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Abstract. With the growing ability of organizations in the public and private sector to 

collect large volumes of real-time data, the mounting pile of information presents specific 

challenges for storage, processing, and analysis. Many organizations do need data analysis 

for the purposes of planning and logistics. Likewise, governments and regulators will need 

analysis to support policy-making, implementation and controlling. All this leads to the 

importance of being able to generate large-scale analytics under (sometimes severe) 

resource constraints. This paper investigates a possible solution – automating analytics with 

a special focus on forecasting time series. Such approach has the benefit of being able to 

produce scalable forecasting of thousands of variables with relatively high accuracy for a 

short period of time and few resources. We first review the literature on time series 

forecasting with a particular focus on the M, M-2, and M-3 forecasting competition and 

outline a few major conclusions supported across different empirical studies. The paper 

then proceeds to explore the typical structure of a time-series variables using Bulgarian 

GDP growth and show how the ARIMA modeling with a seasonal component can be used 

to fit economic data of this class. We also review some major approaches to automating 

forecasting and outline the benefits of selecting the optimal model from a large set of 

ARIMA alternatives using an information criterion. A possible approach to fit an automated 

forecasting algorithm on four crucial economic time series from the Bulgarian economy is 

demonstrated. We use data on GDP growth, inflation, unemployment, and interest rates and 

fit a large number of possible models. The best ones are selected by taking recourse to the 

Akaike Information Criterion. The optimal ARIMA models are studied and commented. 

Forecast accuracy metrics are presented and a few major conclusions and possible model 

applications are outlined. The paper concludes with directions for further research. 
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1. Introduction 
he buzzword of big data seems to dominate the analytics landscape over the 

past years. It is indeed true that with the growing ability of organizations in 

the public and private sector to collect large volumes of real-time data, the 

mounting pile of information presents specific challenges for storage, processing, 

and analysis. Large organizations could have hundreds or even thousands of 

metrics tracked across their operations, logistics, finances, sales or services, and 

resource management. The ability of analytics to add value to operations has long 

since been recognized but the mounting challenge of analyzing ever increasing 
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volumes of data can sometimes have prohibitive costs. This is particularly true with 

sophisticated analytics such as forecasting where trained personnel may be scarce. 

On the other hand many organizations do need data analysis for the purposes of 

planning and logistics. Likewise, governments and regulators will need analysis to 

support policy-making, implementation and controlling. All this leads to the 

importance of being able to generate large scale analytics under (sometimes severe) 

resource constraints. This paper investigates a possible solution – automating 

analytics with a special focus on forecasting time series. Such approach has the 

benefit of being able to produce scalable forecasting of thousands of variables with 

relatively high accuracy for a short period of time and few resources. We first 

review the literature on time series forecasting and then proceed to fit an automated 

algorithm on four crucial economic time series – GDP, inflation, unemployment, 

and interest rates. A few conclusion and directions for further research are then 

outlined. 

 

2. Literature Review and Motivation 
Due to its importance for planning, forecasting has received significant attention 

in the statistical, economic, and business literature. May approaches have proposed 

ranging from relatively simple extrapolative methods through more complicated 

autoregressive and moving averages methods to very sophisticated machine 

learning algorithms such as neural networks or random forest models (Hyndman & 

Athanasopoulos, 2014; Friedman et al., 2001). This rich variety begs the question 

of which the optimal forecasting model is, and this has been formally tested many 

times over. One of the first major undertakings in this direction is work by 

Makridakis et al. (1979) in the late nineteen-seventies which seeks to compare the 

performance of different forecasting methods on 111 datasets (the M-competition).  

This work was continued and later expanded in subsequent research. In the 

early nineteen-eighties Makrdidakis et al. (1982) presented results (M-2 

Competition) comparing 1001 time series forecasted with a number of different 

methods. Finally, in 2000, Makridakis et al. (2000) published a comparison of the 

same methods on a sample of 3003 different datasets (the M-3 Competition). The 

major findings from this study, as well as from other empirical work is that while 

the most sophisticated methods do not necessarily produce the best forecasting 

performance, there is still much improvement over naïve estimates to be gleaned 

from applying formal models. These competitions also show that time series 

models of the ARIMA class tend to have high accuracy. This is particularly true 

when it comes to macroeconomic or financial data. In this paper we aim to show 

precisely how ARIMA models can be automated to produce high quality forecasts 

at a low price. 

To better understand how this class of models works, we note that any given 

times series is composed of a number of components. Most notably, non-random 

time series tend to have a trend, and fluctuate around it. They could also have 

cyclical, seasonal, and random components. Statistical methods can be used to 

decompose the time series into their constituent parts. Figure 1 displays the 

decomposition of the Bulgarian GDP growth over the period 2001-2015. 
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Graph 1. Decomposition of Growth Time Series for Bulgaria,  

Source: Eurostat 

 

It is the task of the ARIMA models to try and capture the information, 

contained in the time series and model current variable realization as a function of 

past ones. In the simplest version of the model, the current realization of a given 

metric yt is presented as a weighted function of p previous values yt-p (is an error 

term). This AR(p) model is defined as follows: 

 

𝑦𝑡 = 𝜃 +  𝛽𝑖𝑦𝑖
𝑝
𝑖=1 + 𝜀𝑡        (1) 

 

Additional information can be contained in the error structure of the time series. 

This can be modeled through a moving average of the error term. Should the 

analyst use q past values of the error terms to model current variable realization, 

then we reach a MA(q) of the following form: 

  

𝑦𝑡 = 𝜇 + 𝜖𝑡 +  𝛼𝑖𝜀𝑖
𝑞
𝑖=1        (2) 

 

Combining those two equations one gets a more fuller perspective on the time 

series, thus reaching the classical ARMA(p, q) model: 

 

𝑦𝑡 = 𝛽0 +  𝛽𝑖𝑦𝑖
𝑝
𝑖=1 +  𝛼𝑖𝜀𝑖

𝑞
𝑖=1 + 𝜀𝑡      (3) 

 

Should the time series be integrated of a certain order d, this can also be taken 

into account, finally reaching the ARIMA(p, d, q) model. A particular strength of 

this class of models is their ability to accommodate seasonality in the time series, 

and its mirrors the structure of the deseasoned model. A model with seasonality is 

thus denoted as ARIMA(p, d, q)(P, D, Q) to account to the autoregressive, 

integrated, and moving average parts in the seasonal component of the data. 

Interested readers are directed to Hamilton’s (1994) work for further details. 
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The availability of versatile tools for time series analysis has also spurred the 

interest in automatic forecasting. Early work on this topic began in the later 1990s, 

and was further spurred after the M-3 competition. Research by Melard & Pasteels 

(2000) showed a basic software implementation of automatic ARIMA forecasting 

which calculates eight models and selects the best one based on lowest residual 

autocorrelation. While this approach is rather limited and model selection needs 

significant improvement, this paper showed the possibility of automating time 

series analytics. Achieving better precision in identifying time series peculiarities 

was clearly needed and subject to subsequent research such as in the work of Adya 

et al. (2001). Alternative strands of research have focused on alternative large-scale 

forecasting (Chakrabarti &Faloutsos, 2002) but they have had only limited impact 

on theory and practice. 

Hyndman & Khandakar (2008) present an automatic forecasting facility 

implemented in the R statistical language. It is able to handle both exponential 

smoothing and ARIMA methods, providing a large set of possibilities for the 

analyst. This is also notable for the customizable selection of models, based on 

information criteria. Such selection is preferable to the expert or heuristic selection 

implemented in other settings as it gives an unambiguous preference for a single 

model among a large set of potentially useful ones. This approach allows for fully 

automatic forecasting once the analyst or the solution architect has made a few key 

design decisions. We outline those decisions, demonstrate parameter choices and 

apply the algorithm to Bulgarian macroeconomic data. 

 

3. Automated Forecasting and Application 
Four macroeconomic variables present particular interest for business and 

policy analytics. Those are the rate of change of GDP (real growth), which proxies 

disposable income and economic development; the rate of unemployment as an 

indicator of labor availability and labor costs; interest rates as the cost of capital; 

and inflation which gives an indication of price dynamics and proxies economic 

stability. Their accurate and timely forecasting can have crucial implications for 

planning and intervention at both the firm and the state level. We use those series 

as examples of how to construct a meaningful architecture for automated analytics.  

Data itself are obtained from the Eurostat statistical service, the Bulgarian 

Ministry of Finance (MF), and the Bulgarian National Bank (BNB) and span the 

period 2001-2015. GDP growth series are at a quarterly frequency, whereas the 

unemployment rate, inflation (average HICP of 12 month period), and interest rates 

on short term business credits (less than 1 year) are at a monthly frequency. Their 

dynamics can be traced on Figure 1. Up until the crisis which started in 2009, the 

Bulgarian economy grows robustly, with a decrease in both the rate of 

unemployment, as well as the interest rates. This period is also accompanied by a 

burgeoning inflation, which sometimes goes in the double digits. Such 

developments over this period spurred concern about the overheating of the 

Bulgarian economy. 

These dynamics changed drastically with the onset of the global economic and 

financial crisis. In 2009-2010 Bulgaria saw a collapse in growth, and a marked rise 

in unemployment. The perception of heightened risk and the economic uncertainty 

also lead to an increase in the volatility of short-term interest rates. In parallel 

inflationary pressures receded. By the end of the period under study in 2014-2015 

the economy mostly recovered and growth has picked up. This led to a decrease in 

unemployment and a slight decrease in interest for business. Their volatility 

remains significant, and is also coupled with deflationary pressure.  
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In short, we observe wild fluctuations of the time series, a regime switch, and 

pockets of volatility in some of them (interest rates). Unsupervised modeling of 

such time series presents a particular challenge but also significant opportunity. We 

use the framework of ARIMA modelling to address this. Initially, we consider the 

maximum number of lags that would be useful for the series. Since GDP data 

comes at quarterly frequency, and given its inertia, it would be useful to fit models 

of up to 8 lags of both the autoregressive and the moving average component (p = q 

= 8).  

The seasonal component can have a much shorter lag structure as it operates 

across a number of time periods. We select a number of 4 lags for the AR and MA 

seasonal components. While we do not expect the series to be integrated of order of 

more than 1, we still provide a buffer by setting a maximum number of possible 

differences at d = 3, and D = 2, and let the algorithm decide based on a KPSS and 

OCSB tests. For the growth series these would be maximum number of lags and 

differences. We thus fit models ranging from ARIMA(0,0,0)(0,0,0) to 

ARIMA(8,3,8)(4,2,4), or a total of 19,440 different ARIMA models to the growth 

time series and choose the best among them. 

When it comes to the other three time series, we should note that their 

frequency is much higher and will therefore need a large number of lags to capture 

effects that operate periodically across time. Thus the AR and MA lags are set at 12 

(p = q =12), and the seasonal lags are set at 2. Due to the higher frequency we 

would expect lower orders of integration and thus set the number of possible 

differences at d  = 2, and D = 1. For the unemployment, interest rates, and inflation 

time series we thus fit models ranging from ARIMA(0,0,0)(0,0,0) to 

ARIMA(12,2,12)(2,1,2). For each of those variable we so obtain 9,126 alternative 

models to pick from. 

In order to correctly measure forecast performance, the dataset is split in two 

sub-samples. The first one ranges from 2001 to the end of 2014 and is used for 

model training. The data from 2015 comprises the test data set against which we 

measure the out-of-sample accuracy of the produced forecasts. We thus confront 

model results will actual realizations upon which the model was not trained in 

order to gauge real-life model quality.  

 

 
Graph 2. Dynamics of Key Macroeconomic Time Series,  

Source: Eurostat, BNB. 



Journal of Economics and Political Economy 

 JEPE, 3(2), A.A. Gerunov, p.340-349. 

345 

345 

 

Initially we fit all specified alternative models to the training data set. The 

problem is now straightforward – to select the four best models out of a total of 

46,818 alternatives. For this purpose we can use a number of information criteria. 

Three criteria have become particularly popular in practice – the Bayesian 

Information Criterion (BIC), the Akaike Information Criterion (AIC), and the 

corrected Akaike Information Criterion (AICc) (Burnham & Anderson, 2003). To 

better understand model fit, we define the likelihood function L, equal to the 

probability p of observing the data x given a model M with a parameter set of θ, or: 

 

𝐿 = 𝑝(𝑥|𝜃,𝑀)        (4) 

 

If we denote the maximized value of this likelihood function as Lmax, then the 

BIC of a model with k parameters and a sample size of n is defined as follows: 

 

𝐵𝐼𝐶 = −2 ln𝐿𝑚𝑎𝑥 + 𝑘 ln𝑛       (5) 

 

Essentially, the information criterion is a measure of model quality, which 

represents informational loss as data is presented by a given model. Thus it can 

serve to select the best model among a set of alternatives taking into account the 

tradeoff between fit and parsimony (or number of parameters). For a given dataset 

better models have lower values of their information criteria. The BIC is often 

criticized on the grounds of its difficulty of handling complex collections of model 

or feature selection, and it is only valid as n >> k. This, together with some 

derivation considerations and performance issues lead many authors to propose 

using the Akaike Information Criterion instead (Burnham & Anderson, 2004). It is 

defined as follows: 

 

𝐴𝐼𝐶 = 2𝑘 − 2 ln𝐿𝑚𝑎𝑥        (6) 

 

The AIC estimate is valid asymptotically, which means that some corrections 

needs to be made for finite sample sizes, leading to the corrected version of AIC, or 

AICc. The formula for univariate series with normally distributed residuals is as 

follows: 

 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + 2𝑘(𝑘 + 1)/(𝑛 − 𝑘 − 1)      (7) 

 

The AICc penalizes more heavily models with more parameters than AIC and 

will thus lead to the selection of more parsimonious ones. In addition to that we 

should keep in mind that as the sample size grows AICc converges to AIC and this 

is why many authors recommend it as the primary criterion to use for model 

selection exercises (Burnham & Anderson, 2003). We follow the literature and use 

AICc to select the optimal models for our time series but also report the values for 

alternative ones. From an empirical perspective, the differences between the AIC 

and AICc for the series under study are very small and any of the criteria will lead 

to the selection of the same optimal model.  

 
Table 1. Optimal Models for Specific Time Series 

 Growth Unemployment Interest rates Inflation 

Optimal Model ARIMA(5,1,0) ARIMA(4,1,3) ARIMA(3,1,3) ARIMA(7,1,3) 

Akaike IC 189.19 30.88 633.64 -175.99 

Akaike IC, corrected 190.94 31.79 634.35 -174.29 

Bayesian IC 201.24 55.82 655.47 -141.69 
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Results for the optimal model for each of the variables are presented in Table 1. 

The models tend be rather parsimonious and have between 3-7 lags of the variable. 

All of the series are best fitted by models of their first differences, which is likely 

due to the clear trends they exhibit. In all cases but growth additional information 

can be gleaned by taking recourse to the structure of the error terms.  

 

 
Graph 3. Automated One-year Ahead Forecasts of Macroeconomic Variables 

 

We use the optimal models to automatically generate forecasts for one year 

ahead. In the case of GDP growth this means generating the four-period-ahead 

forecast, and for the other variable – the 12-period one. Those forecasts are 

presented in Figure 3 where we clearly see the increasing confidence intervals 

(shaded areas) as the estimate moves away from observed data, and the typical 

smoothed form of data. We formally test the generated forecasts against actual 

realized values and report the accuracy metrics in Table 2. The table contains 

statistics on the mean error (ME), root mean squared error (RMSE), mean absolute 

error (MAE), mean percentage error (MPE), mean absolute percentage error 

(MAPE), and mean absolute scaled error (MASE).  

Given the wide fluctuations of data over the period studied, results are rather 

encouraging. The average MAE of all time series stands at 0.49 for the training set, 

and at 1.06 in the test set. This means that the automated forecasting procedure 

produces estimates than are on average off by 1 percentage point from the actual 

realizations. This varies widely across the variables with interest rates having the 

largest mean absolute error, and also the largest mean absolute percentage error. 

Unemployment and inflation are easier to forecast and their MAEs stand at 1.38 

and 0.32, respectively. This deviation is relatively small (especially in the inflation 

case) and the estimates can have very large potential practical use.  
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Table 2. Metrics for Forecast Accuracy of Optimal Models 
 ME RMSE MAE MPE MAPE MASE 

Growth 

Training set -0.05 1.19 0.64 ND ND 0.78 

Test set 1.01 1.02 1.01 35.91 35.91 1.23 

Unemployment 

Training set -0.03 0.25 0.18 -0.17 1.67 0.53 

Test set -1.17 1.70 1.38 -14.72 16.70 4.12 

Interest Rates 

Training set -0.19 1.53 1.05 -5.92 14.20 0.80 

Test set -0.94 1.80 1.55 -23.97 31.50 1.18 

Inflation 

Training set -0.01 0.13 0.10 -0.14 3.21 0.37 

Test set 0.31 0.39 0.32 -25.08 25.66 1.15 

Average 

Training set -0.07 0.77 0.49 -2.08 6.36 0.62 

Test set -0.20 1.23 1.06 -6.97 27.44 1.92 

 

Growth time series are also relatively well fit by the automated model – the 

MAE in the training set stands at 0.64, and at 1.01 in the test set. The analyst would 

thus expect such the automated forecast to be an average of 1 percentage point off 

the mark. Given the complexity of growth determinants, and the large influence of 

different exogenous shocks, such results are very good. In particular, we should 

note the large amount of EU-funds invested in the Bulgarian economy as the 

extension of the 2007-2013 programming period came to an end. The rapid surge 

of public investment had a sizeable effect on growth, and other key macro 

aggregates. It is notable that automatic forecasting realized such low error values. 

This exercise can be taken as indicative of the potential for automating 

analytics, and especially forecasting. Accuracy metrics show that such automated 

models perform well under challenging realistic situations. It is likely that as we 

move from macroeconomic to microeconomic variables such as sales, which are 

affected by less exogenous shocks and follow a clearer trend, the forecast accuracy 

will be even higher. Another point to consider is that those results should be 

viewed against the benchmark of alternative forecasts, and not against the 

benchmark of actual realizations. A possible approach is to compare a key forecast 

used for the purposes of public or business policy to the automated ones. The 

availability of growth forecasts, done by the Bulgarian Ministry of Finance (MF) as 

part of the budgeting process allows for that. The MF projections are presented in 

Figure 4 and compared to actual economic outcomes. While the overall forecast 

dynamics nicely tracks realizations, there are some significant and relatively 

consistent deviations, especially in the post-crisis period.  

 

 
Graph 4. Ministry of Finance Growth Forecast against Actual Realizations over the 

Period 2001-2014 
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We now proceed to compare the MF projections with the ones, generated by the 

optimal Auto ARIMA models. Relevant accuracy metrics for the two sets of 

forecasts are presented in Table 3. All the indicators of accuracy support the 

conclusion that automated forecasting performs better in terms of accuracy than the 

estimates, used by the Ministry of Finance in preparation of the state budget. The 

root mean squared error of the automated forecast stands at 1.02, while the 

Ministry’s forecast has a long-run RMSE of 1.5, which jumps to 2.3 in the crisis 

and post-crisis period. The mean absolute error of our forecast stands at the modest 

1.01, while the Ministry’s long-run MAE is at 1.15, jumping to 1.88 in the period 

2009-2014. The auto-ARIMA forecasts consistently outperform the long run 

budget projections on the other accuracy metrics as well. This serves to prove that 

automated analytics can serve as a viable alternative to more resource-intensive 

approaches. 

 
Table 3. Accuracy Comparison between Ministry of Finance and Automatic Forecast for 

Growth, source: Ministry of Finance and own calculations 
 MF, 2001-2014 MF, 2009-2014 Auto Forecast 

Mean Error -0.4 -1.5 1.01 

Mean Squared Error 2.2 5.2 1.04 

Root Mean Squared Error 1.5 2.3 1.02 

Mean Absolute Error 1.15 1.88 1.01 

Mean Percentage Error -55.59 -138.78 35.91 

Mean Absolute Percentage Error 76.34 164.92 35.91 

 

 

4. Directions for Future Research 
Automated analytics present bountiful opportunities in a world with growing 

data availability and increasing appetite for analysis and insight that sometimes has 

to operate under significant resource constraints. This paper explores the possibility 

of fitting a large set of ARIMA models and selecting the most optimal one for the 

express purpose of generating forecasts. The case study on four macroeconomic 

time series shows that these unsupervised models achieve excellent forecast 

accuracy and can even outperform mainstream expert-made projections. 

This naturally presents a number of venues for further research. A particular 

fruitful way forward would be to investigate the performance of alternative 

algorithms that lend themselves easily to automation. The family of exponential 

moving average methods or machine learning algorithms such as Random Forests 

seem to be possible candidates. It would be of natural interest to investigate relative 

forecast performance depending on the type of the time series in terms of 

frequency and domain. Finally, the idea of automated analytics can be expanded to 

other problems of business interest. 

In short, automating analytics holds the promise of mainstreaming typical tasks 

and freeing and empowering people to focus on the complicated problems of 

strategizing, planning and navigating today’s complex economic and business 

environment, searching for prospects to unlock more value.  
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