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Abstract. Accurate forecasting of aircraft depreciation is critical for valuation, leas- 

ing, and risk management in aviation. Traditional appraisal and cost-based 
approaches often fail to capture the nonlinear effects of market cycles and 
macroeconomic conditions. This study applies machine learning to predict the 
current fair market value (CFMV) of Airbus and Boeing narrow-body air- craft using 

a rolling-origin evaluation framework. The feature set integrates appraisal-standard 
variables (age, delivery year, subtype) with macroeco- nomic indicators such as the 
consumer price index, jet fuel price, interest rates, and air traffic indices. We 

benchmark regularized linear models against ensemble methods, finding that 
gradient boosting (XGBoost) consistently de- livers the strongest performance, 
achieving mean absolute percentage error (MAPE) below 5% and R2 near 0.90. 
Residual analysis confirms stable accu- racy across aircraft types, while depreciation 

surface visualizations illustrate how lifecycle aging and market shifts interact to 
shape values. Results in- dicate that lifecycle and technical characteristics dominate 
predictive power. These findings demonstrate the potential of machine learning to 
enhance traditional appraisal practices. 

Keywords. Aircraft valuation; Depreciation modeling; Rolling-origin forecasting; 
Gradient boosting; Aviation finance. 
JEL. C23; D24; O14; O31; O33. 

 
1. Introduction 

ccurate modeling of aircraft depreciation is essential for understanding 
asset values and structuring financing arrangements in the aviation 
industry. Aircraft depreciation is ultimately linked to customer 
demand, since willingness to pay for air travel shapes airline revenues, 

which in turn determines fleet utilization, residual values, and long-run 
depreciation patterns Buchmann (2025). Since more than half of the global 
commercial fleet is leased rather than owned outright, residual value risk has 
become a defining factor in both operating and financial lease contracts. 
Recent reviews emphasize that depreciation is not only a technical 
consideration but also a strategic financial variable that shapes industry 
dynamics and contract negotiations Wandelt et al. (2023). Rode et al. (2002) 
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show that uncertainty in residual values is the greatest risk to lessors in lease 
financing, and that even small misestimations of depreciation curves can lead 
to large financial losses. Cost estimation and valuation models for aircraft are 
often decades old and require reevaluation for modern conditions Shahriar et 
al. (2022). 

Aircraft represent one of the largest categories of transport infrastructure 
assets and have increasingly been treated as a distinct investment class over 
the past decades Yu (2020). The global aviation sector supports roughly US$4.1 
trillion in economic activity at about 3.9% of world GDP and involves 86.5 
million jobs worldwide Economics and Group (2024). Their values are shaped 
not only by technical aging and maintenance cycles, but also by 
macroeconomic forces, regulatory environments, and shifts in airline business 
models. With more than half of the global fleet leased rather than owned, 
accurate valuation has become central to managing residual value risk, 
structuring financing arrangements, and pricing leases. Yu (2020) emphasizes 
that appraisal values are provided by independent third parties under 
standardized definitions, but they remain sensitive to prevailing mar- ket 
conditions and assumptions about future use. This dual role of aircraft as both 
physical operating assets and financial instruments underscores the 
importance of robust, data-driven approaches to analyzing depreciation and 
value dynamics. 

Machine learning offers powerful tools for modeling depreciation because 
it can capture non-linear patterns, incorporate heterogeneous data sources, 
and adapt to structural changes over time.  Ye et al. (2024) highlight how ML 
methods ranging from supervised learning and ensemble approaches to deep 
neural networks, graph-based models, and reinforcement learning have 
transformed asset pricing by improving prediction accuracy and enabling 
dynamic adaptation to changing market conditions. These same advantages 
are relevant for aircraft depreciation modeling, where asset values depend on 
complex interactions among technical, operational, and macroeconomic 
variables. 

In this paper, we apply these capabilities by building Rolling origin fore- 
casting models of narrow-body aircraft current market value. We evaluate 
both regularized linear models and ensemble learning methods, finding that 
gradient boosting delivers the most stable out-of-sample accuracy across 
Boeing and Airbus variants. By incorporating appraisal-standard features such 
as age, delivery year, and variant identifiers alongside macroeconomic drivers 
including CPI, jet fuel price, interest rates, and traffic indices, our framework 
produces depreciation surfaces that capture price changes across varying 
market conditions and different points in time. 

We use a feature set that combines both lifecycle and macroeconomic 
drivers of aircraft value. Appraisal-standard characteristics such as age, 
delivery year, and variant identifiers are included to capture the orderly 
progression of depreciation across vintages, as emphasized by industry 
analyses of market value determinants (Ackert, 2012). To account for external 
influences, we incorporate macroeconomic variables such as consumer price 
index (CPI), jet fuel price, interest rates, and traffic indices, which have been 
shown to fundamentally shape operating costs and residual values (Gordon, 
1990). By integrating these intrinsic and extrinsic factors, our framework 
provides a comprehensive basis for modeling aircraft depreciation dynamics. 
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2. Literature review  
Nelson & Caputo (1997) examined depreciation dynamics in single -and 

twin-engine aircraft, showing that both deterioration and depreciation rates 
respond systematically to economic factors such as liability costs and 
maintenance expenses, rather than being constant exogenous parameters. 
Their findings highlight the importance of treating depreciation as an 
endogenous process, aligning with our manuscript’s focus on modeling 
aircraft value tra- jectories using data-driven approaches that incorporate 
market and macroe- conomic influences. Geursen et al. (2023) applied an 
Advantage Actor–Critic (A2C) reinforcement learning algorithm to airline 
fleet planning, explicitly modeling demand and fuel price uncertainty. 

Vasigh et al. (2020) proposed a modified discounted cash flow (DCF) 
framework to capture both revenue and cost dynamics in aircraft valuation, 
demonstrating that passenger yield, maintenance, and fuel costs exert the 
greatest influence on asset values. Their sensitivity analysis using Monte Carlo 
simulations underscores how valuation outcomes vary with economic 
fluctuations, which complements our focus on data-driven forecasting 
approaches that integrate lifecycle depreciation patterns and macroeconomic 
factors. Earlier perspectives on financial evaluation emphasized direct 
operating cost comparisons and net present value analysis, but also 
highlighted the limitations of these methods in capturing residual value risk 
and flexibility Gibson & Morrell (2004). More recent modeling has explicitly 
incorpo- rated depreciation costs in optimization frameworks for fleet 
planning. For instance, Chen et al. (2018) propose a mathematical 
programming model for airlines that evaluates operating leases, capital leases, 
and purchases under budget and debt constraints, showing how depreciation 
affects acquisition strategies. 

Gilligan (2004) investigated adverse selection in the used business aircraft 
market, showing that depreciation rates are proportional to trading volumes 
for less reliable brands, consistent with the classic “lemons” problem. Impor- 
tantly, the study highlights how leasing arrangements mitigate asymmetric 
information by increasing the average quality of aircraft entering the resale 
market. These findings complement our manuscript’s emphasis on modeling 
aircraft values under heterogeneous market conditions, where both 
information frictions and institutional mechanisms influence observed 
depreciation trajectories. Recent studies have also examined how regulatory 
changes (e.g., IFRS 16) and fluctuations in demand, interest rates, and 
exchange rates af- fect aircraft acquisition strategies Chen & Wu (2023). 

Bergmann & Feuerriegel (2025) advanced resale value prediction by 
incorporating highly granular vehicle equipment information into machine 
learning models, demonstrating a statistically significant improvement in 
accuracy. Their use of automated feature engineering and explainability 
techniques (e.g., SHAP values) highlights how nuanced asset characteristics 
can enhance model interpretability and business decision-making. These 
insights are directly relevant to our aircraft valuation study, where 
incorporating detailed technical and usage attributes may likewise improve 
predictive per- formance beyond standard depreciation models. 
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3. Methodology 
3.1. Current fair market value (CFMV) 

A clear definition of CFMV is essential to ensure consistency and 
comparability across aircraft appraisals, financial modeling, and regulatory 
reporting. Establishing this definition provides the foundation for our 
analysis and allows us to align predictive modeling with industry-standar d 
appraisal practices. We follow the ISTAT standard. 

Definition 3.1 (Current Fair Market Value).  Current Fair Market Value 
is the appraiser’s opinion of the most likely trading price that may be 
generated for an aircraft under the market circumstances that are 
perceived to exist at the time in question. Market Value assumes that the 
aircraft is valued for its highest, best use, that the parties to the 
hypothetical sale transaction are willing, able, prudent and knowledgeable 
and under no unusual pressure for a prompt sale and that the transaction 
would be negotiated in an open and unrestricted market on an arm’s 
length basis, for cash or equivalent consideration and given an adequate 
amount of time for effective exposure to prospective buyers Yu (2020). 

A formal appraisal seeks to provide a CFMV. Appraising an aircraft is 
essential to establish its value for transactions such as sales, leases, and 
loan collateral, as well as for determining residual insurance required and 
lease rates. It also provides a reliable basis for fleet valuation in mergers or 
bankruptcies, property tax assessments, and values acceptable to tax 
authorities for contributions to entities such as aviation schools and 
museums. 

Market value is typically determined through appraisal-based methods 
that consider recent comparable transactions, adjustments for aircraft age, 
maintenance condition, and economic environment. Appraisers rely on 
stan- dardized definitions and valuation approaches, including cost, 
income, and market comparison methods, to provide consistent 
benchmarks across aircraft types. These approaches ensure that market 
value reflects both technical asset characteristics and prevailing 
macroeconomic conditions, as em- phasized in Section 5.2.2 of Yu (2020). 
 

3.2. Data and features 
We use year-frequency observations aligned by delivery year and target 

year for multiple narrow-body variants. Table 1 summarizes the features 
used in our models, grouped by category. Prior research confirms that 
technical aircraft characteristics such as seating capacity, range, and 
performance measures are strong determinants of market value Plötner et 
al. (2012). Similarly, hedonic analyses of aviation externalities show that 
estimated values can vary significantly depending on methodology, as 
highlighted in a meta- analysis of aircraft valuation noise Schipper et al. 
(1998). Feature importance scores were extracted from XGBoost gain 
metrics. To ensure transparency in our machine learning models, we apply 
SHAP analysis to interpret feature contributions. This aligns with best 
practices outlined by Ponce-Bobadilla et al. (2024). 

The dataset contains nearly 200,000 observations. Key attributes 
include aircraft descriptors such as Body Type, Manufacturer, Plane Type, 
Sub-Type, and Year of Delivery. For example, a narrow-body airplane 
refers to a single aisle aircraft, typically seating between 100 and 240 
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passengers and designed for short to medium-haul flights. The dataset 
spans a broad historical window, covering aircraft values from 1995 
through 2020. Within this period, it captures market information for a 
wide range of aircraft, totaling 171 unique narrow-body plane types. Types 
chosen for analysis, Airbus A321-200, Boeing 737-700, and Boeing 737-800 
are particularly well represented. Each of these types contributes on the 
order of 10 000 data points, providing robust samples for analysis. 

Macro indicators are sourced from public series: CPI, jet fuel/crude, and 
the 10-year rate from FRED, and air-traffic indices from ICAO (Federal 
Reserve Bank of St. Louis, 2025a, b, c; International Civil Aviation 
Organization, 2025). CFMV values are reported in millions (USD). 

We aggregated aircraft valuation panels from IBA Group, Collateral 
Ver- ifications LLC and BK Associates, and standardized them to a 
common schema (types, units, and time alignment). We then applied 
cleaning and data-quality checks for completeness, validity,  
range/consistency rules, and referential integrity; missing or inconsistent 
fields were corrected where possible using crosssource reconciliation. 
Outliers were identified via interquartile range (IQR) and removed from 
the aircraft price data to mitigate the influence of transactions driven by 
extraordinary circumstances (e.g., distressed sales, lease restructurings, or 
atypical market shocks) that do not reflect underlying market value 
dynamics. Finally, the sources were time-aligned and joined on canonical 
identifiers, and duplicate records were resolved using joins. 
 
Table 1. Feature set used for rolling-origin evaluation, after feature engineering. 

XGBoost column reports grouped total-gain share %. SHAP column shows grouped 
mean |SHAP|. 

Feature Description XGBoost Importance SHAP 

Categorical (encoded)    

Manufacturer Aircraft manufacturer (e.g., Boeing, Airbus) 0.330 1.003 
Family  Aircraft family (e.g., 737, A320)  5.175 0.602 
Plane type Official type category (e.g., narrow-body) 1.899 2.776 

Subtype Subclassification of type 22.297 0.593 
Age / Cohort    

Age (years) Effective age in years 1.050 2.443 

Age2 Curvature term for depreciation 2.312 1.463 
Age bucket Coarse age grouping (e.g., 0–5, 6–10) 1.132 0.761 
Delivery year Year the aircraft was delivered < 0.05 0.571 

Temporal / PIT alignment    

Calendar year Year of observation 3.621 0.330 
Month/Year source Month/Year of the data source 7.446 1.982 

Target    

CFMV Current Market Value   

External Macros (yearly)    

CPI Consumer Price Index 1.527 0.091 
Jet fuel price Energy / crude proxy < 0.05 < 0.05 

10-year rate U.S. 10-year Treasury yield < 0.05 < 0.05 
Air traffic index ICAO air transport traffic index < 0.05 < 0.05 

 
Table 1 shows that subtype identifiers and age contribute the largest 

predictive power, while cohort features capture the non-linear progression 
of depreciation. XGBoost importance reflects the relative contribution of 
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each feature to model gain, while SHAP values quantify the average 
marginal impact of each feature on individual predictions. Overall, 
technical aircraft characteristics dominate the prediction of market values, 
with macro variables having relatively low predictive power. 
 

3.3. Performance evaluation 
To assess the predictive accuracy of the proposed models, we employ 

two primary performance metrics: the coefficient of determination (R2) 
and the Mean Absolute Percentage Error (MAPE), as they are widely 
applied in recent aviation machine learning studies to jointly capture 
explanatory power and relative forecast accuracy Szrama & Lodygowski 
(2024). These metrics capture complementary aspects of model 
performance. R2 measures the proportion of variance in the target variable 
explained by the model, thereby indicating goodness-of-fit, while MAPE 
quantifies the relative size of prediction errors, offering an intuitive 
percentage-based interpretation of accuracy. 

The R2 statistic is defined as: 
 

𝑅2 = 1 −
∑ (𝑦𝑖 − ŷ𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑖 − ȳ ) 2𝑁
𝑖=1

 

 
where yi denotes the observed value, ŷi the predicted value, ȳ the mean of 
observed values, and N the number of samples. An R2 close to 1 indicates 
that the model explains most of the variation in the data, while lower or 
negative values reflect poor explanatory power. 
 

𝑀𝐴𝑃𝐸 =
100

N
∑|

𝑦𝑖 −ŷ𝑖
𝑦𝑖

|

𝑁

𝑖=1

 

 
This metric is scale-independent and particularly useful for expressing 
forecasting accuracy in financial and asset valuation contexts. 
 

3.4. Models 
We evaluate regularized linear baselines (ridge, elastic net) and 

ensemble trees (random forest, gradient boosting, XGBoost, LightGBM) 
with version-safe early stopping for boosters. XGBoost consistently 
delivered the strongest predictive performance, with lower mean errors 
and greater stability across aircraft variants compared to all other models. 
In the remainder of this paper, we focus on reporting the XGBoost results, 
including its forecasting accuracy and interpretability analysis. 
 

3.5. Rolling-origin evaluation 
While our study applies rolling-origin forecasting with ensemble 

learning, prior work on loan and lease modeling emphasizes Monte Carlo 
simulation of defaults, value shocks, and interest rate fluctuations 
Hallerstrom (2020). 

Model performance was assessed using a rolling origin evaluation 
framework, which mirrors real-world forecasting conditions by 
progressively updating the training window over time. Under this design, 
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the model is initially trained on all observations available up to a chosen 
cutoff year and subsequently evaluated on the immediately following 
period. The cutoff is then advanced sequentially, with the model retrained 
and retested at each step. A minimum of 5 years of historical data was 
required for each evaluation. The training window was advanced in 
increments of 1 year and forecasts were 3 years ahead. 

To ensure the validity of our predictive modeling framework, we 
applied the Cramé–von Mises two-sample test as described in Erlemann 
(2021) to compare the training and test datasets. This nonparametric 
goodness-of-fit procedure evaluates whether two samples are drawn from 
the same under- lying distribution. By confirming distributional similarity 
between training and test subsets, we mitigate the risk of model bias due 
to covariate shift and ensure that performance metrics reflect genuine 
generalization rather than artifacts of sampling imbalance. 
 

 
Figure 1. Rolling origin evaluation: the training window expands forward in time, 

and the fixed size test set is rolled forward by 1 year. 

 

4. Results 
4.1. Model accuracy 

Figure 2 presents rolling-origin forecasting results for CFMV at a 
prediction horizon of H = 3 across the Airbus A321-200, Boeing 737-700, 
and Boeing 737-800. For the A321-200, the mean absolute percentage error 
(MAPE) rises from approximately 3% in 2005 to above 5% in 2007, before 
stabilizing around 4–4.5%. The 737-700 achieves the lowest initial error 
(just over 2%), peaks at roughly 4.8% in 2007–2008, and then remains in 
the 4–4.6% range. The 737-800 shows an increase from 2.2% in 2005 to 
nearly 5% in 2009, followed by a decline to about 3.5% by 2012. 

Turning to R2, the A321-200 improves steadily from 82% in 2005 to more 
than 94% by 2012. The 737-700 starts near 93%, declines to below 82% in 
2007, but subsequently recovers to 93% by 2012. The 737-800 demonstrates 
consistent gains, moving from 91% in 2005 to over 95% by 2012. Overall, 
performance improves with the length of the training window, with all 
three variants ultimately achieving R2 > 93% and MAPE below 5%. 
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Figure 2. CFMV rolling-origin evaluation. Top graph shows MAPE (%) vs. train-

end year and bottom graph shows R2 (%). Legend uses official plane type and 
variant. 

 

4.2. Example 
Figure 3 indicates that prediction errors are small across all three 

variants, generally within 1 unit of CFMV. The Airbus A321-200 shows 
consistent overpredictions, with errors increasing toward 2015. The Boeing 
737-700 alternates between minor over- and underpredictions, reflecting 
balanced accuracy overall. In contrast, the Boeing 737-800 tends to be 
modestly underpredicted in the later years, though errors remain stable 
and limited. Since the models were trained on data from 2005–2012 and 
evaluated on the 2013–2015 horizon, these results demonstrate that the 
framework captures depreciation dynamics consistently while 
maintaining only minor variant-specific biases in the out-of-sample 
period. 
 

 
Figure 3. Residuals for 2013–2015 by variant. Positive bars indicate overprediction; 

negative bars indicate underprediction. 
 

4.3. Depreciation Surface 
A depreciation surface is a two-dimensional representation of how asset 

values decline jointly with age and calendar time. It visualizes annual 
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depreciation rates across both lifecycle effects and market effects, as 
economic or industry conditions change over years. By combining these 
dimensions, the surface highlights how technical aging and external 
shocks together shape the trajectory of fair market values. 

Figure 4 presents the depreciation surface for Boeing 737-700 aircraft, 
showing the evolution of annual depreciation rates as a function of both 
aircraft age and observation year. The color gradient highlights lifecycle 
and market dynamics: younger aircraft (0–5 years) experience relatively 
modest depreciation in the 4–6% range, while mid-life aircraft (6–15 years) 
depreciate more steeply, often between 6–8%. Older aircraft exhibit the 
highest rates, exceeding 8% annually, reflecting diminished market 
demand and increasing maintenance costs. Time-dependent variation is 
also evident, with lower depreciation observed during market downturns 
(e.g., 2008–2009) and sharper declines during periods of oversupply, 
notably post-2020. The dashed line marks the start of the forecasting 
horizon, where projected depreciation rates remain elevated due to 
continued fleet replacement pressures and limited secondary market 
resilience. 
 

 
Figure 4. Annual Depreciation Rates of Boeing 737-700 Aircraft Across Age and 

Observation Years. 
 

Figure 5 shows the depreciation surface for Boeing 737-800 aircraft, 
illustrating annual depreciation rates across aircraft age and observation 
year. Similar to the 737-700, younger aircraft (0–5 years) depreciate more 
gradually, while mid-life and older aircraft experience steeper declines. 
Timedependent patterns highlight periods of accelerated depreciation, 
particularly after 2010, followed by stabilization in later years. The dashed 
line again denotes the start of the forecasting horizon, with depreciation 
remaining elevated due to sustained replacement pressures from next-
generation aircraft. Compared to the 737-700 (Figure 4), the 737-800 
exhibits less extreme volatility across market cycles and maintains lower 
depreciation rates at mid-life ages. This reflects the stronger and more 
enduring market demand for the 737-800, which benefited from larger 
operator bases and greater alignment with fleet replacement strategies. 
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Figure 5. Annual Depreciation Rates of Boeing 737-800 Aircraft Across Age and 

Observation Years. 
 

5. Conclusion 
This study demonstrates the effectiveness of machine learning, and 

gradient boosting in particular, for forecasting aircraft current market 
values. Using a rolling-origin evaluation framework, the models achieved 
stable accuracy across Airbus and Boeing narrow-body variants, with mean 
MAPE below 5% and R2 values near 0.90. While technical features such as 
age, subtype, and cohort were the dominant drivers of predictive power, 
incorporating macroeconomic indicators provided little predictive power. 
The results confirm that aircraft depreciation is shaped mostly by lifecycle 
dynamics, and that modern ensemble methods can capture these 
interactions with high reliability. These insights support the use of machine 
learning for valuation, lease structuring, and risk management, and the 
findings are consistent with prior aviation valuation and fleet economics 
literature that emphasizes lifecycle effects and replacement dynamics (Yu, 
2020; Bazargan & Hartman, 2012).  

Depreciation modeling has important implications for lessors, investors, 
and airlines, as more accurate forecasts of aircraft values can improve lease 
structuring, risk management, and capital planning. By quantifying 
depreciation trajectories with high out-of-sample accuracy, our framework 
provides a data-driven complement to traditional appraisal practices, 
enhancing transparency and decision-making in aircraft finance. Future 
work could extend this approach by incorporating higher-frequency 
transaction data, exploring the role of maintenance and utilization patterns 
in greater detail. Also, future research could expand depreciation modeling 
to fully integrate aircraft financing frameworks, linking asset value forecasts 
with lease structures, debt service, and equity returns. Such an approach 
would connect depreciation dynamics with airline revenue generation and 
cash flow capacity, offering a holistic view of how asset values interact with 
financing decisions and profitability. 
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