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Abstract. The picture of technological change over the last 70 years in the global economy 
is ambiguous, with two salient facts: Total Factor Productivity has been systematically 
falling since 1979, whilst the average global food deficit has been systematically declining 
since 1992. Building upon those two fundamental facts, this article develops and verifies 
empirically a model, where technological change is a function of intelligent adaptation, 
which maximizes the appropriation of energy from the environment. Empirical research 
presented in the article suggests that food deficit is a powerful spur of technological change, 
and the loop between said change and appropriation of energy works is the most visible in 
societies with such deficit. As the human civilisation has managed to cut the average food 
deficit by half, since 1992, whist doubling population, we might be, right now, at the 
historical peak of intensity in technological change.  
Keywords. Technological change, Evolutionary theory, Intelligent adaptation. 
JEL. O3, O4, Q01. 

 

1. Introduction 
he economic theory of innovation and technological change is based on the 
assumption that said technological change means improvement. The link 
between technological change and economically measurable progress is 

almost axiomatic. Almost, because empirical data partly contradicts that 
assumption. This article presents an alternative, theoretical model, together with its 
empirical verification, where technological change is represented as a process of 
collective experimentation, based on an evolutionary function of intelligent 
adaptation.  

In 2016, the World Bank, in the series entitled ‘World Economic Prospects’, 
published a report entitled ‘Digital Dividends’ (World Bank, 2016), where a very 
clear statement has been made: the entire human civilisation is far from exploiting 
all the potential gains we could possibly have out of digital technologies, in their 
current state of development. The assumption underlying this statement is that 
technological change should produce unequivocal, social and economic progress. 
The assumption of technological change producing economic improvement 
probably goes back to Joseph Schumpeter and his theory of business cycles 
(Schumpeter, 1939). Schumpeter assumed that some scientific inventions convey a 
special kind of economic change, able to push the economy off the neighbourhood 
of general Walrasian equilibrium, and, on the long run, to improve the efficiency of 
the production functions prevailing in business.  

The concept of efficiency in production, called productivity, is older than the 
Schumpeterian theory. Yet, the classics of economics, like Adam Smith and David 
Ricardo, stated generally that productivity is the key to successful business 
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practice, and that business actions taken by business people simply display 
different levels of efficiency. Social thinkers with a moral edge, like John Stuart 
Mill, would argue that it is a good thing to develop efficient practices, and 
generally a bad habit to indulge in inefficient ones. This, in turn, implied some kind 
of diversity in productivity existing in the social fabric around us. Still, the 
systematic association between technological change and incremental improvement 
in productivity seems to be the invention of Joseph Schumpeter, who used to 
perceive technologies as something akin to hurricanes. His question was simple: 
when two or more hurricanes meet at some point, which one prevails? Answer: the 
most powerful one. The transformative power of new technologies was supposed to 
be observable as their capacity to increase efficiency in the use of production 
factors, or their productivity. 

The Schumpeterian paradigm found a formal confirmation in the neoclassical 
stream of economic sciences. The theory of Edmund Phelps and his notion of 
‘golden rule’ regarding investment and innovation (see for example Phelps, 1964). 
However, the picture of technological progress has been becoming more and more 
blurred over the last five decades. Research presented by Kenneth Arrow clearly 
suggested that actual technological change is far from being optimal regarding the 
needs of the society (Arrow 1962; 1969). On the other hand, quite a foundational 
research by Frederic Scherer provided convincing evidence that innovation as an 
actual business practice was much more about hierarchy in technological race than 
about optimizing productivity (Scherer, 1967). The structuring and hierarchizing 
function of technological change was strongly emphasized by Loury (1979) and 
well as by Kamien & Schwartz (1982).  

The Schumpeterian process of technological progress can be decomposed into 
three parts: the exogenous scientific input of invention, the resulting replacement of 
established technologies, and the ultimate growth in productivity. Empirical data 
provides a puzzling image of those three sub-processes in the modern economy. 
Data published by the World Bank regarding science, research and development 
allow noticing, for example, a consistently growing number of patent applications 
per one million people in the global economy (see Retrieved from). On the other 
hand, Penn Tables 9.0 (Feenstra et al., 2015) make it possible to compute a steadily 
growing amount of aggregate amortization per capita, just as a growing share of 
aggregate amortization in the global GDP. Still, the same Penn Tables 9.0, indicate 
unequivocally that the mean value of Total Factor Productivity across the global 
economy has been consistently decreasing since 1979 until 2014. This presently 
observable trend is essentially a confirmation of what used to be a concern already 
twenty years ago (see for example: Frantzen, 2000) 

Of course, there are alternative views of measuring efficiency in economic 
activity. It is possible, for example, to consider energy efficiency as informative 
about technological progress, and the World Bank publishes the relevant statistics, 
such as energy use per capita, in kilograms of oil equivalent (see Retrieved from). 
Here too, the last decades do not seem to have brought any significant slowdown in 
the growth of energy consumption. The overall energy-efficiency of the global 
economy, measured with this metric, is decreasing, and there is no technological 
progress to observe at this level. A still different approach is possible, namely that 
of measuring technological progress at the very basic level of economic activity, in 
farming and food supply. The statistics reported by the World Bank as, 
respectively, the cereal yield per hectare (see Retrieved from), and the depth of 
food deficit per capita (see Retrieved from), allow noticing a progressive 
improvement, at the scale of global economy, in those most fundamental metrics of 
technological performance. 

Thus, the very clearly growing effort in research and development, paired with a 
seemingly accelerating pace of moral ageing in established technologies, occurs 
together with a decreasing Total Factor Productivity, decreasing energy efficiency, 
and just very slowly increasing efficiency in farming and food supply chains. What 
exactly is happening? Are we, as a civilization, utterly inefficient in our 

http://data.worldbank.org/indicator/IP.PAT.RESD
http://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE
http://data.worldbank.org/indicator/AG.YLD.CREL.KG
http://data.worldbank.org/indicator/SN.ITK.DFCT
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technological change? Or, maybe, the Schumpeterian expectations of ever-growing 
productivity were simply overshot and this is time to revise them? 

There is a strong temptation to qualify this state of things as dysfunctional 
regarding the purposes of technological change. The World Development Report 
2016 by the World Bank, mentioned earlier in the introduction, seems to share this 
view, at list partly. Whilst putting forth the possible gains from digital 
technologies, the authors suggest some kind of dysfunction on the path of progress. 
A significant stream of research claims that real technological progress requires 
more spill-over of inventions from the rich, developed economies towards and into 
the developing ones. Intellectual property is frequently pointed at as the prime 
culprit of insufficient diffusion. A whole plethora of scholars seems sharing this 
view (see for example: Jaffe et al. 1982; Eaton, & Kortum, 1999; Kauffman 
Foundation of Entrepreneurship, 2011).   

Still, we might be facing a misunderstanding in expectations rather than a 
dysfunction in action. The very concept of Total Factor Productivity is based on the 
theory of production function, based on the seminal research presented by Cobb & 
Douglas (1928), in their common work from 1928. The declared intention of their 
research was to find a way of distilling progress as distinct from simple 
accumulation. The intriguing conclusion of their paper says: ‘Thus we may hope 
for: (1) An improved index of labour supply which will approximate more closely 
the relative actual number of hours worked not only by manual workers but also by 
clerical workers as well; (2) a better index of capital growth; (3) an improved index 
of production which will be based upon the admirable work of Dr. Thomas; (4) a 
more accurate index of the relative exchange value of a unit of manufactured 
goods. In analysing this data, we should (1) be prepared to devise formulas which 
will not necessarily be based upon constant relative ‚contributions‛ of each factor 
to the total product but which will allow for variations from year to year, and (2) 
will eliminate so far as possible the time element from the process’. The last 
sentence is probably the most intriguing. Today, we use the Cobb-Douglas 
production function for assessing exactly the class of phenomena those two 
scientists had the most doubts about: changes over time. They clearly suggest that 
the greatest weakness of their approach is robustness over time, and this is exactly 
what we do with their model today: we use it to assess temporal sequences. On the 
other hand, as one studies the methodology of the model presented by Cobb and 
Douglas, the parameters of their equation are presented as essentially stable in 
time. It is worth noticing that absolutely nothing in that seminal method suggests 
that coefficients of productivity should grow with time.  

The present article presents a different approach to technological change, based 
on the previously cited empirical observation that technological changes in the 
global economy are associated with significant improvement in food supply: since 
1992 through 2016, the global average food deficit has been cut by half whilst the 
human population doubled. This is a huge achievement, even in the presence of 
decreasing Total Factor Productivity. The theoretical challenge consists in 
explaining this phenomenon so as to create a tool of prediction for the future. The 
fundamental theoretical hurdle to jump over seems to be the distinction between 
function and purpose. Charles W. Cobb and Paul H. Douglas demonstrated 
convincingly that output can grow beyond what could result from simple 
accumulation of production factors, and later, this surplus of growth has been 
labelled ‘Total Factor Productivity’. Still, there is no convincing evidence that 
technological change seen from the behavioural perspective is an activity oriented 
on creating that outcome. It seems sensible to go back to the Nobel-prized 
fundamentals of behavioural economics, thus to the seminal work of John Nash 
(see for example: Nash, 1951), and something that seemed a polemic discussion 
from the part of Herbert W. Simon (1955). That early, fundamental research 
showed that there is nothing essentially long-sighted in the way we do business and 
make our economic choices. The concept of ‘dominant strategy’, coined up by 
John Nash, still remains very largely a puzzle: there is typically a discrepancy 



Journal of Economic and Social Thought 

JEST, 4(3), K. Wasniewski,  p.263-276. 

266 

between what we think is the path to highest payoff, and what this path really is, 
and yet we cannot really estimate that discrepancy. If we could, there would be no 
discrepancy. The theory of games with imperfect recall by Reinhard Selten (see for 
example: Selten, 1975) suggests quite convincingly that whatever rationality we 
build up for predicting the outcomes of our actions, this rationality will anyway be 
forgotten as our achievements will become history, in the presence of limited 
cultural memory. Research by Nelson and Pack, among others, show that economic 
optimization is simply not what is being done in real business (Nelson, & Pack, 
1997).  

Much more recent developments in the lines of evolutionary theory, such as the 
Adaptive Markets Hypothesis by Lo (2005), suggest a plausible representation of 
economic decisions as imperfectly rational, yet intelligent adaptation to 
opportunities offered by the environment. The present article develops in this line 
of evolutionary thinking: economic decisions can be represented as a sequence of 
experiments oriented on immediate, short-term results, where these short-term 
goals might be irrational from the perennial perspective, and yet the process of 
experimenting, in itself, is a case of intelligent adaptation. 

Given the stylized facts at hand and the above-stated theoretical fundamentals, 
ageneral hypothesis is being stated, and developed, in the next section, in the form 
of a model: technological change in the economy has the biological function of 
maximizing the human appropriation of energy from the environment.  

 
2. The model 
The model presented below is partly inductive and empirical, and partly 

speculative. Some of its propositions are verifiable, and are being verified 
empirically in the following section, whilst the most general theoretical framework 
is speculative to the extent that no direct evidence can be presented to check it. 
Thus, it is postulated that the interaction of human population with its environment 
manifests itself, among other phenomena, in a certain appropriation of energy1. We 
can empirically measure this appropriation as final energy use, and as the 
consumption of food. Most probably some residual appropriation of energy occurs, 
and still remains unmeasured. The process of appropriating energy from the 
environment is imperfectly efficient in a probabilistic way: sometimes more energy 
is appropriated than spent by a human community (success), sometimes more 
energy is spent (failure).  

Basing on the brilliant, posthumously published insights by reverend Thomas 
Bayes, it is further assumed that in the presence of uncertain outcomes in an action, 
and of an impossibility to measure directly the odds of satisfactory outcomes, we 
have all the interest in multiplying alternative combinations of successes and 
failures (see Bayes, & Price 1763, p. 384). Each piece of what we call ‘material 
civilization’, i.e. each social structure, technology, institution etc. can be seen as 
another combination of successes and failures in appropriating energy from 
environment. At a given moment t, any human community has at their disposal a 
set TC(t) = {tc1, tc2, ..., tcn} of n technologies, which allows the appropriation of a 
certain amount of energy, observable as final energy use and food consumption. 

Technological change consists in replacing an older set of technologies with a 
newer one. The process of invention is being accompanied by a process of 
obsolescence. At this point, a relatively strong and tentative assumption is being 
made, almost as a speculative hypothesis, namely that the observable 
manifestations of thus defined technological change -patent applications, R&D 
expenditures, amortization of established technologies etc.-  are manifesting a 
broader and deeper, overarching process of continuous social experimentation, in 
which we multiply the possible combinations of successes and failures in 
appropriating energy from the environment. This process both allows the 
 
1 Should anyone refer the notion of ‘appropriation’ to the legal context, the model treats appropriation 

as natural possession, and not as property rights. 
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emergence of and engages productive resources: labour and capital. Following the 
intuition expressed by Cobb & Douglas (1928), the process of accumulation in 
productive resources is seen as at least partly distinct from the invention of new 
technologies. 

Before further theoretical development, two stylized facts are worth exposing. 
Firstly, two, mutually contradictory trends of change are observable as for the final 
energy use. At the microeconomic level, the current trend in engineering is to 
minimize energy consumption per unit of output in every individual technology 
adopted. Yet, we stack up a growing number of thus optimized technologies, and, 
at the macroeconomic level, the average energy use per capita in the global 
economy keeps growing.  Secondly, as a civilisation, we are still slightly starving. 
Whilst the food deficit has been cut by half since the early 1990ies, it is still 
present, i.e. the average human being on this planet still lacks over 80 kilocalories 
per day. Thus, the appropriation of energy through eating, for our civilisation as a 
whole, is still an attempt to reach repletion. 

Given both the theoretical considerations, and the stylized facts mentioned, the 
following general structure is being stated, as in equation (1), where ‘EG’ 
represents final energy use per capita, ‘FD’ is food deficit per capita, ‘R’ represents 
the amount of productive resources, and ∆TC represents the pace of technological 
change, i.e. the compound pace of both invention and obsolescence in established 
technologies.   

 

 
𝐸𝐺
𝐹𝐷

 = 𝑓  
𝑅

∆𝑇𝐶
                                      (1) 

 
It is worth noticing that the general structure expressed in equation (1) de facto 

implies a loop of retroaction. It can be assumed, as well, that the right side of (1) is 
a function of the left side, i.e. the set of technologies evolves through intelligent 
adaptation, i.e. societies undertake continuous attempts to maximize their hold of 
energy from environment through innovation.  

In order to clear the path towards empirical check, both the structure (1), and its 
retroactive loop, can be straightforwardly transformed into a set of logarithmic 
equations, suitable for linear regression. With ‘S’ standing for the scale factors, and 
‘b’ representing the residual component, equations (2) - (5) represent such a 
transformation. 
 
𝑙𝑛 𝐸𝐺 = 𝑎1 ∗ 𝑙𝑛 𝑆 + 𝑎2 ∗ 𝑙𝑛 𝑅 + 𝑎3 ∗ 𝑙𝑛 ∆𝑇𝐶 + 𝑏1           (2) 
 
𝑙𝑛 𝐹𝐷 = 𝑎4 ∗ 𝑙𝑛 𝑆 + 𝑎5 ∗ 𝑙𝑛 𝑅 + 𝑎6 ∗ 𝑙𝑛 ∆𝑇𝐶 + 𝑏2           (3) 
 
𝑙𝑛 𝑅 = 𝑎7 ∗ 𝑙𝑛 𝑆 + 𝑎8 ∗ 𝑙𝑛 𝐸𝐺 + 𝑎9 ∗ 𝑙𝑛 𝐹𝐷 + 𝑏3             (4) 
 
𝑙𝑛 ∆𝑇𝐶 = 𝑎10 ∗ 𝑙𝑛 𝑆 + 𝑎11 ∗ 𝑙𝑛 𝐸𝐺 + 𝑎12 ∗ 𝑙𝑛 𝐹𝐷 + 𝑏4        (5) 
 

 
3. The empirical check 
3.1. The dataset and the methodology 
In order to verify the model presented in the preceding section, a compound 

database has been used. The core of the dataset is made of Penn Tables 9.0 
(Feenstra et al., 2015), and this core has been updated by the author with the 
previously mentioned (see ‘Introduction’) data from the World Bank regarding 
food deficit, energy consumption, as well as regarding patent applications. Energy 
use per capita (in kg of oil equivalent a year), as well as food deficit (in kilocalories 
per day per person), have both been taken as such from the resources of the World 
Bank. The author computed his own two indicators in order to estimate the pace of 
technological change. The first is the number of resident patent applications per 
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million people, later symbolized as ‘Pa/Pop’. The second indicator of ∆TC, 
symbolised with the acronym ‘DP/Q’ is the share of GDP, output side (the ‘rgdpo’ 
variable in Penn Tables), taken by the aggregate amortization of physical capital. 
Hence, the factor ln(∆TC) is being split into those two distinct measures on the 
explanatory side of the corresponding equations, and, logically, equation (5) 
mutates into (5a) and (5b), with those two measures of innovation as respective 
outcome variables.     

A methodological doubt arises at the crossing of scale factors in equations (2) – 
(5), and all the other components. It is reasonable to assume that output (Q) and 
population (Pop) make the two principal factors of scale, and yet they are the 
denominators of other variables. Co-integration is to expect, and still it is 
interesting to check its impact on the model. Thus, output and population has been 
kept as scale factors in the empirical version of equations (2) – (5), with an option 
to hold them constant and test the model in hypothetically stationary conditions. A 
similar concern is connected to the general category of production factors, or ln(R) 
in the equations presented above. It seemed logical to treat it analytically as 
something distinct from simple scale factors. Thus, the input of capital and labour 
has been introduced, in the empirical check, as intensities: physical capital per 
capita (CK/Pop), and the average number of hours worked per person employed 
(AVH). This, in turn, makes the equation (4) mutate into (4a) and (4b), with those 
two distinct metrics on the left side. On the whole, the presence of scale factors in 
the model, as it is being tested empirically, is considered as a case of factorization, 
according to the pattern: a = b*(a/b). As the variables pertaining to technological 
change and to the accumulation of production factors are essentially coefficients, 
the denominators of those coefficients are being pulled out of brackets as scale 
factors, in order to show their relative influence. 

The depth of food deficit is actually reported as non-null only in some 
countries, mostly the developing ones and emerging markets. A logarithmic 
equation with food deficit inside will naturally render valid observations only in 
those cases, passing over all the developed economies, as well as over most recent 
periods of relative opulence in some emerging markets. On the other hand, most of 
the recorded amortization in physical capital, as well as most of resident patent 
applications are to be found in those non-starving populations. Thus, it is to keep in 
mind that equation (3) is being tested only as for countries with explicit food 
deficit. For the same reasons, in equations (4) and (5), food deficit has been used as 
control variable. Each equation is being tested with food deficit explicitly added as 
explanatory variable -thus limiting the empirical check to countries with actual 
non-null food deficit- as well as without that variable, in the whole sample of 
observations, valid regarding other variables. In other words, equations (4) and (5) 
are being used to generate an explanation what happens in the model, when the 
population in question officially starves. In analytical terms, equations (4a), (4b), 
(5a), and (5b) further split into versions corresponding to the presence or absence 
of food deficit in the model.   

As the model under verification is strongly oriented on what social structures 
actually do, the residual component ‘b’ has been theoretically decomposed before 
empirical check, so as to capture some structural patterns. Thus, natural logarithm 
of the density of population has been added – quite intuitively - to each equation, as 
structural parameter. Additionally, after each test, the empirically obtained residual 
has been tested for the correlation of its distribution with other variables in the 
database used.  

 
3.2. Results of linear regression 
Tests have been conducted with the OLS method, using Wizard for MacOS 

software. Equation (2) has been tested as the first. In the basic version, i.e. with 
scale factors, it yieldedn = 1862 valid observations, and a coefficient of 
determination equal to R2 = 0,863. Coefficients of regression are specified in Table 
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1, below. The ∆TC component, such as it is being compounded of two distinct 
variables, seems to have the contrary impact, on energy use, to that of the input of 
production factors. The faster the technological change happens, the greater is the 
use of energy per capita. On the other hand, greater intensity in the input of 
production factors acts the opposite way. The density of population, whilst 
significant in its correlation with the outcome variable, does not show much impact 
on it. Scale factors – output and population – very largely cancel each other. The 
residual constant did not yield significant correlation with any other variable in the 
sample. After the removal of scale factors, the coefficient of determination fell just 
slightly, down to R2 = 0.838, but the coefficients, specified in Table 2 further 
below, changed noticeably. Whilst remaining all robust, some of them changed 
their signs. Two provisional conclusions can be drawn: the scale factors are, 
indeed, co-integrated with other explanatory variables, and yet their presence in the 
empirical check does not change significantly the overall explanatory power of the 
equation tested. The residual constant, once again, yielded no significant 
correlation with other variables in the database.  
 
Table 1. Empirical check of equation (2), basic version with scale factors 

variable coefficient std. error t-statistic p-value 
ln(Q) 0,885 0,062 14,239 0,000 
ln(Pop) -0,857 0,063 -13,708 0,000 
ln(Avh) -0,267 0,063 -4,237 0,000 
ln(ck / pop) -0,276 0,051 -5,43 0,000 
ln(DP/Q) 0,318 0,056 5,729 0,000 
ln(Density of population (people per sq km)) -0,082 0,006 -13,152 0,000 
ln(Pa / pop) 0,147 0,007 22,226 0,000 
constant 4,484 0,562 7,976 0,000 

Source: Author’s 
 
Table 2. Empirical check of equation (2), stationary version without scale factors 

variable coefficient std. error t-statistic p-value 
ln(Avh) -0,314 0,074 -4,222 0,000 
ln(ck / pop) 0,441 0,014 31,874 0,000 
ln(DP/Q) -0,24 0,041 -5,852 0,000 
ln(Density of population) -0,07 0,007 -10,71 0,000 
ln(Pa / pop) 0,18 0,006 30,629 0,000 
constant 4,457 0,665 6,697 0,000 

Source: Author’s 
 

Passing to equation (3), we narrow down the scope of empirical check to 
developing countries and emerging markets with officially recorded food deficit. 
The sample of valid observations is noticeably smaller, with n = 328, and yet the 
overall explanatory power of the equation, in the basic version with scale factors, 
remains high, at R2 = 0,767.  Table 3, below, gives the coefficients of regression for 
this specific test. One thing is to keep in mind: the food deficit, as it is being 
reported by the World Bank, is a deficit in real terms, but a positive value in the 
corresponding dataset. Thus, a negative coefficient of regression means that the 
given variable contributes to decreasing food deficit, thus to increasing 
appropriation of energy. With that reserve kept in mind, the coefficients of 
equation (3) are remarkably coherent with those obtained in the empirical check of 
equation (2). The intensity of technological change is definitely associated with 
lower a food deficit, with the pace of obsolescence in established technologies, 
measured as share of aggregate amortization in the GDP, capturing most of this 
particular correlation. Differently from equation (2), the residual of equation (3) 
finds a significant correlation outside the model, namely with the so-calledwelfare-
relevant TFP at constant national prices (2011=1), with Pearson correlation at r = 
0,381.  

As the stationary version of equation (3) is tested, without scale factors (see 
Table 4, further below), a case similar to equation (2), although not identical, can 
be observed. Once the scale factors are removed from the model, coefficients of the 



Journal of Economic and Social Thought 

JEST, 4(3), K. Wasniewski,  p.263-276. 

270 

remaining variables change, including their signs. The predominantly important 
intensity of amortization, as share in the GDP, acquires a positive sign, and seems 
contributing to increase the food deficit. The overall explanatory power of the 
equation devoid of scale factors fall down to R2 = 0,608. Interestingly, the residual 
constant of the equation becomes largely random, with a p – value of 0,478, and it 
becomes significantly correlated with many other variables in the database: a) TFP 
level at current PPPs (r = -0,587) b) Welfare-relevant TFP at current PPPs (r = -
0,563) and c) rate of amortization in fixed assets (r = -0,379)2. Certainly, equation 
(3) is very sensitive to the presence of the two scale factors: aggregate output and 
population. In particular, and this is common with equation (2), the factor of 
aggregate amortization as share of the GDP, is very sensitive to the presence or 
absence of these metrics. Going a little in advance of results pertaining to equations 
(4) and (5), presented further below, testing their stationary forms (no scale factors) 
brings results broadly similar to equation (2) rather than equation (3). For that 
reason, and as equations (4) and (5) mutate into four varieties each, according to 
the empirical variables chosen for the left side, and to the inclusion of food deficit, 
in the tests that follow scale factors are kept in the model.  
 
Table 3. Empirical check of equation (3), basic version with scale factors 

variable coefficient std. error t-statistic p-value 
ln(Q) -4,213 0,367 -11,485 0,000 
ln(Pop) 4,072 0,368 11,072 0,000 
ln(DP/Q) -1,1 0,25 -4,409 0,000 
ln(Pa/Pop) -0,131 0,031 -4,287 0,000 
ln(Density of population) -0,098 0,051 -1,92 0,056 
ln(ck / pop) 2,727 0,309 8,826 0,000 
ln(avh) 4,279 0,513 8,34 0,000 
constant -19,006 4, -4,751 0,000 

Source: Author’s 
 
Table 4. Empirical check of equation (3), stationary version, without scale factors 

variable coefficient std. error t-statistic p-value 
ln(DP/Q) 1,46 0,2 7,291 0,000 
ln(Pa/Pop) -0,226 0,029 -7,775 0,000 
ln(Density of population) -0,146 0,062 -2,341 0,020 
ln(ck / pop) -0,83 0,087 -9,545 0,000 
ln(avh) 2,52 0,604 4,176 0,000 
constant -2,951 4,152 -0,711 0,478 

Source: Author’s 
 

The results of empirical check regarding equations (2) and (3) allows a cautious, 
tentative conclusion that in the presence of scale factors, innovation is positively 
correlated with higher an appropriation of energy from environment, whilst basic 
accumulation of production factors acts in the opposite way and is associated with 
lower an appropriation of energy. In the absence of scale factors, the impact of 
innovation becomes ambiguous. The pace of technological change measured at the 
level of amortization seems, then, to have a negative impact on the appropriation of 
energy, whilst the impact of invention (patent applications per million people) 
remains positive, though weak. Scale factors, as explanatory variables, seem to 
cancel each other. They are output and population, and their opposite signs suggest 
that their mutual ratio, namely GDP per capita, is the key answer to that ambiguity. 
Keeping in mind the inverted reading of food deficit (positive number measuring 
something negative), a coherent path emerges: the greater the wealth measured 
with GDP per capita, the greater the appropriation of energy per capita.  

The next step consists in testing the many mutations of equations (4) and (5) in 
the model. These equations focus on the strictly spoken intelligent adaptation, and 
their empirical testing attempts at finding patterns in how societies react to the fact 
 
2 This variable is distinct from the share of amortization in the GDP, used in the model. In this case, 

this is the simple, basic rate of amortization, averaged for the given country – year, as reported in 
Penn Tables 9.0. 
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that innovation brings them more energy from environment. The testing starts with 
equation (4aa), where the input of production factors (left side of the equation) is 
represented with the ratio of physical capital per capita (CK/Pop), and food deficit 
is provisionally left outside the model. This is the general case of (4a). With n = 2 
348 valid observations, this equation yields a surprisingly high explanatory power, 
at R2 = 0,975, and yet, the loop of intelligent adaptation, assumed in the theoretical 
model, is surprisingly weak. Studying the coefficients, provided in Table 5, below, 
one can see that energy use per capita, supposed to represent energy appropriation 
in this version of the equation, has negligible an impact on the accumulation of 
physical capital. The fact of consuming more or less energy does not seem to have 
much influence on how intensely physical capital is being accumulated. The 
residuals of (4aa) are interestingly correlated with the supply of money measured 
as a share of capital stock (Pearson correlation r = -0,332). 

Table 6, further below, shows the coefficients of equation (4ab), thus we are 
still explaining the ratio of physical capital per capita (CK/Pop) on the left side, 
and this time food deficit is incorporated into the explanation, narrowing down the 
sample of observations to developing countries and some emerging markets. The 
so-truncated sample yields n = 533 country-year observations, with a coefficient of 
determination equal to R2 = 0,957. The coefficient attributed to food deficit is 
similar to that of energy use per capita, and they are both generally coherent with 
the results obtained as for equation (4aa). In other words, this particular loop of 
intelligent adaptation seems working quite feebly. An interesting path of further 
possible exploration opens up as one studies the correlations of residuals. Residuals 
from equation (4ab) are significantly correlated with many other variables in the 
database: average hours worked per person (r = -0,438), human capital index (r = 
0,429), TFP level at current PPPs (r = -0,453), welfare-relevant TFP levels at 
current PPPs (r = -0,461), share of labour compensation in GDP at current national 
prices (r = 0,332), amortization rate (r = -0,863), and supply of broad money as 
share of capital stock (r = -0,525). Of course, the detailed investigation of all those 
correlations would take another scientific paper to write, and still, for now, it can 
be cautiously stated that this particular loop of intelligent adaptation is more 
complex than the basic theoretical model suggests.  

 
Table 5. Empirical check of equation (4), version (4aa), CK/Pop on the left side, food 
deficit outside the model  

variable coefficient std. error t-statistic p-value 
ln(Q) 1,053 0,012 88,705 0,000 
ln(Pop) -1,052 0,012 -90,681 0,000 
ln(DP/Q) 0,968 0,016 62,158 0,000 
ln(Pa/pop) -0,018 0,004 -4,908 0,000 
ln(Energy use (kg of oil equivalent per capita)) 0,018 0,012 1,45 0,147 
ln(Density of population) -0,015 0,003 -5,899 0,000 
Constant 2,507 0,101 24,862 0,000 

Source: Author’s 
 
Table 6. Empirical check of equation (4), version (4aa), CK/Pop on the left side, food 
deficit in the model 

variable coefficient std. error t-statistic p-value 
ln(Q) 0,98 0,027 36,098 0,000 
ln(Pop) -0,987 0,027 -37,21 0,000 
ln(DP/Q) 0,818 0,026 30,895 0,000 
ln(Pa/pop) -0,004 0,005 -0,855 0,393 
ln(Energy use (kg of oil equivalent per capita)) 0,088 0,02 4,324 0,000 
ln(Depth of the food deficit (kilocalories per 
person per day)) 

0,043 0,009 4,675 0,000 

ln(Density of population) -0,062 0,008 -8,021 0,000 
constant 2,348 0,259 9,068 0,000 
Source: Author’s 
 

Now, equation (4) is being tested with a different variable on the left side, to be 
explained, namely the coefficient of hours worked per person employed (AVH). 
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Once again, we start with the general sample of countries, and so with food deficit 
provisionally left outside the model. This is being labelled as equation (4ba), and it 
yields n = 1,939 valid observations in the database, which explain less than 40% of 
variance on the left side: R2 = 0,378. This version of equation (4) is probably the 
most puzzling empirical test among all those presented in this article. The 
relatively low coefficient of determination is associated with a residual, which does 
not display any significant correlation with other variables in the database. Either 
the general logic of equation (4) simply does not work in the case of this empirical 
variable on the left side (average supply of labour per person), or we are measuring 
something really autonomous, which would require a different model to be fully 
explained. Interestingly, the situation changes completely when equation (4) gets 
mutated into (4bb), this still explaining the supply of labour, but this time with food 
deficit among the explanatory variables. Although the sample of observations gets 
shaved off dramatically, down to n = 317, the overall explanatory power rises up to 
R2 = 0,632. The coefficients of regression, presented in Table 8, further below, 
suggest that this time, the loop of intelligent adaptation does work in the lines of 
the theoretical model. Energy use per capita, in particular, appears as a definite 
kick-off for the supply of labour. Thus, in a society constrained with various 
degrees of starvation, innovation can spur intelligent adaptation, which, in turn, 
makes people work more. The residual of equation (4bb) is puzzlingly correlated 
with local exchange rates (r = -0,309).   

 
Table 7. Empirical check of equation (4), version (4ba), AVH on the left side, food deficit 
outside the model 

variable coefficient std. error t-statistic p-value 
ln(Q) -0,102 0,007 -13,744 0,000 
ln(Pop) 0,105 0,007 14,747 0,000 
ln(DP/Q) 0,015 0,01 1,564 0,118 
ln(Pa/pop) 0,013 0,002 5,26 0,000 
ln(Energy use (kg of oil equivalent per capita)) -0,025 0,007 -3,351 0,001 
ln(Density of population) 0,006 0,003 2,237 0,025 
Constant 8,666 0,067 128,847 0,000 

Source: Author’s 
 
Table 8. Empirical check of equation (4), version (4bb), AVH on the left side, food deficit 
in the model 

variable coefficient std. error t-statistic p-value 
ln(Q) -0,074 0,013 -5,648 0,000 
ln(Pop) 0,058 0,011 5,149 0,000 
ln(DP/Q) -0,013 0,017 -0,786 0,432 
ln(Pa/pop) -0,016 0,004 -4,071 0,000 
ln(Energy use (kg of oil equivalent per capita)) 0,186 0,011 16,728 0,000 
ln(Depth of the food deficit (kilocalories per 
person per day)) 

0,034 0,003 10,762 0,000 

ln(Density of population) 0,059 0,004 14,05 0,000 
constant 6,683 0,147 45,52 0,000 
Source: Author’s 
 

The last step of empirical investigation consists in checking equation (5). In a 
fashion similar to equation (4), four different mutations of (5) are being verified, 
starting with the one labelled  

(5aa), where the pace of technological change is represented with aggregate 
amortization as a share of GDP, and food deficit is left outside the model so as to 
encompass a general case. Said general case covers n = 2 594 valid observations, 
yielding a coefficient of determination equal to R2 = 0,804. The coefficients of 
(5aa), presented in table 9, below, suggest rather the classical logic of accumulation 
than the loop of intelligent adaptation postulated in the model: intensity in the 
supply of production factors spurs the obsolescence of established technologies 
much more powerfully than appropriation of energy. On the other hand, the 
residual component of (5aa) seems to be truly a residual, with no significant 
correlation to any variable outside the model. The (5ab) version of equation (5) 
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presents strikingly similara picture (see table 10 further below). Keeping the 
relative burden of aggregate depreciation in the GDP as the metric of pace in 
technological change, but including food deficit in the game, we downscale the 
sample to n = 520 valid observations, and still it does not change much to the 
coefficient of determination, which is equal to R2 = 0,796in this special case. The 
coefficients of regression stick to the same logic as in the version (5aa), very little 
intelligent adaptation according to the model, more of the classical production 
function. One detail differs: the residuals of equation (5ab) are significantly 
correlated with monetary variables in the database, such as the supply of money 
relative do GDP (r = 0,389), or the local exchange rate (r = -0,383).    

 
Table 9. Empirical check of equation (5), version (5aa), the pace of technological change 
represented with aggregate amortization as a share of GDP, food deficit left outside the 
model 

variable coefficient std. error t-statistic p-value 
ln(Q) -0,766 0,017 -44,423 0,000 
ln(Pop) 0,773 0,017 44,364 0,000 
ln(Avh) 0,224 0,031 7,262 0,000 
ln(ck/pop) 0,806 0,014 58,401 0,000 
ln(Energy use (kg of oil equivalent per capita)) 0,05 0,008 6,66 0,000 
ln(Density of population (people per sq km)) 0,023 0,002 12,222 0,000 
constant -5,488 0,258 -21,235 0,000 

Source: Author’s 
 
Table 10. Empirical check of equation (5), version (5ab), the pace of technological change 
represented with aggregate amortization as a share of GDP, food deficit in the model 

variable coefficient std. error t-statistic p-value 
ln(Q) -0,864 0,045 -19,133 0,000 
ln(Pop) 0,887 0,045 19,656 0,000 
ln(Avh) 0,771 0,08 9,587 0,000 
ln(ck/pop) 0,979 0,04 24,478 0,000 
ln(Energy use (kg of oil equivalent per capita)) -0,041 0,017 -2,421 0,016 
ln(Density of population (people per sq km)) 0,031 0,007 4,6 0,000 
ln(Depth of the food deficit (kilocalories per 
person per day)) 

-0,031 0,01 -3,012 0,003 

constant -9,801 0,584 -16,781 0,000 
Source: Author’s 
 

As the pace of technological change is being estimated with a different variable, 
namely the ratio of resident patent applications per one million inhabitants, the last 
two empirical tests of equation (5) are being introduced. Version (5ba) is the 
general case, with food deficit left outside the model, and n = 1 862 valid 
observations. The coefficient of determination remains high, at R2 = 0,717, and 
quite robust correlations at the level of individual explanatory variables, with the 
exception of capital per capita (see Table 11, below). The residuals of (5ba) are 
significantly correlated with the supply of money relative to capital stock (r = - 
0,512), as well as with price indexes in international trade (r = - 0,329 for prices in 
imports, r = -0,308 for exports). Interestingly, as the empirical check moves to the 
special case of(5bb), i.e. to countries with ‘official’ food deficit, and as the sample 
narrows down to n = 317 observations, the overall explanatory power hardly 
changes (R2 = 0,796), but the accuracy of regression, at the level of individual 
variables, diminishes noticeably (see Table 12, further below). As a matter of fact, 
the impact of the key culprit in the case, namely food deficit, is largely random. 
Obviously, different levels of food d eficit are associated with very different 
combinations of other variables. Still, the very high and really robust coefficient 
attached to final energy use per capita, in both (5ba) and (5bb), suggests that this 
time, the loop of intelligent adaptation really works. It might be worth mentioning, 
too, that the residual of (5bb) is significantly correlated with the supply of money 
expressed as % of the capital stock (r = -0,551), as well as with Total Factor 
Productivity at constant national prices (r = -0,344).  
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Table 11. Empirical check of equation (5), version (5ba), pace of technological change 
represented with resident patent applications per million people, food deficit outside the 
model 

variable coefficient std. error t-statistic p-value 
ln(CK/pop) -0,111 0,087 -1,269 0,205 
ln(Avh) 1,334 0,267 5,001 0,000 
ln(Energy use (kg of oil equivalent per capita)) 1,874 0,073 25,658 0,000 
ln(Q) 0,434 0,126 3,445 0,001 
ln(Pop) -0,557 0,127 -4,395 0,000 
ln(Density of population (people per sq km)) 0,136 0,022 6,192 0,000 
constant -23,665 2,333 -10,143 0,000 

Source: Author’s 
 
Table 12. Empirical check of equation (5), version (5bb), pace of technological change 
represented with resident patent applications per million people, food deficit inside the 
model 

variable coefficient std. error t-statistic p-value 
ln(CK / pop) 0,731 0,32 2,285 0,023 
ln(Depth of the food deficit (kilocalories per 
person per day) 

-0,117 0,099 -1,188 0,236 

ln(Avh) -3,948 1,223 -3,227 0,001 
ln(Energy use (kg of oil equivalent per capita)) 2,483 0,245 10,152 0,000 
ln(Q) -0,574 0,48 -1,198 0,232 
ln(Pop) 0,511 0,455 1,124 0,262 
ln(Density of population (people per sq km)) 0,661 0,083 8,005 0,000 
constant 9,678 8,974 1,078 0,282 
Source: Author’s 
 

4. Conclusion 
Empirical research, presented in the preceding section, proves that a standard 

pattern of economic growth, i.e. scale factors plus accumulation of production 
factors plus technological change, produces increasing appropriation of energy in 
the human society, both at the level of energy explicitly used in our technologies, 
and at the level of feeding ourselves. Hence, the basic hypothesis, stated in the 
introduction, has been verified empirically. The model, based on this hypothesis, 
assumes a loop of reaction: as technological change generates increased 
appropriation of energy, societies can, technically, react by adjusting said 
technological change to the already obtained appropriation of energy. In this 
respect, empirical research provides ambiguous insight: that loop of adjustment 
demonstrates various strength and robustness, depending on the set of variables 
used, and on the type of national economies we focus on. Still, a pattern emerges: 
when a society is really constrained in terms of energy, up to the point of starving, 
increased energy use seems to favour faster technological change. The ‘faster’ 
adjective has to be nuanced. Increasing final use of energy clearly favours more 
patentable invention, thus the kind of activity taking place at the beginning of the 
innovation chain, but it does not the same at the level of actual replacement in 
established technologies.  

The interesting question at this point is ‘how?’. How does the selection of 
technologies happen in the view of maximizing the appropriation of energy? For a 
moment, the reins imposed on imagination can be released and we can assume that 
the set of technologies established in our culture is the genetic code of said culture. 
When we reproduce the same set of technologies over a long time, so basically at 
the pace of their physical wear and tear, the genetic pattern remains the same. As 
we start to invent more and more different technologies, and this is precisely what 
we are doing now, as a civilisation, the genetic code of our culture grows more 
complex. Increased complexity in the genetic code requires adaptation on the part 
of organisms supposed to reproduce this code. We can biologically assume that 
reproduction of genetic code is an interaction between, on the one hand, female 
organisms able to recombine genes and to physically grow new organisms, and 
male organisms, on the other hand, specialized in standardizing and disseminating 
their own genome. Carrying this pattern over to social sciences, patentable 
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invention can be paralleled to semen or seeds, and organisations supposed to 
absorb it and give birth to new generations of technologies are the female 
organisms. By the way, it turns out that the R&D sector is functionally male.  

Including the pattern of sexual reproduction in this path of research opens up 
the interesting perspective of sexual selection, and that of the resulting 
hierarchizing. Female organisms and male organisms mate, and as they do so, a 
non-random function of preference emerges, which, in turn, creates a hierarchy of 
social influence in each sex. Past choices create pole positions and dead ends for 
future choices. Logically, the faster the pace of reproduction, the better and faster 
adjustment to environment we can expect: quick generational rotation creates more 
opportunities for bringing small corrections to the function of sexual preference 
and to the resulting social hierarchies. Thus, increasingly quick technological 
change that we can observe in the global economy could be a manifestation of 
intelligent adaptation without clear purpose. We are more and more on the planet 
(historically, we have now the biggest human population ever), the climate is 
changing, we are successful at shaving off the average alimentary deficit, and so 
we seek to adapt, by boosting the speed of social experimentation.  

As we apprehend social structures under the evolutionary angle, selection and 
hierarchy seem to be among the key notions. Accelerating technological change, 
which we are witnessing right now, allows expecting increasingly sharp 
hierarchizing between businesses, technologies and even whole societies. 
Empirical research presented in this article suggest that gains from technological 
change, in terms of energy appropriation, produce the strongest kick-back in the 
presence of food deficit. Here, we reach a paradox: the lion’s part of the global 
R&D takes place in the developed economies, where this incentive to stop starving 
does not exist anymore. It is possible that right now, as a civilisation, we are at the 
peak pace of technological change, and this pace could subside as (if at all) the 
global food deficit will decrease.   
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