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Information Theoretic Approach to Social Networks 
 

By Oded KAFRIa† 
 

Abstract. We propose an information theoretic model for sociological networks. The model is 
a micro canonical ensemble of states and particles. The states are the possible pairs of nodes 
(i.e. people, sites and alike) which exchange information. The particles are the energetic 
information bits. With analogy to bosons gas, we define for these networks’ model: entropy, 
volume, pressure and temperature. We show that these definitions are consistent with Carnot 
efficiency (the second law) and ideal gas law. Therefore, if we have two large networks: hot 
and cold having temperatures TH and TC and we remove Q energetic bits from the hot network 
to the cold network we can save W profit bits. The profit will be calculated from W< Q (1-
TH/TC), namely, Carnot formula. In addition it is shown that when two of these networks are 
merged the entropy increases. This explains the tendency of economic and social networks to 
merge.  
Keywords: Social networks, Economic networks, Information theory. 
JEL. C62. 

 

1. Introduction 
he word network, like information, is overly used. For example, in Shannon’s 
theory there are confusions originated from the fact that some conceive stored 
data as information, while Shannon information theory deals with a file 

transmission from a sender to a receiver. Similarly, we conceive a network as a static 
graphical diagram of links connecting nodes while actually a network characterized 
by a flow between nodes. For example, the electrical networks conceived as a static 
net of electrical cables connected together; transportation networks as a static net of 
roads and irrigation networks as a static net of pipes, etc. However, the flow of 
electricity, traffic or water is the essence of the networks. Many scientific papers 
ware published about various aspects of networks from Erdős & Rényi (1959) to 
Barabashi (1999; 2002; 2004). Many techniques applied in these researches, from 
graph theory of Erdős and Rényi to load distribution and statistics (Kafri, 2009). 
These diverse approaches apply to the many aspects of networks. However, here we 
discuss another kind of networks, which we call “social networks” which are in fact 
communication networks. In these networks, we overlook the physical wiring 
between the nodes and focus solely on the flow between them. An example to such 
nets is the data networks. Most of the people in the world are connected somehow by 
physical data networks. Eventually, everyone can communicate with almost 
everybody. However, the flow of the voice signals between the people is varying 
constantly in time and not distributed uniformly among them. These networks are 
similar to a two dimensional fluid. 
 

2. Social Network: definition  
In this paper we adopt a dynamic approach to nets. In our network there are 𝑁 

nodes which can communicate with all the other nodes with no wiring limitations. 
 
a
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Moreover, each connection between node 𝑖 and node 𝑗 has a value 𝑅  which is a 
measure of the flow intensity between the two nodes. For example, in social 
networks 𝑅𝑖,𝑗  may be the number of communication channels used between node 𝑖 
and node 𝑗 . In economical network 𝑅  may represent the value of a transaction 
between two nodes. 

Shannon, (1948) in his paper “a mathematical theory pf communication”, 
describes in a quantitative way how Bob communicates with Alice via transmitting a 
“file” to her. The file is a sequence of bits where each bit can be either zero or one. 
When Alice receives the sequence of bits, she explores their value and extracts the 
content that Bob sent her. Shannon defined the entropy of the files as the logarithm 
of the possible different contents that the sequence may contain. Since N bits file 
has2𝑁 possible different contents, the entropy of the file is 𝑁 ln 2. Engineers are 
using, for their convenience, base 2 logarithm and therefore the Shannon entropy in 
this base is identical to the length of the file,𝑁 bits. 

Basically, Shannon’s theory deals with a one way communication between a 
sender (Bob) and a receiver (Alice) in which the sender send one or several bits to a 
receiver. Bits carry uncertainty which is expressed by the entropy. After reading and 
interpreting the file, the receiver can find its content 

In this paper we describe a group of 𝑁 senders. Each of these senders can send 
and also receive information from the other 𝑁 − 1 members of the group. We call 
the communication group of 𝑁 senders/receivers a network. We also call each one of 
the 𝑁 senders/receiver a node. In addition, we call a one way single communication 
channel connecting 𝑁𝑖  to 𝑁𝑗 a link. We designate 𝑅𝑖 ,𝑗  , as the number of links through 
which a sender 𝑖 can send messages to a receiver 𝑗. Similarly, 𝑅𝑗 ,𝑖  designates the 
number of links used from 𝑗to 𝑖. We assume that there is a total number of 𝑅 links in 
the network and 𝑅 can be any integer. The network can be described by a matrix: 

 

 
Figure 1. Networks matrix. 

 
Where 𝑅 =   𝑅𝑖,𝑗

𝑁 
𝑖=1

𝑁
𝑗 =1 .       

   
The summation on a column 𝑖 is the total links outgoing from node 𝑖 to all other 

𝑁 − 1 nodes. Similarly, the summation on a row 𝑗 is the total links entering node 𝑗 
from all other 𝑁 − 1 nodes. 

The network described above is different from our standard visualization of a net 
as a static diagram. 𝑅𝑖 ,𝑗  can vary constantly like a two dimensional fluid matrix 
having two constraints;  

 
 
A. 𝑅𝑖,𝑖 = 0 
B. 𝑅𝑖,𝑗 ≤ 𝑅. 
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Communication and economic networks have such a dynamic nature. In this 
aspect one may compare the network to a two dimensional fluid in which there are 
constant nodes and energetic links that are i.e. pulses (classical harmonic oscillator) 
or any other logical quantity such as money, etc. The number of links may represent 
the bandwidth of the communication channel or the amount of the money 
transferred. 

We can imagine the networks as a two dimensional boson gas with 𝐾 = 𝑁2 − 𝑁 
states and 𝑅 particles. Therefore, we can calculate for it entropy, temperature, 
volume and pressure. 

 
3. Large Networks Statistics 
The number of microstates 𝑊 of boson gas of 𝑅 particles in 𝐾 states is given by 
 

𝑊 =
 𝑅+𝐾−1 !

 𝐾−1 !𝑅!
            (1) 

 
Planck (1901) used this equation assuming that(𝐾 + 𝑅) ≫ 1, and designatingthe 

“occupation number”𝑛 ≡
𝑅

𝐾
, to obtain his famous result for the entropy; 

 
𝑆(𝑅, 𝐾) = ln 𝑊 = 𝐾  𝑛 + 1 ln 𝑛 + 1 − 𝑛 ln 𝑛        (2) 

 
We define large network as a network in which𝑅 ≫ 𝐾 ,In this network it is 

possible to remove energetic links from it with a negligible change in its statistical 
properties. The thermodynamic analogue to the large network is an infinite thermal 
bath. 

The entropy of the large net is given by 𝑆 𝑅, 𝐾 = ln 𝑊 (Kafri, 2014). When one 
link added, the entropy is given by, 

 

𝑆 𝑅 + 1, 𝐾 = ln
(𝑅+𝐾) 𝑅+𝐾−1 !

 𝑅+1 𝑅! 𝐾−1 !
= ln

𝑅+𝐾

𝑅+1
+ 𝑆(𝑅, 𝐾)                   (3) 

 
In the case that𝑅 is a large number than 𝑅/(𝑅 + 1) ≈ 1and, 
 

𝑆 𝑅 + 1, 𝐾 ≈ 𝑆 𝑅, 𝐾 + ln
𝑛+1

𝑛
         (4) 

 
4. Carnot Efficiency 
Suppose we have two large networks𝐻 and 𝐿 having occupation numbers 𝑛𝐻and 

𝑛𝐿 . We remove 𝑄 links from the 𝐿 net and put them in the 𝐻 net. If 𝑛𝐻 > 𝑛𝐿  than 
the entropy of the 𝑄, 𝐿 net linksis higher than 𝑄, 𝐻 net link is, and the total entropy 
will be decreased. Therefore, we must add 𝑊 links to the 𝐻 net, in order to avoid 
entropy decrease such that, 

 
𝑄 ln[(𝑛𝐿+1)/𝑛𝐿] ≤  𝑄 + 𝑊 ln[(𝑛𝐻 + 1)/𝑛𝐻]      or, 

 

𝑊 ≤ 𝑄{1 − ln
𝑛𝐻  𝑛𝐿+1 

𝑛𝐿 𝑛𝐻 +1 
}          (5) 

In the case that 𝑛𝐻, and 𝑛𝐿 ≫ 1 then, 
 

𝑊 ≤ 𝑄(1 −
𝑛𝐿

𝑛𝐻
)           (6) 

 
Equation 6is Carnot inequality for networks. 
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5. Large Networks Temperature 
The definition of temperature is related to the definition of entropy. In classical 

heat engine the Carnot efficiency is, 
 

𝑊 ≤ 𝑄(1 −
𝑇𝐿

𝑇𝐻
)           (7) 

 
Where 𝑊  is the work, 𝑄 is the heat (energy removed or added) and 𝑇 is the 

temperature. The occupation number 𝑛is related in the classical limit of blackbody 
radiation (photons) 𝑛 ≫ 1 to the temperature via, 
 
𝑛ℎ𝜈 = 𝑘𝐵𝑇            (8) 

 
Here ℎ  is the Planck constant, 𝜈  is the oscillator frequency and 𝑘𝐵  is the 

Boltzmann constant. 
Therefore, if we substitute for a constant frequency, 𝜈, in equation 6 we obtain 

equation 7.  
We can calculate the temperature directly from, 
 

𝑇 =
𝑄

𝑆
 

 
In equation 4 we obtained the entropy increase by adding one link 𝑄 = 1, 

namely, 
 

𝛥𝑆 = ln
1+𝑛

𝑛
. 

 
Therefore, 
 

𝑇 =  ln
1+𝑛

𝑛
 
−1

            (9) 

 
This result can also be obtained from Planck equation (2), 
 

𝑇 =
𝜕𝑅

𝜕𝑆
 

𝜕𝑆

𝜕𝑅
=

1

𝐾

𝜕

𝜕𝑛
𝐾 (𝑛 + 1) ln 𝑛 + 1 − 𝑛 ln 𝑛 = ln

1+𝑛

𝑛
=

1

𝑇
                 (10) 

 
We see that the two ways yield the same result. 

In the lim𝑛→∞ ln(1 +
1

𝑛
) =

1

𝑛
   and, 

 
𝑇 = 𝑛                        (11) 

 
This result is consistent with equation 6. 
 
6. Large networks Volume 
The volume of the large net is the number of its states 𝐾. This is the major 

difference between a gas and a large net. In the linear world, and therefore in our 
intuition, the volume is an extensive quantity. However, in nets the number of nodes 
is the extensive quantity. Since 𝐾𝑖 = 𝑁𝑖(𝑁𝑖  -1) and 𝑁 is extensive, therefore 𝐾 is not 
extensive, i.e. when we combine two nets 1 and 2,  𝑁 = 𝑁1 + 𝑁2 and, 

 
𝑉 ≡ 𝐾 =  𝑁1 + 𝑁2  𝑁1 + 𝑁2 − 1 = 𝐾1 + 𝐾2 + 2𝑁1𝑁2 
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Or for large nets, 

 

𝑉 ≈ 𝑉1 + 𝑉2 + 2 𝑉1𝑉2 
1

2 =   𝑉1 +  𝑉2 
2
                  (12) 

 
Namely, the volume of the combined net is greater than the sum of their volumes. 

This is a counterintuitive result. When we combine two networks there is an 
expansion as a result of the increase of the number of states. Combining nets at 
constant number of links (adiabatic process) results in cooling and entropy increase. 
This is an explanation to a known phenomenon that networks tend to merge. It is 
well known that entropy increase in adiabatic process does not exist in ideal gas 
thermodynamics.  

 
7. Large Networks Pressure 
The gas law states that the pressure of the gas multiplied by its volume is a 

measure of the energy of the gas. In our case the particles are identical. Therefore, 
the energy of the net is the number of its links. 

 
Ρ𝑉 = 𝑅 = 𝑉𝑇,                      (13) 

 
whereΡis the pressure and 𝑅 is the number of the particles. With analogy we 

write  
 

Ρ = T ≈ 𝑛                      (14) 
 
The pressure of a net is a measure of the tendency of two nets having different 

pressures to be combined together to equate their pressure and temperature to 
equilibrium, and thus to maximize the total entropy. Due to the nonextensivity of the 
volume, the combined pressure of two nets may be lower than the pressure of each 
one of them separately.  

 
8. Large Networks Entropy 
From equation 2 for large nets 
 

𝑆 = 𝑉  𝑛 ln  
1+𝑛

𝑛
 + ln 𝑛 + 1  or, 

𝑆=𝑉 lim𝑛→∞  ln  
1+𝑛

𝑛
 
𝑛

+ ln 𝑛 + 1  ≈ 𝑉[1 + ln(𝑛 + 1)] ) ≈ 𝑉 ln(1 + 𝑛)        (15) 

 
Example 
We take two large nets 1 and 2 with known pressure and volume. We combine 

them together. What will be the pressure and volume of the final net? 
The solution for ideal gases is simple: 
 

Ρ1𝑉1 + Ρ2𝑉2 =  𝑅1 + 𝑅2 𝑘𝐵𝑇 
 
Or the temperature of the combined gases is, 

𝑇 =
P1𝑉1 + Ρ2𝑉2

 𝑅1 + 𝑅2 𝑘𝐵
 

 
And the pressure of the final gas is, 
 

Ρ =
Ρ1𝑉1 + Ρ2𝑉2

𝑉1 + 𝑉2
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For nets, the result is affected by the non-extensive nature of the nets volume. 
The temperature is the occupation number. Since 𝑅 is extensive, therefore, 

 
𝑅 = 𝑅1 + 𝑅2 = 𝑛1𝑉1 + 𝑛2𝑉2and 

𝑇 ≈ Ρ ≈ 𝑛 ≈
𝑃1𝑉1+𝑃2𝑉2

  𝑉1+ 𝑉2 
2                     (16) 

 
9. Numerical example 
Suppose we have two nets, each with 50 nodes; one has occupation number of 50 

and the other of 100. The two nets are combined. What will be the value of the 
thermodynamic quantities in equilibrium of these two combined nets? 

The net law is P𝑉 = 𝑅 
WhereΡ  is the pressure=temperature=occupation number, 𝑉  is the number of 

states, 𝑅 is the number of links. 
 
For net 1: 𝑉1 = 50 × 49 = 2,450𝑅1 = 2450 × 50 = 122,500𝑇1 = P1 = 50 
Foe net 2: 𝑉2 = 50 × 49 = 2,450𝑅2 = 2450 × 100 = 245,000𝑇2=Ρ2 = 100  
In the combined net:  𝑉 = 100 × 99 = 9,900 ,𝑅 = 367,500𝑇 = Ρ = 37 
 
The entropy of net 1 is 𝑆1 = 2450[1 + ln 51] =  12,034, the entropy of net 2 

is𝑆2 = 2450[1 + ln 101] =13,732, and the entropy of the combined net is 𝑆 =
9900[1 + ln 38] = 45,648. The entropy increase is then 19,882. 

This result demonstrates the major difference between a net and an ideal gas. 
When we combine nets, the temperature and the pressure drop drastically as a result 
of the entropy increase originated from the states generation in the combined net. 
This exhibits the tendency of nets to combine.  

 
10. Summary and Applications 
Is there any value to thermodynamic analysis of networks? This question was 

probably asked about information theory 70 years ago. It was possible to send files 
from Bob to Alice without information theory. Actually Samuel Morse did it 100 
years before Shannon’s time. However, the quantitative work of Shannon enables to 
find limits on file’s compression. Similarly, thermodynamic analysis of networks has 
already proved itself to be useful in showing that the distribution of links in the 
nodes in large networks is Zipfian (Kafri & Kafri, 2013). If we define the wealth of a 
node as the number of links that is has, we see that combining two nets does not 
increase the wealth but reduces the temperature. Reducing the temperature enables 
higher free links (free energy), and therefore higher data transfer on the same 
infrastructure. Equilibrium thermodynamics proved to be an important tool in 
engineering, chemistry and physics. Applying these tools to sociological networks 
dynamics may prove to be of some use.  For example, defining temperature to a net 
may help in our understanding of data flow. Zipf distribution may help in finding the 
stable inequality of links (Kafri & Kafri, 2013).  

In a previous paper (Kafri, 2014) a similar calculation was made for the entropy 
increase when a node is added to a net. The result obtained is similar to that of 
equation 15. Namely, each node generates about 2ln(1 + 𝑛) entropy. This result 
quantifies the entropic benefit of joining the crowd (high linkage nets or hot nets). In 
this paper we found that the entropy generation caused by adding a link to a net is 

ln(1 +
1

𝑛
) ≈

1

𝑇
.  It means that with contradistinction to a node, a link will favor 

joining a network with lower linkage (colder net), which represents the tendency of 
links (energy) to flow from hot to cold. One should note that the entropy generation 
by adding link to a net is with accordance to Benford’s law (Kafri & Kafri, 2013). 

The concept of non-extensive volume can also describe an accelerated expansion 
without energy. 
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