS is the entropy and the second term is 

theconstraint of the number of particles. Namely, 𝑃 = ∑ 𝑛𝜙(𝑛)𝑁
𝑛=1  is the 

number of particles, 𝜙 (n) is the number of boxes that scored n particles and 
β is a 

Lagrange multiplier.𝜙 (n) can be interpreted as the probability of a box to 
have 𝑛  particles. The normalized (𝑛) , 𝑓(𝑛) is the relative frequency of the 

boxes that scored 𝑛 particles. From     
𝜕(𝐹(𝑛)

𝜕𝑛
= 0  one obtains, 

 

𝜙(𝑛) = 𝛽−1 ln(1 +
1

𝑛
)                                       (6) 

 
Eq. (6) is the analogue of Planck equation (Kafri, 2007, 2009, 2016), namely, 
 

𝑛 = 1/[𝑒𝛽𝜙(𝑛) − 1]        (7) 
 
Hereafter, we examine three cases: 
In the first case we assume that n>> 1. Here one can expect to find a large 

number of particles (limited by P) in any of the boxes. For example, if we 
conduct a popularity poll between the N words among P authors, and there 
are many more authors than words, then the maximum entropy distribution 
of the votes between the words is shown to be the Zipf law. 



Journal of Economics and Political Economy 

 O. Kafri, JEPE, 12(2), 2025, pp.94-103. 

97 

In the second case we consider the intermediate zone where n is in the 
range of the number of the boxes. This case fits well to the distribution of 
ranks, namely, Pareto's rule and Benford's law. 

In the third case we consider n<< 1, where the number of particles is 
negligible as compared to the number of boxes. This case fits well to the 
probability of guessing correctly the IQ of a person in a single guess based only 
on the knowledge of the average. This case yields the "bell-like" distribution. 

 

3. Zipf law 
Consider the case where 𝑃 ≫ 𝑁 where ≫ 1. In this case  𝛽𝜙 ≪ 1, therefore 

from Eq. (7) 𝜙(𝑛)  can be approximated to, 
 

𝑛𝜙(𝑛) =
1

𝛽
                 (8) 

 
Eq.(8) is the Zipf law. Namely, the ratio in the frequencies between n=1 (the 

most frequent word) and n=2 (the second most frequently word) is 2 which is 
identical to the ratio between 𝑛 = 2 and 𝑛 = 4 etc. This ratio is not a function 

of  𝛽 as   
𝜙(1)

𝜙(2)
=

𝜙(2)

𝜙(4)
= ⋯

𝜙(𝑛)

𝜙(2𝑛)
= ≅ 2. 

 

4.  Pareto's rule 
to calculate the relative frequency of Eq.(6), namely, f(n) we have to divide 

𝜙(𝑛)  by the sum over all the M occupied boxes M≤N , namely, 
 

∑ 𝜙(𝑛) =
1

𝛽
(ln

2

1
+ ln

3

2
+ ⋯ . . + ln

𝑀+1

𝑀
)𝑀

𝑖=1 =
1

𝛽
ln

𝑀+1

𝑀
    (9) 

 
Therefore, 
 

𝑓(𝑛) =
ln(1+

1

𝑛
)

ln(𝑀+1)
                   (10) 

 
Like in the Zipf law, for integer n's, the relative frequency is not a function 

of 𝛽 .We define a rank 𝑟 ≡ 𝑛𝑁/𝑃where  𝑟 = 1, 2, 3, … . 𝑅. By defining the ranks 
we combined the boxes into clusters of boxes such that each cluster will 
contain 𝑟 = 1, 2, 3, … . 𝑅 groups of  𝑃/𝑁 particles. Therefore 𝑟 = 10 means 10 
times more particles than r= 1. We can repeat the calculation of the frequency 
again but instead of using n, we will use r, and obtain; 

 

𝑓(𝑟) =
ln(1+

1

𝑟
)

ln(𝑅+1)
                    (11) 

 
In Graph.1 The relative frequencies𝑓(𝑟) for a set of R=106 clusters and r= 

1,2,3,...., Raccording to Eq.(11) is plotted. A long tail distribution is 
demonstrated. 
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Graph 1. A million clusters and their probabilities. The rank increases as its 

probability decreases. 
 
Eq.(11) "behaves" as a power law, this is so because a plot of the logarithm 

of the cluster r versus the logarithm of its probability yields a straight line as 
demonstrated for a million ranks. 

 

 
Graph 3. Log-Log plot of frequency versus the rank for R=million is a straight line. 
 
The Pareto's 20:80 rule of thumb was proved to be correct not only in 

wealth distribution but in many other phenomena as well. For example, it is 
believed that 20 percent of customers yields 80 percent of the revenue; 20 
percent of the drivers cause 80 percent of the accidents; etc (Jurgan, 1951). In 
order to find the ratio obtained from Eq. (11) we divide the boxes into 10 ranks. 
Each rank contains 1, 2, 3,….,9, 10 equal groups of particles. We construct the 

table below from 𝑓(𝑟) =
ln(1+

1

𝑟
)

ln(11)
 

 
Table 1. The relative frequencies of 10 ranks 

r 10 9 8 7 6 5 4 3 2 1 

f(r)% 4 4.4 4.9 5.6 6.6 7.6 9.3 12 16.9 28.9 

 

The total number of groups is∑ 𝑟 = 5510
𝑟=1 .  However, the richest five ranks 

contain ∑ 𝑟 = 4010
𝑟=6  groups. Their total frequencies are ∑ 𝑓(𝑟) = 25.5%10

𝑟=6 , 
which means that about 73% of the packages are in the hands of about 25% of 
the boxes. This is a typical behavior of the Pareto's rule but with a small 
deviation from the empirical rule of thumb of 20:80, namely, a 25:75 rule. 
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5.Benford's Law 
Another application of Eq. (11) is Benford's law. Newcomb suggested 

Benford's law in 1881 from observations of the physical tear and wear of books 
containing logarithmic tables (Newcomb, 1881). Benford further explored the 
phenomenon in 1938, and empirically checked it for a wide range of numerical 
data. The main application of Benford's distribution is based on its existence 
in numerous random numerical files like financial data, street addresses, etc. 
Since one intuitively expects to obtain an even distribution of digits, as would 
be in the case of an unbiased lottery, some income tax authorities are looking 
at balance sheets for digit distributions in order to detect fraud detection. If 
the balance sheets don't fit to Benford's law, a further inspection is done 
(Nigrini, 1996). 

In the derivation of Benford's law we assume that a digit is a box with n 
particles. This assumption is logical as a digit, unlike a word, has an absolute 
meaning as compared to other digits, exactly as the meaning of the number of 
particles in a box. There is a constraint though: the number of particles in a 
digit cannot exceed 9. The digit zero does not appear in Benford's law 
distribution of the first order. In Eq. (11) r may have any number. In digits, per 
definition, r≤ 9, therefore, it is legitimate to calculate the equilibrium 
distribution of the occupied boxes and to add as many empty boxes without 
affecting the distribution. In this case R is 9 and Eq. (11) yields the relative 
frequency, 

 

𝑓(𝑟) =
ln(1+

1

𝑟
)

ln(10)
= log(1 +

1

𝑟
)                     (12) 

 
This is the Benford's law. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Graph 3. Benford's law predicts a decreasing frequency of first digits, from 

1through 9. 
 

6. "Bell-like" distribution 
Zipf law, Pareto's rule and Benford's lawoccurs where the number of 

particles is larger than the number of boxes. Hereafter, the case where P<<N 
is considered. 

In this case n<< 1, we neglect the boxes that scored several particles, 
because, practically there are no such boxes. We want to find the probability 
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distribution of N boxes to score one particle. In this limit, 𝑒𝛽𝜙 ≫ 1 and Eq. (7) 
can be approximated to, 

 

𝑛𝑖 = 𝑒−𝛽𝜙𝑖                    (13) 
 
Here ni is the fraction of a particle in a box and the frequency 𝜙i=𝜙 (ni ) is 

the probability to find this fraction. The total number of particles P is given by 
the same expression that we used in the Lagrange equation (5) namely, 

 

𝑃 = 𝑁𝜙 i𝑛𝑖 = 𝑁𝜙𝑖𝑒−𝛽𝜙𝑖                  (14) 
 
in the limit β→ 0 one obtains that all the frequencies 𝜙𝑖  of the boxes are 

equal, namely 𝜙𝑖 =𝑃/𝑁. This is an even distribution. The even distribution 
isthe intuitive distribution that one expects to find in a distribution of particles 
in boxes. This distribution causes us to believe that uneven distributions are 
counterintuitive. 

In the case where β is finite 
 

𝑃 = ∑ 𝜙𝑖𝑒−𝛽𝜙𝑖 = ∑ 𝑃(𝑁
𝑖=1

𝑁
𝑖=1 𝜙𝑖 , 𝛽)                (15) 

 
𝑃(𝜙𝑖,𝛽)

𝑃
is the relative probability to find a particle in a box. From Eq. (15) it 

is seen that 𝑃(𝜙𝑖 , 𝛽) has two components, the first is the frequency 𝜙𝑖  of the 
fraction 𝑛𝑗of the particle and the second is the fraction of particles. As opposed 

to the case where P>>N, the frequency  𝜙(𝑛) itself is not the probability to find 
n particles but the probability to find a fraction of a particle. To find the 
probability of a single particle we have to multiply the frequency by the 
fraction of the particle namely 𝜙𝑖𝑛𝑖  . When the frequency increases the 
associate fraction of particles decreases exponentially with the frequency. The 
larger the β , the steeper is the decay. Since P(𝜙, β ) is a linearly increasing 
function of 𝜙𝑖  multiplied by an exponentially decay function of 𝜙𝑖  , the 
distribution of particles in a box has a definite maximum. 

 

 
Graph 4. The number of boxes and their probability to find a single particle for N=1000 

and 𝛽 = 1/50 
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The maximum probability is obtained from
𝜕𝑃

𝜕𝜙
= 𝑒−𝛽𝜙 − 𝛽𝜙𝑒−𝛽𝜙 = 0 and 

is given by𝜙𝑚𝑎𝑥 = 1/𝛽 . In Graph (4) we see that the obtained curves is typical 
to the distributions of velocity of molecules, human age at death etc. 

 

7. Discussion 
The long tail distribution attracts a considerable attention because it is so 

ubiquitous [15]. Sometimes it is called a power law distribution and scale-free 
distribution. This is because a Log-Log presentation of the distribution yields 
a straight line as seen in Fig.2. When a power law fits are done, different slopes 
obtained for different statistics. For example, in Zipf law the ratio between the 
frequency of the 1st and the frequency of the 2nd is 2; in Pareto's rule and in 
Benford's law this ratio is about 1.7. Namely, in different regimes of P / N 
different "slopes" are obtained as is seen in Graph 5. Another notable point is 
that the normalized frequencies f (n)𝑓(𝑛) for𝑃 ≫ 𝑁 are not a function of β 
.This is with contradistinction to the case P<<N in which the distribution is a 
function of β. 

 
 
 
 
 
 
 
 
 
 

 
Graph 5. A plot of ln 𝜙versus ln 𝑛: for high values of n a “power law” decay is 

obtained, however for low values of n an exponential decay is obtained. 
 
The Lagrange multiplier 𝛽  has a meaning. In ther modynamic the 

temperature is related to it via 𝑇 ∝
1

𝛽
.We see that in the case of Zipf law the 

frequency multiplied by the number of particles is proportional to the 
temperature. In the case of 𝑛 ≪ 1 the temperature is proportional to the 
frequency in which the probability to find a particle is the highest. This is the 
main difference between the long tail distribution and the "bell-like" 
distribution. In the long tail the temperature means the average wealth of a 
box. In the bell curve the temperature means the maximum probability. 

 

8. Summary 
The distribution of P non-interacting particles in N boxes iscalculated for a 

fair system. Since there is no preference to any configuration of particles and 
boxes, the entropy principle can be applied. It is shown that when the number 
of the particles is negligible as compared to the number of boxes, the "bell-
like" distribution (which prefers the average) is obtained. However, when the 
number of particles is higher than the number of boxes, a long tail distribution 
is obtained. The obtained long tail distribution yields correctly Zipf law, 
Pareto's rule and Benford's law. 
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The Pareto's rule usually is conceived as an evolutionary law. Namely, the 
20% of the drivers that cause 80% of the accidents are the bad drivers. Maybe 
the personality of these drivers is the reason for their excessive involvement in 
car accidents. Similarly, there might be good reasons for the fact that few 
people get rich and the majority remains poor. These kinds of questions 
cannot be answered by this kind of analysis. However, one should bear in mind 
that particles without personality, interactions or statistical bias are also 
distributed in the same way. 
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