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Abstract. This study is focused on identifying, based on various forecast accuracy criteria, 

best inflation forecasting model for Pakistan using the in sample projections for Pakistan 

inflation from 2006II to 2009II. To resolve the important issue of degree of contribution in 

forecasting performance of the two monetary aggregates in forecasting inflation, three main 

predictors: real GDP, interest rate and one out of the two monetary aggregate have been 

used, thus constructing two models; one with Divisia Monetary Index (DMI) and other with 

Simple sum monetary aggregate (SSMA). It is revealed that, though both of the monetary 

aggregates are important predictors in forecasting inflation, but DMAs provide better fit 

and improved forecasts as compared to their simple sum counterpart. Hence, the evidence is 

established that monetary aggregates still play a dominant role in predicting inflation for 

Pakistan economy. The study recommends the construction, publication, and use of high 

frequency DMAs by the State Bank of Pakistan (SBP) for forecasting inflation in Pakistan 

instead of SSMAs. Finally, to identify the improvement in forecast accuracy w.r.t. different 

forecasts combination, these forecasts have been combined and compared. It is revealed 

that when the structure of an empirically observed underlying series has complex nonlinear 

structure then forecasts based on single nonlinear model may fail to capture these diverse 

complexities. The best strategy is then to use various nonlinear models and combine these 

forecasts. Further the study concluded that if the complex nonlinear structure of an 

observed series is, a priory, unknown then universal approximators like Group Method of 

Data Handling (GMDH)- Polynomial Neural Networks (PNNs) and GMDH-

Combinatorially Optimized (CO)  could provide outstandingly accurate forecasts yet 

avoiding „overfitting‟ even for small sample size. Specifically, it recommends the use of 

nonlinear non-parametric universal approximators for forecasting inflation in Pakistan by 

the SBP. 

Keywords. Monetary aggregate, Nonparametric nonlinear models, Universal 

approximators, Forecasting performance, Forecasts combination. 

JEL. E31, E47, E51, E52. 

 

1. Introduction 
ccomplishment of price stability, in the sense of a low and steady inflation, 

is a key to economic growth of the economy and it is one of the objectives 

of almost every central bank throughout the world. Monetary authorities 

constantly need to monitor and forecast the prices evolution; hence, central banks 
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necessitate a good model to forecast inflation. Therefore, the worldwide central 

banks have long conscious practice in forecasting inflation. Trichet (ECB, 2003) 

argued that inflation forecasts are “useful, even indispensable, ingredients of 

monetary policy strategy.” For most central banks, inflation is at least one 

monetary policy objective. Some central banks have even resorted to inflation 

forecast targets presumably based on very reliable inflation forecasts. Yet, even in 

circumstances where structural relationships are not up to the mark with regard to 

stability and data quality is in the way of progress, inflation forecasts can provide 

valuable information on future economic activity scenarios of the economy, which 

may further need to be combined with supplementary analysis beyond 

econometrics.  

Simple sum measure of money referred as Simple sum monetary aggregate 

(SSMA) is conventionally build upon simply summing all the component assets of 

the money stock with unit weighting and these continue to be the official 

framework used by any central banks. These SSMAs are generally being used to 

guide monetary policy decisions, although this method has demonstrably been 

identified with stringent faults. Divisia Monetary Aggregate (DMA) is envisaged 

as improved measure of the combined monetary service flow and these have 

demonstrably worked better than SSMAs shown in many studies across the world. 

Nevertheless, the performance of DMAs in providing improved out-of-sample 

inflation projections is yet to have overwhelmingly valid empirical evidences 

across the globe and it has developed a new area of research. Many recent studies; 

e.g. Schunk (2001) and Drake & Mills (2005), have raised the issue of both the 

aggregates for the US. But SW (1999) take up the wider issue: whether monetary 

aggregates could be used to ameliorate inflation forecasts models. They found that 

SSMAs give marginal ameliorations in some measures of price levels over some 

sample time spans, but the accuracy of CPI forecasts significantly dropped from 

1970 to early 1980s for the US. Attempts to forecast inflation using monetary 

aggregates is done by Dorsey (2000) Elger et al. (2006), Binner et al. (2010) 

Azevedo & Pereira (2010a) Berger & Österholm (2011)  Kovanen (2011) among 

others in the recent past and for Pakistan Bokil & Schimmelpfennig (2006), Haider 

& Hanif (2009), among a few in the recent past. 

To evaluate the in sample forecasting performance, the price inflation 

ismodelled and projected with a two non-parametric models namely: Group 

Method of Data Handling GMDH-PNNs and GMDH-CO involving Kolmogorov-

Gabor (K-P) polynomial. For the remainder of the study, the literature is reviewed 

on forecasting in the next section, methodology for computation forecasting is 

detailed in section 3.Section 4 is focused on resultswith computations and 

comparisons of forecasting exercise and forecast combinations. The main findings 

and recommendations of the study are outlined in section5 and finally, references 

are added in the last section. 

 

2. Literature 
More explicitly, the inflation forecasting strength of standard Divisia and simple 

sum indices, with that of two newDivisia indices―adjusted for high financial 

innovation period to capture the true user costs of the component assets―was 

computed and compared by Binner et al. (2004) for Taiwan economy for time span 

of 1970Q1-95Q3. Three dummies relating to three spans of high inflation were 

used. The simple Neural Network (NN) model was extended to include further 

explanatory variables regarded as having forecasting potential such as GDP and 

interest rate. The dual DPI and 3-month deposits were interchanged with change of 

Divisia variant or simple sum money, respectively. The Divisia index was adjusted 
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to take into account the financial liberalization of Taiwan since the 1970s. The 

preferred inflation forecasting NNs model-employed a DMA M2 adjusted to fit in a 

learning mechanism to permit agents to change slowly their views of the raised 

productivity of Money-outperformed the conventional econometric system 

approach. The explanatory strength of the two innovation-adjusted DMIs 

dominated the SSMAs in the majority of cases. Drake & Mills (2005) built on SW 

(1999) in order to forecast growth of nominal GDP and price level for a time span 

of 1991–2001 utilizing SSAMs M2 and M2+ (contained stock and bond mutual 

funds plus M), DMA M2, and a new empirically weighted (derived weights from 

long-run relation between monetary components and nominal GDP in level) 

monetary aggregatebased on observations from 1960:Q2 to 2001:Q2. They found 

that SSMA M2 furnished better forecasts of nominal GDP growth, but the newly 

weighted monetary aggregate outperformed in forecasting inflation mainly at 

longer horizon. Unlike Schunk (2001), they found that SSMA M2 outperformed 

DMA M2 every time and it was suspected the potential reason for DMA M2 low 

performance was the benchmark rate chosen by the Fed. of St. Louis. Hale & Jorda 

(2007) used the core CPI inflation, M2, M3 monetary aggregates, M3C (a rectified 

M3), real GDP in the euro area, 4-month euro area Euribor,  industrial production 

and US federal funds rate for the sample period of 1985M1–2007M1. They 

concluded that monetary aggregates had no predictive power with regard to 

forecasting inflation rather inflation forecasting potential of monetary aggregates 

seemed to be embedded in measures of past price level, interest rates, and 

economic activities for the US. For the euro area, over short (but not the long ones) 

horizons, inclusion of monetary aggregates in the inflation-forecasting model 

appeared useful; although it seemed probably small time span for the monetary 

aggregates to encompass a sizable impact.   

Binner et al. (2010) compared the contribution of both the aggregates for 

forecasting inflation from narrow to broad levels of aggregation and explored many 

types of interest rate including different DMAs and SSMAswith different 

collections of included monetary assets building upon many recent studies such as 

Schunk (2001), Drake & Mills (2005) and Elger et al. (2006). Of the 541 (1960M1 

- 2005M2) observations available, the first 433 observations trained the networks, 

the next 50 observations validated and the last 46 (2001M5–2005M2) were left for 

forecasting US inflation. They, utilizing Recurrent NNs (RNNs) and Kernel 

Recursive Least Squares Regression (KRLSR) models, found that RNNs operate 

with latent unlimited input memory, while the KRLSR was a limited memory 

predictor. The inflation forecasts of two competing models were then compared to 

random walk model forecasts and it was revealed that KRLSR was the best among 

the three compared, but evidence for the worth of monetary aggregates in 

forecasting inflation could not be established.  

The PNNs of GMDH typeemerged as a variant of NN, which is used in 

Generalized Regression NN (GRNN). Its key benefit lies in its ability to swiftly 

learn and quickly converge to the best regression surface essentially with large 

number of data sets making GRNN  method to be  the best model for the prediction 

in comparison with its close competitors. Generalization in GRNN is typically 

achieved by dividing available training data into three sets; one to be used for 

network training, the other to be used to verify training performance of algorithms 

as they are run, and the last one for running final independent test. Owing to its 

vigorous capacity for nonlinear mapping and better robustness, GRNN could attain 

the maximum sensitivity as it employs RBF set up, which consequently make  

GRNN as  useful exploratory and predictive tool for the appraisal of rice 

biophysical parameters (Yang et al., 2009). Ahangar et al. (2010) gauged the active 

firms‟ stock price in Tehran stock exchange, Iran. Using both linear regression and 
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GRNN techniques for an architecture incorporating ten macroeconomic and thirty 

financial variables at the beginning, they were left with only three macro-economic 

variables and four financial significant variables at final stages. In order to 

determine the stock price, using independent components analysis by describing 

the equations of the two methods for the comparison, they demonstrated that 

artificial GRNNs method was more efficient than other method. Urwatul-Wutsqa et 

al. (2006) extended NN application to multivariate data, particularly in time series 

analysis and proposed VAR-NN by mixing the NNs and VARs that belonged to the 

genre of nonparametric and nonlinear model. Leung et al. (2000) applied GRNN in 

exchange forecasting to demonstrate that the GRNN outperformed the other 

forecasting methods. 

Yao & Ni (2009) used Autoregressive (AR)-GMDH and analog complexing 

algorithms to forecast oil prices. The evidence on feasibility and validity of AR-

GMDH was demonstrated by the comparing the performance with traditional 

techniques. It was and confirmed that AR-GMDH was more accurate in forecasting 

such complex systems.  Zheng et al. (2010) found double trends; long-term upward 

trend and seasonal fluctuations trend, in monthly cigarette sales. It seemed 

impossible to model such complexity with a few linear and nonlinear models. It 

was envisaged that a more flexible forecasting model could deeply capture the 

characteristics of a complex system forecasting. So, they proposed a combination 

of ARIMA and GMDH models based on info-entropy method to get merits of both 

ARIMA and GMDH models in linear and nonlinear modeling. They empirically 

demonstrated that the proposed combined model was effective in improving 

forecast accuracy when compared with either of the individual models. Samsudin 

et al. (2011) developed a hybrid, GMDH embedded Least Squares Support Vector 

Machine (LSSVM) called GLSSVM forecasting model while GMDH to work out 

useful predictors in the time series forecasting for the LSSVM. Based on 1962M1 

to 2008M12 for Selangor river and for Bernam river 1966M1 to 2008M12 river flow 

data, with monthly time-points below 2004M12 for training and from 2005M1 to 

2008M12 for testing, the forecasting performance of this model was compared with 

the conventional NN models, ARIMA, GMDH and LSSVM models using RMSE 

and coefficient of correlation (R). The GLSSVM outperformed decisively the other 

models. Chaudhuri (2012) has recently modelled the annualized earning per share 

(a broad measure of a firm‟s entire marketable yield), capital, and turnover of an 

Indian Auto Major from 1953-54 to 2008-09 data. He used by computer-aided self-

organization techniques, multilayer GMDH NNs and combinatorial algorithms. 

Beyond the theory of parametric econometrics, he used a “black box” method that 

requires no a priori knowledge or assumption of the inner mechanism. Thus, it was 

free from economic theory to determine the structure. The study demonstrated that 

the GMDH approach was straightforward, simple, and tremendously useful for 

trade off studies that lead to alternate economic (monetary and fiscal) policies. The 

GMDH models combinations of quadratic polynomials and regression analysis 

ensemble the underlying structure, thus it is an improvement for the analysis of 

economic phenomena such as earning per share (as economic indicators of 

economic growth) using non-stationary data. Once the models have been identified 

by GMDH methods the time-varying parameters can be estimated with help of 

fresh observations in GMDH algorithms. 

Varahrami (2012) used Multi-Layer Feed Forward (MLFF) NNs with back-

propagation learning algorithm and GMDH NNs with genetic algorithms of 

learning to predict the gas price of Henry Hob database for the period from 1
st
 

January 2004 to 13
th
 July 2009 by employing moving average crossover inputs. 

The results confirmed a short-term dependence in gas price fluctuations. The 

GMDH NNs outperformed MLFF NNs in prediction accuracy.   
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The innovation of forecast combinations was initiated by Bates & Granger 

(1969) and Ried (1968) but many of its improvement and several review articles 

have appeared after two decades namely: Clemen (1989), Diebold & Lopez (1996) 

and Timmermann (2006) among others. It gained more popularity in the first 

decade of this century and was further introduced in the NNs by Hashem et al. 

(1993) and Hashem (1997). Acknowledgement with regard superiority of forecast 

combinations to their constituent forecasts is documented in the literature 

persistently (Timmermann, 2006).  

A noteworthy result of Stock, & Watson (1999) was to combine the nonlinearly 

generated forecasts among the most accurate in rankings. For forecasting one 

month ahead, these were among the top five in 53% (specifications in levels) and 

51% (specifications in differences) of all produced. For forecasting six and twelve 

months ahead, these percentages dropped between 30% and 34%. Comparable 

performance was found in the combinations comprising of all linear models at 

these horizons. No single model performed dominantly. Rather than trusting only 

on one nonlinear specification, it was found that the use of a larger number of 

nonlinear models with forecasts combination from these models increases 

accuracy. It appeared that combining forecasts might lead to better forecasting 

accuracy than what is attained by linear counterparts. Due to presence of some 

exploitable nonlinearity in macroeconomic data, it was too diffuse to be captured 

by only one nonlinear specification. A similar result was obtained from the study of 

Jaditz et al. (1998), which yielded superior forecasts by combining the 

nonparametrically generated individual forecasts. Marcellino (2002) compared 58 

models for forecasting 480 series for the twelve countries of the European 

Monetary Union, but unlike SW in Marcellino (2004), the forecast combinations 

were not considered. Besides purely linear models in the study, he further utilized 

linear models with stochastic coefficients, each following a random walk, NNs, and 

LSTAR models. Terasvirta et al. (2005) combined forecasts and established 

evidence that in several cases, but without any system, these combinations 

consisting of pairs of forecasts, improved forecast accuracy in comparison with 

individual models. As only pairs were then combined only, so his assessment 

regarding usefulness of forecasts combinations cannot be regarded as 

overwhelmingly informative.  

Interestingly, support for combining forecasts from nonlinear models recently 

emerged from the study of Kock (2009), who used 47 chronological data series 

from the G7 and Scandinavian economies. He used the K-G polynomial model -

considered universal approximators -and found its forecasting performance nearly 

equal to that of NNs with logistic hidden units. The forecasts thus obtained had an 

accuracy edge over the ones from linear AR models. Aforementioned studies 

augment the better forecasting performance through forecast combination. Further, 

these studies augment the case of nonlinear models against linear counterparts in 

forecasting macroeconomic series. Recent applications on forecasts combination 

include Stock, & Watson (1999; 2003), Canova (2007), Ang et al. (2007), Inoue & 

Kilian (2008), and Clark & McCracken (2010) among others.  

Abdullah & Khalim (2009) have investigated the key causal factors directly 

related to food inflation in Pakistan using JML technique to estimate long run 

results for the period from 1972 to 2008 namely: agriculture support price, food 

exports and imports, GDP per capita, and quantity of money. Bashir et al. (2011) 

examined demand and supply side determinants of inflation using VECM under 

JML in Pakistan and also to investigate causal relationships by GC test for period 

from 1972 to 2010. The long run CPI was found to be positively related to money 

supply, GDP, imports and government expenditures with long run elasticities of 

inflation w.r.t. the regressors were 0.61, 0.73, 0.41, and 0.32, respectively, whereas 
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the government revenue inversely related with long run elasticities of inflation w. r. 

t. government revenue was found as -1.37. Lagged CPI and double lagged 

government revenue were directly inflating current year CPI. For a long run stable 

price level, recommendations included maintenance of optimal level for all of main 

determinants with increase in government expenditure and GDP. 

For consistent out-of-sample YoY monthly inflation forecast for Pakistan for 

fiscal year (FY) 2008 based on period from 1993M7 to 2007M6, Haider & Hanif 

(2009) usedsimple univariate NN model. Model simulation used feed-forward with 

back-propagation architecture criterion. They found that forecast of inflation for 

the end of next FY2008 was higher as compared with FY2007. Further, NN based 

forecasts outperformed the AR(1) and autoregressive integrated moving average 

(ARIMA) models based forecasts utilizing RMSE criterion to check forecast 

accuracy.  

At least, considering the global fitting and flexibility properties of the statistical 

model, the nonlinear NN would be likely to outperform the linear models provided 

the overfitting is suitably avoided. Since no such work has been carried out for 

forecasting inflation in Pakistan, except that of Haider & Hanif (2009), the 

universal approximators definitely are required play a role here. Hence, recent 

evidence recommends that simple, though nonlinear, models may be at least as 

competitive as linear ones for forecasting macro variables like inflation. Two such 

approximators, the K-G polynomial and the GMDH type NN are used to 

investigate the forecasting performance for Pakistan inflation. 

We perform ex post forecasts on six months forecast horizon. These forecasts 

can be compared with actual figures to know and compare the forecasting 

performance of the competing models so that we are able to find and suggest, 

based on the results of this exercise, the most efficient and valid forecasting models 

and their combination for ex ante forecasts in Pakistan.  

 

3. Methodology  
Inflation is defined as a rising general overall level of prices in an area with 

passage of time. Four different price indices -CPI, GDP-IPD, SPI, and WPI- are 

used in Pakistan in fiscal year. Also, measures of core inflation, and Headline CPI 

inflation etc. are available. To measure general price level increase or decrease, 

mainly the CPI, GDP-IPD or both is used.  CPI is based on Laspeyre‟s index and 

contains four types of biases: new-product; quality-change; substitution; and outlet; 

but the intensity of bias level assigned to each can be different. How big are these 

biases? In advanced countries, they are probably on the order of 1 to 2 percentage 

points, at most (BLS, 1997). However, in Emerging Market Economies (EMEs), 

where data collection is more difficult, these can be large. CPI biasis a rare 

investigated area of research in developing economies like Pakistan.  

The GDP-IPD includes items barred from the CPI and contains extra items. 

Barred items include used consumer goods and imported goods prices―import 

prices growth rate is the chief inflation determinant in Pakistan, both in the short 

and long run (Chaudhary & Chaudhary, 2006). Therefore, GDP-IPD is a 

comprehensive measure of prices inflation, hence is used in this study. 

3.1. Nonparametric Models 
The specification and estimation of nonlinear models poses more difficulties for 

the researcher. First, the model should be fully specified using the appropriate 

order of the basis function. Second, estimation requires nonlinear optimization, 

which is even more difficult to handle even with the existence modern day 

computer. 
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The safest strategy to forecast with nonlinear underlying structure is to admit 

the doubt over the recognition of the specification and try to build a flexible 

approximation by allowing for very large set of specification to contain the 

underlying structure in the modelling space. This is situation where the universal 

approximators of the functions are to play a role. Evidence on NN forecasting in 

economics is growing rapidly with list of main applications including growth of 

GDP, stock returns, currency in circulation, demand for electricity, demand for 

construction and exchange rates. Many central banks are currently engaged in 

forecasting various macroeconomic indicators utilizing NNs (Haider & Hanif, 

2009).   

To cope with unknown nonlinearities in data is to use NNs, as these models are 

data driven nonparametric models capable of modelling/generating underlying 

nonlinear structures without prior information regarding inherent functional forms. 

Further, NNs, are highly flexible to approximate with any unknown nonlinear 

continuous function with high degree of accuracy such that a researcher fears 

overfitting rather than underfitting (underfitting is likely to be feared in linear or 

parametric nonlinear models). Finally, like parametric nonlinear specifications, the 

danger of making comparatively farthest forecasts rests with nonparametric 

specifications also, when forecasting from data points where the observations are 

relatively sparse (Kock & Teräsvirta, 2011). However, a few models that have been 

used in similar situations in the literature have been mentioned. Nevertheless, it 

cannot be guaranteed that these comprise the final layout. Multivariate linear and 

nonlinear models for inflation dynamics can be utilized to predict inflation namely: 

Kolmogorov-Gabor (K-G) Polynomials via GMDH framework with polynomial 

resembling via perceptron and quadratic combinations (semi-parametric), Some of 

the authors describe that some nonlinear models involving basis functions are 

universal approximators such as Fourier series, splines, and others perceptron 

based like NN (White, 2006; Chen, 2006). 

Ivakhnenko (1968), motivatedby the flexiblestructure of polynomial, emanated 

this new algorithm, called GMDH, by pursuing a heuristic and perceptron type 

framework. He tried to ensemble the K-G polynomial by utilizing sets of lower 

degreepolynomials for each duo input variates.  He demonstrated that a 2
nd

 degree 

polynomial - called Ivakhnenko polynomial given in equation (5) below-could 

rebuild the entire K-G polynomial via a repetitive perceptron style method. 

Introduced in the late sixties, gradually it became an alternative semiparametric 

method to nonlinear parametric modelling. As a contender to stochastic 

approximation method, pioneered by Ivakhnenko (1968), it gained rapid popularity 

all over the world due to its prediction accuracy in forecasting with ability to 

flexibly approximate underlying functional form of any degree, hence becoming a 

globally universal approximators. This method is a type of heuristic self-organizing 

black box framework entailing the concepts of connectionism of cognition theory 

and complete mathematical induction (Muller & Ivakhnenko, 1996). This 

framework provides improved accuracy owing to its perceptron style build up that 

permits the dichotomization of the observations into “beneficial” and “damaging.” 

It requires smaller data, hence reducing calculation time. Its initial progress was 

based on frequent computational trials and in similarity to the vindication of the 

Monte Carlo method, multiple reiterations of an investigational outcome make up 

its proof (Ivakhnenko, 1988).  

3.2. GMDH 
Owing to the deficient in apt mathematical basis apart from statistical 

postulations,  the theory of GMDH grew as a branch of regression analysis initially 

(Stepashko & Yurachkovskiy, 1986). This theoretical deficiency has been 

criticized,  and some of theorists have tried to justify some of the features like the 
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convergence of multilayer algorithm. Further, a sequence of theorems was 

propoundedrelating to a broader-scope two levels forecasting with GMDH. These 

theorems could provide a base for a further generalized theory in relevant 

projections exercises (Ivakhnenko & Kocherga, 1983). Even though atheoretical 

several GMDH algorithms, with capability to approximate poorly-defined stuff 

with reasonable accuracy, have established its strong position as an apt nonlinear 

technique for pattern recognition, modelling, prediction and forecasting 

assignments. The broad scope of partial metaphors permits its utilization in various 

fields of modelling with edge over many other known statistical methods as well as 

generating several respective GMDH algorithms (Ivakhnenko & Kocherga, 1983). 

Many of its earlier utilizations were related to time series predictions.  

K-G polynomial approximations to unknown nonlinear functional forms are 

uncommon in economic forecasting (Kock & Terasvirta, 2011). New spur in 

automated model selection have generated interest in such methods (see Krolzig & 

Hendry, 2001). Castle & Hendry (2006; 2010) utilized K-G polynomialsas a start 

for nonlinear model selection with the idea to approximate well-known nonlinear 

models such as the translog; a special case of K-G polynomials. Castle and Hendry 

have discussed linearity tests based on K-G polynomials
1
 as these nest the linear 

model. Interestingly, the well-known translog production function is based on a K-

G polynomial of order two. 

3.2.1. GMDH-PNNs Structure  

GMDH algorithm splits a model it into set of base functions called neurons and 

in each layer, diverse pairs of neurons are linked through a 2
nd

 degree polynomial 

that generates new neurons in the subsequent layer. Such type of structure is 

applied in the model to map inputs to outputs. The recognition task is to find a 

function f  that is very close approximation of actual, fso as to predict output,y , for a 

given vector of inputs X = (x1 , x2 , , . . . , xn) maximum possibly closest to its actual 

outputy. Hence, for given T observed data pairs of many inputs and single output, 

the tangible function is: 

 

 yi = f xi1, xi2, xi3, . . . , xin  
(i = 1,2,… , T),           (1) 

 

A GMDH-PNN can possibly be trained in order to predict the outputs𝑦 , for the 

given inputsX = (xi1 , xi2 , xi3 , . . . , xin ), such that: 

 

y i = f  xi1 , xi2 , xi3 , . . . , xin  (i=1,2,…,T).  (2) 

 

To resolve a GMDH-PNN such that the square of deviations between the 

observed and the predicted output becomes minimum that is: 

 

   [ T
i=1 f (xi1 , xi2 , xi3 , . . . , xin ) − y i]

2 → min.              (3) 

 

For a multivariate specification of unknown model of n regressors, a general 

multivariate relationship between n inputs and an output variates can be 

approximated by an intricate discrete type of the Volterra series as under: 

 

𝑦 = 𝑎0 +  𝑎𝑖
𝑛
𝑖=1 𝑥𝑖 +   𝑎𝑖𝑗 𝑥𝑖𝑥𝑗 +    𝑎𝑖𝑗𝑘 𝑥𝑖

𝑛
𝑘=1 𝑥𝑗𝑥𝑘

𝑛
𝑗=1

𝑛
𝑖=1 +𝑛

𝑗=1
𝑛
𝑖=1 .  (4) 

 

In GMDH for data mining, modelling, optimization, pattern recognition, and 

forecasting, the gradually complicated K-G polynomial given in (4) is used as the 

most popular base function. Like so, the given partial quadratic form can be 

recursively used in a NN of linked neurons to assemble the globalized 
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mathematical relationship between inputs and outputs variates set in equation (5). 

If the number of lags, and hence the number of sums is finite, it is known as K-G 

polynomial. Further, complete structure of this mathematical depiction can be 

described by a system of only two variables (neurons) partial quadratic 

polynomials of the form: 

  

𝑦 = 𝐺(𝑥𝑖 , 𝑥𝑗 ) = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑗 + 𝑎3𝑥𝑖𝑥𝑗 + 𝑎4𝑥𝑖
2 + 𝑎5𝑥𝑗

2   (5) 

 

The coefficients𝑎𝑖 ‟s of (5) are estimated with regression method in a least-

squares sense. The difficulty now lies in setting up a GMDH-PNN such that the 

square of deviations of the observed and the predicted output is minimized and, in 

turn, for every inputs pair of 𝑥𝑖 , 𝑥𝑗  is minimized. So that the deviation between 

observed output, y and predicted𝑦 , is minimum i.e. (y-𝑦 ) is minimized. To fulfil 

this task for all such pairs of neurons, a hierarchy of polynomials is built using the 

quadratic form given in (5) to get the estimates of coefficients 𝑎𝑖‟s of every 2
nd

 

degree function 𝐺(𝑥𝑖 , 𝑥𝑗 ). To fit the output optimally in the whole set of inputs-

output observed vector we use: 

 

𝑅𝑀𝑆𝐸 =  
 (𝑦𝑖−𝑦 )2𝑇
𝑖=1

𝑇
    →  𝑚𝑖𝑛      (6) 

 

Consequently,  
𝑛
2
 =

𝑛(𝑛−1)

2
neurons are constructed in the 1

st
 hidden layer of 

the feed-forward NN from observed data {(𝑦𝑖 , 𝑥𝑖𝑝 , 𝑥𝑖𝑞 ); (i=1, 2,…, T)} ∀𝑝, 𝑞 ∈

{1,2, . . . ,𝑛}  such that p ≠ 𝑞 . Now, it is feasible to build T data triples 

{ (𝑦𝑖 , 𝑥𝑖𝑝 , 𝑥𝑖𝑞 ); (i=1, 2,…, T)} from observed values using all such 𝑝, 𝑞 ∈

 1,2, . . . ,𝑛  in matrix form as:  

𝑥1𝑝 𝑥1𝑞 … 𝑦1

𝑥2𝑝 𝑥2𝑞 … 𝑦2

⋮ ⋮ ⋱ ⋮
𝑥𝑇𝑝 𝑥𝑇𝑞 … 𝑦𝑇

 .  

A 2
nd

 degree sub-expression as in eq. (5) is used for every row of T data triples 

to readily obtain the matrix equation as under: 

 

𝐴𝒂 = 𝑌𝑇          (7) 

 

Where „𝒂‟ is the vector of coefficients to be estimated and is unknowns of the 

2
nd

 degree polynomial in eq. (5). 

 

𝒂 = {𝑎0 ,𝑎1 ,𝑎2 ,𝑎3 ,𝑎4 ,𝑎5}       (8) 

 

And 

 

𝑌 = {𝑦1 ,𝑦2 ,𝑦3 , . . . ,𝑦𝑇}𝛵        (9) 

 

is the vector of observed output‟s and A is the vector of observed output‟s takes the 

form: 

𝐴 =

 
 
 
 
 
1 𝑥1𝑝 𝑥1𝑞 𝑥1𝑝𝑥1𝑞 𝑥1𝑝

2 𝑥1𝑞
2

1 𝑥2𝑝 𝑥2𝑞 𝑥2𝑝𝑥2𝑞 𝑥2𝑝
2 𝑥2𝑞

2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑇𝑝 𝑥𝑇𝑞 𝑥𝑇𝑝𝑥𝑇𝑞 𝑥𝑇𝑝

2 𝑥𝑇𝑞
2
 
 
 
 
 

.                       (10) 
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By OLS method in matrix form the normal equations can easily be solved as 

under: 

   

𝑎 = (𝐴𝑇𝐴)−1𝐴𝑇𝑌                  (11) 

 

Where𝐴𝑇𝐴= 

 
 
 
 
 
 
 
 
 𝑛  𝑥1𝑝  𝑥1𝑞  𝑥1𝑝𝑥1𝑞  𝑥1𝑝

2  𝑥1𝑞
2

 𝑥1𝑝  𝑥1𝑝𝑥2𝑝  𝑥1𝑝𝑥2𝑞  𝑥1𝑝𝑥2𝑝𝑥2𝑞  𝑥1𝑝𝑥2𝑝
2  𝑥1𝑝𝑥2𝑞

2

 𝑥1𝑞  𝑥1𝑞𝑥3𝑝  𝑥1𝑞𝑥3𝑞  𝑥1𝑞𝑥3𝑝𝑥3𝑞  𝑥1𝑞𝑥3𝑝
2  𝑥1𝑞𝑥3𝑞

2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

 𝑥1𝑞
2  𝑥1𝑞

2 𝑥𝑇𝑝  𝑥1𝑞
2 𝑥𝑇𝑞  𝑥𝑥1𝑞

2
𝑇𝑝
𝑥𝑀𝑞  𝑥1𝑞

2 𝑥𝑇𝑝
2  𝑥1𝑞

2 𝑥𝑇𝑞
2
 
 
 
 
 
 
 
 
 

 

 

Hence (11) provides solution for the vector of the best coefficients in (5) for the 

entire set of T observations triples. This process is replicated for every neuron of 

the later hidden layer depends on the connectivity topology of the NN, until final 

form is estimated.  

Four quarter simple moving average ȳtis the most widely used procedural 

indicator which smoothes values of annual observed quantities utilizing average 

over time. For quantities observed on yearly basis, window of the time period n= 4 

generally smoothes the seasonal variations. The shorter the time period, the more 

reactionary a moving average becomes. To account for seasonal variations, this 

study utilized n = 2 only due to fact that biannual times series are involved here in 

order to mimic the intrinsic inflation growth path and eliminate erratic short-term 

fluctuations, which perhaps have no link with long-run inflation growth. The 

average over the time period n against a time point „t‟ is calculated by:  

 

ȳt(n) = 
1

n
 Bt−i ,    

n
i=0                   (12) 

 

where Bt corresponds to observed biannual quantity at time t.  
 

 
Figure 1. GMDH-PNNs Structure with three inputs 
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3.3.2. GMDH- Combinatorially Optimized (GMDH-CO) 

Ivakhnenko demonstrated that a 2
nd

 degree polynomial (called Ivakhnenko 

polynomials) given in (5) can reconstruct the complete K-G polynomial through  

an iterative perceptron or a multi-layer feed-forward combinations type  procedure, 

which is its basic algorithm. In this method, an input observations series are 

considered as a matrix containing „n‟ levels of observations over a set of „m‟ 

variates. The „n‟ observations are divided into two sets: learning and training or 

validation sets. Combinatorial model, linear in the parameter, is a truncated subset 

of terms of a polynomial function produced by a given set of variates. For 

modelling an output „y‟by three input variates x1, x2 and x3, the usual quadratic 

polynomial function that will be optimized is as under: 

 

y = a0+a1x1+a2x2+a3x3+a4x1x2+a5x2x3+a6x1x3+a7x1²+a8x2²+a9x3²             (13) 

 

Another important way is to consider partial models i.e. a brute force 

combinatorial search, which consists of either truncated or complete combinatorial 

model. Although this model reduction approach has some advantages over PNN 

but computational task grows enormously and thus becomes less effective for 

objects with more than 30 inputs when full search is performed. Combinatorial 

GMDH selects an optimally complex model with a subset of terms of complete 

polynomial having least model error. At the stage of data pre-processing, different 

operators are allowed to apply to variates x1 and x2 e.g. exponent, sigmoid function, 

time series lags, moving averages, etc. yet the resulting model will be linear in the 

parameters. It is successful in outperforming linear regression approach for some 

positive noise level in the input data. 

GMDH-COAlgorithms Combinatorial algorithms probe exhaustively among all 

candidate models. It  produces  models  of  all  feasible  input  variate combinations  

and  decides  finally the  best  model  from among the  produced set  of  models  

consistent with  a pre-specified choice  criterion relevant to the optimum non-

physical model.  It employs complete mathematical induction method just to avoid 

missing any possible model.  It sorts the models via progressively increasing the 

terms from 1 to m (i.e. the number of arguments) while a minimum value of an 

external criterion(a loss function type) in the plane of complexity indicates  the  

optimum  solution  between  models  with  the  same complexity. It provides 

complex polynomial in independent variables.  It selects the structure of the model 

itself without prior information about relationship in the form of the model in (4).  

The technique involves fitting of quadratic equations for all pairs of 

independent variables and identifying a few best performers in terms of predictive 

ability (using appropriate statistics). Then converting entire set of independent 

variables (called zero generation variables) to new variables (first generation 

variables), which are obtained as predicted values from these selected quadratic 

equations (of zero generation variables). The process of fitting and identifying best 

quadratic equations is repeated using first generation variables and second 

generation variables are obtained.  The whole process is repeated with every new 

generation of variables till appropriate model is obtained (using certain criteria).  

At final stage, one best quadratic equation is selected as the final model (Bahuguna 

& Chandrahas, 1992). Apposite to GMDH-PNNs this algorithm can't be halted at 

the specific level of complexity due to fact that a point of marginal enlargement of 

magnitude of the criterion can be a local minima rather than global minima. Steps 

involved in GMDH-combinatorial algorithms are:   

1. Splits the observations into two sets: the learning and the testing subsets 

2. Layers of partially described models with growing complexity 
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3. These partially described models for learning sub samples are estimated by 

OLS method. 

4. Next magnitude of external criterion is computed based on testing 

subsample. 

5. Choosing the best model/models obtained by minimal value of the external 

criterion. 

All these steps are depicted in figures 1-3 when single layer is involved. For 

more than one layer, figure4 can help understand the algorithm. 

 
 

Observations Y X – Independent Variates 

 For Learning/Training 

 

Y1 

Y2 

. 

Ynt 

X11    X12       . . .     X1m 

X11    X12       . . .     X2m 

.          .          . . .      . 

Xnt,1    Xnt,2    . . .    Xnt,m, 

For Testing/Validation  . 

Yn 

.          .          . . .      . 

Xn1    Xn2       . . .     Xnm 

Figure 1. Sample Splitting 

 

 

Figure 2. Selection from ‘m’ arguments from learning sample. 

 

 

 
Figure 3.  Single layer of partial descriptions with gradual growth in complicity 
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Figure 4. Two layers of partial descriptions with gradual growth in complicity 

 

3.3. Combining Forecasts or Forecast Combination 

For such complex structure forecasts, only one forecasting model, linear or 

nonlinear, cannot entirely capture inherent characteristics veiled in the observed 

series thus leads to inaccurate and futile forecasting exercise. It looks reasonable to 

apply many different multivariate models and from these models combine different 

sets of forecasts by simple or some efficient method to obtain improved and 

accurate forecasts that are benefitted from strength of great many estimation 

frameworks. Alternatively one fits several forecasting models and choose a model 

giving best performance in the in-sample period. The empirical practice has 

revealed that the best descriptive model might not be best forecaster of future 

values. Characteristically, time series are facing time varying state of affairs, or 

possibly facing regime switching out-rightly. This problem is further intensified by 

model misspecification and errors in parameter estimation. 

 A way out is to use various improved forecasting models and use forecasts 

combination to improve the forecast. That is why this study adopts forecasts 

combinations methodology, which combines and GMDH models to take advantage 

of the combined strengths of parametric and nonparametric models by optimal 

simple combining forecasting method. Combining forecasts frequently improve 

upon the individual forecasts and have a long been applied in econometrics 

(Timmermann, 2006). This method is less vulnerable to structural changes present 

in individual forecasting regressions as these, in effect, balance out intercept shifts 

(Hendry & Clements, 2004). In this technique, forecasts from multivariate models 

(each set up in a different set of predictors, lag lengths, or specifications) are 

combined. Though combining forecasts often outperform individual forecasts 

usually, but do not largely outperform factor-based forecasts, rather former are 

frequently a bit worse than later.  

3.4. Forecasting Accuracy Criterions 
This study uses the following forecasting accuracy criterions for measuring 

forecast accuracy for different specifications: The difference between the observed 

and the predicted values for the corresponding period is termed as forecast error 

i.e., Et=yt-𝑦 𝑡 ,  where Et is the prediction error at period t, yt is the observed value at 

period t, and 𝑦 𝑡  is the forecast for period t. The measures of aggregate error to be 

used are: 
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Forecast error = et = yt-𝑦 𝑡 , =Actual – Forecast              (14) 

 

Mean Absolute Error (MAE) = 
 |𝐴𝑐𝑡𝑢𝑎𝑙 −𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 |

𝑛
  =  

  𝑦𝑡−𝑦 𝑡  
𝑛
𝑡=1

𝑛
            (15) 

 

Mean Absolute Percent Error(MAPE)=
 |𝐴𝑐𝑡𝑢𝑎𝑙 −𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝐴𝑐𝑡𝑢𝑎𝑙
|

𝑛
=
  

𝑦𝑡−𝑦 𝑡
𝑦𝑡

 𝑛
𝑡=1

𝑛
            (16) 

  

Mean Squared Error (MSE) = 
  𝐴𝑐𝑡𝑢𝑎𝑙 −𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡  2

𝑛
  =

 (𝑦𝑡−𝑦 𝑡)2𝑛
𝑡=1

𝑛
            (17) 

 

Root mean square error (RMSE)= 
  Actual −Forecast  2

n
 = 

 (yt−y t )2n
t=1

n
           (18) 

 

3.6. Data and Variables Series Involved 
For Pakistan mostly the research is done after the year of 1972 due separation of 

its eastern part. Thus, for five main variates are to be used to forecast inflation, the 

price level (GDP-IPD)denoted by Pt, are monetary aggregates SSMAs M2, DMI 

M2, real GDP, and IR(i.e. discount rate of SBP) denoted by Gt, Rt, St and Dt, 

respectively. The sources of data series including those used to construct Divisia 

Index of M2 are SBP (2010) and SBP-MSB (2011). The biannual series starting 

from middle of first half year of 1972 to middle of last half year of 2009 providing 

76 observations i.e. from 1972I to 2009II based at 1999-00 prices have been used. 

The DMI constructed from SSMA M2 according to the procedure detailed in 

section 3.1 of Iqbal et al. (2015). The biannual ratios of GDPwere raised from 

quarterly estimates provided by Arby (2008). For the period, 2005/6 to 2009/10, 

where Arby‟s estimates quarterly estimates are not available, the estimates of 

biannual GDP were obtained by employing the average of 2000-01 to 2004-05 

provided by Arby (2008) and raising the post 2004-05 quarterly ratios.  

With a view to know and compare the contribution of the monetary aggregates 

DMI denoted by Dt and SSMA denoted by St in forecasting inflation, only one is 

to be used in each of the model along with two other variates Gt and Rt. Thus, the 

two specifications consisting of two sets of variables will be estimated with 

GMDH-PNN, and GMDH-CO methods as under: 

 

P = f(Gt, Rt, Dt)                  (19)  

 

P = f(Gt, Rt, St)                   (20) 

 

4. Results Discussions and Comparisons  
First of all the graphs of the variates modelled are shown in figures 5 and 

6along with box-plot which better elaborates the descriptive statistics. The graph of 

series of price level P seems nonlinear in nature whereas graph of other series are 

commonly found in macroeconomic time series. 
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Figure 5. Historigrams of price level 

 

Figure 6. Historigrams of R, G, D and S 

 

4.1. GMDH-Type NNs Model Forecast 
The GMDH algorithms make it mathematically possible to formulate a model 

of optimal complexity having forecast optimization. In the adaptive or self-

organizing manner, as complexity gradually increases, the computer finds by 

shifting the different models, the minimum of a selection criterion. For which the 

computer has been asked to look for to obtain a dynamic nonlinear model of 

optimum complexity for long-term prediction and forecasting of price level based 

on the observed biannual data. 

The GMDH-PNN ensemble K-G polynomial of order 2 by including only those 

pairs of inputs combinations, which contribute sizably in predicting the output, and 

from these combinations constructs the universal approximators. Many 

transformations are likely to play role in improving the forecasting performance of 

the GMDH models, and these can be embedded in the observed series to 

incorporate smoothing or transmission effects for seasonal or lagged variation. To 

get seasonal smoothing in biannual data series, two periods moving average has 

been used along with 0 to 2 lags to enhance forecast accuracy. The validation 

strategy consisted of training and testing with a ratio of 9:1.The model complexity 

is limited to 11 terms only just to avoid overfitting in GMDH-CO and in GMDH-

PNNs neurons, input was limited to two with model complexity limited to 11and 
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two layers at maximum. The criterion, which corresponds to RMSE, values for the 

whole models ranges between .026 to .031; a reasonably low value in magnitude, 

showing that predictions and forecasts are quite close to actual values. The graphs 

of the forecasts show that GMDH-CO seems better in forecasting performance. 

The results are presented along with output details and plots for the residuals in 

dual sets of figures for each four models numbered7-14 in the appendix with model 

description between each set of figures. The -periods forecasts and corresponding 

error are depicted in red colour in the figures. The variates derived from monetary 

aggregation i.e. DMI and SSMA evidently emerged significant predictors due to 

their presence or usage in all the respective models. The input combinations are 

pruned by RMSE and only those combinations remain in the final model, which 

contributed sizably in the predictions. In GMDH-CO with DMI, the predictor R is 

missing and then R is missing again in GMDH-PNN with SSMA, which shows 

insignificance of predictor R with regard to forecasting inflation. However, 

numerical 7-periods forecasts are presented in tables 1 and 2below. 

4.2. Forecasting Performances Measured by all the Four Criterions 
The forecasting performance of GMDH-PNNs, and GMDH-CO models 

entailing DMIs with their two forecasts combinations: first comprising of forecasts 

from all the models and the second comprising of the GMDHs only is compared. 

To compare the performance of the models, four forecast accuracy criterions have 

been used: MSE, RMSE, MAE, and MAPE. The GMDH-CO is unanimously 

outperformed the competing models, with combination of GMDHs taking the 

second position and the GMDH-PNN performed third best. 

 
Table1. Fitted Model (using DMAs) with Four Forecast Accuracy Measures 

 

Table 2. Fitted Model (using SSMAs) with Four Forecast Accuracy Measures 

DMA 

ACTUALS COMB PNN Combined 

162.84 162.75 162.1 162.42 

179.2 178.04 177.77 177.9 

189.21 189.88 189.54 189.71 

215.61 212.53 213.03 212.78 

227.66 226.88 228.03 227.45 

237.35 235.7 237.28 236.49 

250.61 253.45 256.88 255.16 

MSE 3.245 6.982 4.526 

RMSE 1.801 2.642 2.127 

MAE 1.467 1.685 1.524 

MAPE 0.007 0.008 0.007 

SSMA 

ACTUAL COMB PNN Combined 

162.84 171.54 159.88 165.71 

179.2 181.25 170.87 176.06 

189.21 200.57 187.88 194.23 

215.61 212.08 200.3 206.19 

227.66 218.59 225.85 222.22 

237.35 233.97 242.47 238.22 

250.61 247.87 252.75 250.31 

MSE 46.107 49.804 23.221 

RMSE 6.79 7.057 4.819 

MAE 4.956 5.288 3.867 

MAPE 0.024 0.026 0.019 
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The forecasting performance of GMDH-PNNs, and GMDH-CO models 

entailing SSMAs and their two forecasts combinations: first comprising of 

forecasts from all the models and the second comprising of the GMDHs is 

compared. The forecasts combination of GMDHs is unanimously outperformed the 

competing models, with GMDH-CO taking the second position and the GMDH-

PNN performed third best. When the forecasts accuracy with regard to methods of 

aggregation is considered, the models involving DMIs have outperformed their 

respective models entailing SSMAs by substantial margins. A substantial gain in 

accuracy can be achieved by using Divisia measures of monetary aggregation 

instead of Simple summation. If central banks attempt forecast inflation usingthe 

DMI, the evidence from this study supports that they will gain significantly in 

forecast accuracy. 

4.3. Final results and discussions  
1) The forecasts using DMIs are better than the forecasts with SSMAs. Hence, 

with regard to method of aggregation, DMI dominated and outperformed the 

SSMAs w.r.t. all forecast accuracy criterions used. 2) The GMDH–CO 

forecastsproved dominant methodology w.r.t. all forecast accuracy criterions used 

in both methods of aggregation. 3)For the both ofaggregationmethods, the 

monetary aggregates play significant role in predicting inflation as their 

coefficients are significant in parametric models and their coefficients are present 

in the final prediction model and these have not been pruned out due insignificant 

part in the forecasts. 

4.4. Findings and policy implications on projections 
1) To the question of ongoing debate whether the monetary variables still play a 

significantrole in the predicting and forecasting of inflation, this study concludes 

that monetary aggregate play dominant role in the task, since both monetary 

aggregate are significantly present in inflation forecasting models and not been 

pruned out. 2) Further, parametric models are too much restrictive and cannot 

apprehend a complex nonlinear structure unless the functional form is fully known 

or assumed in advance. However, the complex functional structure is generally 

unknown to researcher and hence parametric models poses difficulties in modelling 

and further these further these models cannot forecast accurately the unknown 

complex nonlinear structures. 3) The shape of the price level graph shows 

essentially nonlinear pattern and needs to be dealt accordingly in forecasting 

excises especially by SBP in its routine inflation forecasts. 4) The task of 

forecasting can better be handled by non- or semi-parametric models, and among 

them, the universal approximators are the best. Most of the universal 

approximators require more observation for learning and fail to apprehend the true 

form in small samples; however, GMDH-CO can perform more accurately even in 

small samples. GMDH-PNN require more observations to perform more 

accurately. 5) Nonlinear parametric models a priori require the knowledge about 

the functional form of the model to be estimated which is seldom known and most 

of the time is unknown to the researcher. Hence they fail to qualify on merit for 

complex nonlinear structures. Forecasting models are more concerned about the 

exact underlying functional form than then the mere descriptive model. The non-

parametric nonlinear model, universal approximators can better handle the task of 

forecasting under conditions of unknown functional form and limited number of 

observations. 6) Method of monetary aggregation is an outstanding question 

economics. In this regard, we conclude here that in all models incorporating DMI 

has outperformed models entailing SSMA in forecasting inflation. Hence, this 

study recommends the use of DMI instead of SSMAs in routine forecasting 

inflation exercises of SBP. 
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Notes 
1 Polynomials functions are usefully utilized in econometrics due to Weierstrass‟s (1885) function 

approximation theorem that states ”any continuous function on a closed and bounded interval can 

be approximated by polynomials”, i.e. if x ∈ [a, b], for any ǫ> 0 there exists a polynomial p (x) ∈ [a, 

b] such that |f (x) − P (x)| <ǫ∀x ∈ [a, b]. 

 

 

Appendixes 

 
Figure 7. GMDH- Neural Networks Fitted Model (using DMAs) and Forecasts 

 
GMDH-Type Neural Networks Fitted Model (DMA)  

Y= 29.67 + "G@1, ȳt(2)"*(-5.65e-05) + "G@1, ȳt(2)"*"DMI@1, ȳt(2)"*1.58e-07 + "G@1, ȳt(2)"^2*4.47e-11 + 

"DMI@1, ȳt(2)"^2*(-0.0003) 
Criterion-Value =0.0282 

Variable       Usage 

G@1, ȳt(2)  2 
DMI@1, ȳt(2)  1 

R@1, ȳt(2)  1 

 
 

 

 
 

 

 

 
Figure 8. GMDH-Type Neural NetworksFitted Model‟s (using DMAs)Residuals 

 

2 × std. deviationgfedcb Meangfedcb Learning residualsgfedcb Prediction residualsgfedcb

250.607179.198139.242114.026101.35775.33758.924144.037133.368328.449224.285421.029116.909914.4482
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Figure 9. GMDH-Combinatorially Fitted Model (using DMAs) and Forecasts 

 
GMDH- Combinatorially Fitted Model (DMA) 
Y="G@1, ȳt(2)"*0.0005 + "G@1, ȳt(2)"*"DMI@1, ȳt(2)"^(-1)*(-0.10) + "G@1, ȳt(2)"^(-1)*(-2.08+08) + "G@1, 

ȳt(2)"^(-1)*"DMI@1, ȳt(2)"*1.04e+06 + "DMI@1, ȳt(2)"*(-1.48) + "DMI@1, ȳt(2)"^(-1)*62297.51 

Criterion-Value =0.0264 
Term         Usage 

DMI@1, ȳt(2)    3 

DMI@1, ȳt(2)^-1    3 
G@1, ȳt(2)    3 

G@1, ȳt(2)*DMI@1, ȳt(2)^-1   3 

G@1, ȳt(2)^-1    3 

G@1, ȳt(2)^-1*DMI@1, ȳt(2)   3 

(constant term)    1 

G@1, ȳt(2)*DMI@1, ȳt(2)   1 
 

 

 
 

 
 

 

 
 

 

 
 

 
Figure 10. GMDH-Combinatorially Fitted Model‟s (using DMAs) Residuals 
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Figure 11. GMDH- Neural Networks Fitted Model (using SSMAs)and Forecasts 

 
GMDH-Type Neural Networks Fitted Model (SSMA)  

Y= 19.26 + "G@2, ȳt(2)"*"SSMA@2, ȳt(2)"*1.08e-10 + "SSMA@2, ȳt(2)"*(-4.10e-05) + "SSMA@2, 

ȳt(2)"^2*(-4.78e-11) 
Criterion-Value =0.0299  

Term   Usage 

G@2, ȳt(2)  1 
SSMA@2, ȳt(2)  1 

 
 
 
 
 
 

 
Figure 12. GMDH- Neural Networks Fitted Model‟s (using SSMAs) Residuals 
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Figure 13. GMDH-Combinatorially Fitted Model (using SSMAs)and Forecasts 

 
GMDH-Combinatorially Fitted Model (SSMA) 

y ="G, ȳt(2)"^2*3.96e-11 
Criterion-Value   =0.031 

Term   Usage 

R, ȳt(2)   2 
DMI, ȳt(2)   1 

G, ȳt(2)   1 

 
 
 
 
 
 
 

 

 
Figure 14. GMDH-Combinatorially Fitted Model‟s (using SSMAs)Residuals 
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