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Abstract. There are two fair ways to distribute particles in boxes. The first way is to divide 

the particles equally between the boxes. The second way, which is calculated here, is to 

score fairly the particles between the boxes. The obtained power law distribution function 

yields an uneven distribution of particles in boxes. It is shown that the obtained distribution 

fits well to sociological phenomena, such as the distribution of votes in polls and the 

distribution of wealth and Benford's law.  
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1. An Introduction to 
t seems that nature dislike equality. In many cases distributions are uneven, a 

few have a lot and many have to be satisfied with little. This phenomenon was 

observed in many sociological systems and has many names. In economy it is 

called Pareto law (Bak, 1996; Newman, 2006), in Sociology it is called Zipf law 

(Troll, & Graben, 1998; Gunther, 1996) and in statistics it is called Benford law 

(Benford, 1938; Hill, 1996). These distributions differ from the canonic 

(exponential) distribution by a relatively moderate decay (a power-law decay) of 

the probabilities of the extremes that enables a finite chance to become very rich. 

Here it is shown that the power law distributions are a result of standard 

probabilistic arguments that are needed to solve the statistical problem of how to 

distribute P particles in N boxes.  Intuitively one tends to conclude that P particle 

will be distributed evenly among N boxes, since the chance of any particle to be in 

any box is equal, namely, 
N

1
. However, this is an incorrect conclusion, because 

the odds that each box will score the same amount of particle are very small. 

Usually there are some lucky boxes and many more unlucky ones. The distribution 

function of particles in boxes should maximize the entropy. This is because in 

nature, fairness does not mean an equal number of particles to all boxes N, but an 

equal probability to all the microstates (configurations)  . The equal probability 

of all the microstates is the second law of thermodynamics, which, exactly for this 

reason, causes heat to flow from a hot place to a cold place.  

Calculating the distribution of P particles in N boxes with an equal chance to 

any configuration is not simple, as the number of the configurations ),( NP  is a 

function of both P and N namely,  

 
a
† Kafri Nihul Ltd., Tel Aviv 68165 Israel. 

. +972525992501 

. kafri.entropy@gmail.com 

I 



Journal of Economic and Social Thought 

JEST, 3(4), O. Kafri, p.476-480. 

477 

 

!)!1(

)!1(
),(

PN

PN
PN




 .        (1) 

 

The derivation of the distribution function to Eq.(1) is not new. Planck 

published it in 1901 in his famous paper in which he deduced that the energy in the 

radiation mode is quantized (Planck, 1901; Kafri, & Kafri, 2013). Here the Planck's 

calculation is followed with the modifications needed to fit our, somewhat simpler, 

problem. Planck first expressed the entropy, namely  lnBkS  ( Bk is the 

Boltzmann constant), as a function of the number of modes N and the number of 

light quanta P  in a mode 
N

P
n  . Using Stirling formula, he obtained that 

}ln)1ln()1{( nnnnNkS B  . Then he used the Clausius inequality in 

equilibrium (Kestin, 1976) to calculate the temperature T, from the expression, 

T

q
N

T

Q
S


  , where Q is the energy of all the radiation modes and q is the 

energy of a single radiation mode. Therefore, the temperature is 
S

q
NT



 . Then, 

Planck made his assumption that nhq  , namely
S

n
NhT




  . Therefore, 
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1
ln( , this is the famous Planck equation, namely, the 

number of quanta in a radiation mode is, 

1

1


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h

Be

n
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. The calculation of Planck is 

comprised of three steps. First he expressed the entropy S by the average number of 

quanta n in a box and the number of boxes (radiation modes) N. Next, he used the 

Clausius equality to calculate the temperature. The equality sign in Clausius 

inequality expresses the assumption of equilibrium in which all the configurations 

have the same probability. Then Planck added a new law that was verified by the 

data of the blackbody radiation that the energy of the quant is proportional to the 

frequency. This law is responsible for the observation that in the higher frequencies 

n is lower. 

In our problem we do not have energies or frequencies. We just have particles 

and boxes. Therefore, we will write the dimensionless entropy, namely the 

Shannon information as a function of n  and N, and obtain that 

}ln)1ln()1{( nnnnNI  . Parallel to Planck, we calculate the 

dimensionless temperature   according to 
I

n
nN

I

P









 )( . Here we 

replace the total energy Q by P and q by )(nn , where )(n is a distribution 

function that tells us the number of boxes having n particles. )(n  is the analogue 

of Planck’s h . Changing the frequency enabled Planck to change the number of 

the particles in a mode at a constant temperature. Here we change the probability of 

a box with n particles at a constant temperature. The sociologic temperature 






I

n
nN )(  is equal, in equilibrium, in all the boxes. Since, 
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 one obtains that 
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analogue of the Planck's equation, namely 
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. When P is large as in 

many statistical systems, we are interested in the normalized distribution.  Since 


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)1ln()(  we obtain that the normalized distribution function is,  
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This is the main result of this paper. This result can be applied to any natural 

random distribution of inert particles in N boxes
1
.  

To check the validity of this distribution we start with Benford's law. Benford's 

law was found experimentally by Newcomb in the 19
th
 century, was extended later 

by Benford (1938) and explained on a statistical basis by Hill (1986, 1996). It says 

that in numerical data files, which were not generated by a randomizer, namely 

balance sheets, logarithmic tables, the stocks value etc, the distribution of the digits 

follows the equation )
1

1log()(
n

n  .  For example, the frequency of the digit 1 

is about 6.5 times higher than that of the digit 9.  It is seen that if one substitute in 

Eq.(2) N=9 the Benford law is obtained. One can assume that the digit 1 is a box 

with n=1 particle and n=9 is a box with 9 particles. In fact, it is obvious that the 

equation valid for 1Cn , for the digit 1 and 9Cn  for the digit 9, where C 

is any number bigger than one. 

Another way, intriguing even more, to check the informatics Planck distribution 

of Eq. (2) is to compare its results to polls statistics. In polls there are usually N 

choices and P voters that suppose to select their preferred choice. Usually each 

voter can select only one choice. A poll is not necessarily a statistical system. An 

example for a non-statistical poll is a poll with the three questions: 1. Do you prefer 

to be poor? 2. Do you prefer to be young, healthy and rich? 3. Do you prefer to be 

old and sick? In this poll one expects that most people will vote 2 (at least for 

themselves). However, it is clear that nobody will make the effort to make this poll, 

as its result is predictable. However, in the Internet there are many examples of 

multi- choice votes with unpredictable answers. Here we study three choices polls 

that were done on the Internet by the Globes Newspaper (2008) (an Israeli 

 
1
 The Plank derivation can be obtained using a more standard way namely, the Lagrange multipliers. In 

this method we write a function, ))((ln)(  nnPnf  . The first term is the Shannon 

information and the second term is the conservation of particles. We substitute 0
)(






n

nf  to find that,

)
1

ln()(
n

n
n


 . This is the maximum information solution that yields after normalization the Eq. 

(2) see Kafri (2009).  

 1 2 3 4 5 6 7 8 Average Theoretical 

A 55% 39% 47% 64% 46% 56% 65% 47% 52% 50% 

B 32% 38% 31% 20% 37% 30% 19% 33% 30% 29% 

C 13% 23% 22% 17% 17% 15% 16% 19% 18% 21% 
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economical daily news) on variety of subjects between 10 Feb. 2008 and 10 Apr. 

2008, for eight consecutive weeks on various issues. The results are presented in 

Fig 1. 

 

 
Figure 1. The average distribution of votes of consecutive eight polls: Each poll has three 

choices selected by about 1500 voters. The blue line is the actual distribution. The red one 

is the theoretical calculation based on maximizing the Shannon information. 
 

It is seen that although the individual votes for the preferred choices A, B and C 

are quite different from the theoretical values, namely, 50%, 29% and 21% 

respectively. The average is with a good agreement with the experimental results. It 

is plausible that on the average, the polls reflect more uncertainty about the best 

choice than in an individual poll. Therefore, one expects that the average of the 

eight polls will be closer to equilibrium. 

If we consider the number of particles in a box as an indicator of wealth, one 

may use Eq. (2) to calculate the theoretical particles wealth of boxes in 

equilibrium. For example, in a set of a million boxes the richest box will have a 

relative density of 05.0
1000001ln

2ln
 . Namely, 5% of the particles will be in one 

box.  Similarly, the richest 10% will have 29.0
11ln

2ln
 . That means that 10% of the 

boxes will posses 29% of the particles. The richest half of the boxes will have 

about 63% of the wealth. The poorest 10% of the boxes will posses 

044.0
11ln

)
9

1
1ln(




of the particles, namely less than the richest single box. From the 

point of view of the boxes this is an unfair distribution. Nevertheless, from the 

point of view of the microstates (which are the configurations of boxes and 

particles) this is the just way to distribute the wealth.  

It was shown previously that Planck formula yields a power law with slop 1 

(Kafri, 2007). There are many publications that find power-law distributions with 

variety of slopes (Newman 2006). If we assume that the probability of the particles 

in a box is )(n , we can generalize this theory to a slop  power-law.     

To conclude: the uneven distributions that are so common in life are partially an 

outcome of an unbiased distribution of configurations. This is the second law of 

thermodynamics as manifested by Boltzmann and Planck. Namely, the probability 
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of all the microstates is equal. Not all the systems are in equilibrium, but systems in 

equilibrium are more stable. Thermal equilibrium is reached by the dynamics of the 

system. In blackbody, photons are emitted and absorbed constantly by the hot 

object, therefore one can expect to a thermal distribution. In economy the money 

exchanges hands all the time. The digits in numerical data are also changed by the 

number crunching operations. Nevertheless, the situation in polls is different. 

Voting in the Internet is a spontaneous non-interactive social activity; therefore, it 

is surprising that the solitary autonomic action of an individual yields a result of a 

statistical ensemble. A possible explanation is that our decision process mimics the 

behavior of a group, after all a human is a coalition of cells. 
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