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Abstract. Accurate forecasting of aircraft depreciation is critical for valuation, leas-
ing, and risk management in aviation. Traditional appraisal and cost-based
approaches often fail to capture the nonlinear effects of market cycles and
macroeconomic conditions. This study applies machine learning to predict the
current fair market value (CFMV) of Airbus and Boeing narrow-body air- craft using
arolling-origin evaluation framework. The feature set integrates appraisal-standard
variables (age, delivery year, subtype) with macroeco- nomic indicators such as the
consumer price index, jet fuel price, interest rates, and air traffic indices. We
benchmark regularized linear models against ensemble methods, finding that
gradient boosting (XGBoost) consistently de- livers the strongest performance,
achieving mean absolute percentage error (MAPE) below 5% and R? near o.9o.
Residual analysis confirms stable accu- racy across aircraft types, while depreciation
surface visualizations illustrate how lifecycle aging and market shifts interact to
shape values. Results in- dicate that lifecycle and technical characteristics dominate
predictive power. These findings demonstrate the potential of machine learning to
enhance traditional appraisal practices.

Keywords. Aircraft valuation; Depreciation modeling; Rolling-origin forecasting;
Gradient boosting; Aviation finance.
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1. Introduction
ccurate modeling of aircraft depreciation is essential for understanding
asset values and structuring financing arrangements in the aviation
industry. Aircraft depreciation is ultimately linked to customer
demand, since willingness to pay for air travel shapes airline revenues,
which in turn determines fleet utilization, residual values, and long-run
depreciation patterns Buchmann (2025). Since more than half of the global
commercial fleet is leased rather than owned outright, residual value risk has
become a defining factor in both operating and financial lease contracts.
Recent reviews emphasize that depreciation is not only a technical
consideration but also a strategic financial variable that shapes industry
dynamics and contract negotiations Wandelt et al. (2023). Rode et al. (2002)
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show that uncertainty in residual values is the greatest risk to lessors in lease
financing, and that even small misestimations of depreciation curves can lead
to large financial losses. Cost estimation and valuation models for aircraft are
often decades old and require reevaluation for modern conditions Shahriar et
al. (2022).

Aircraft represent one of the largest categories of transport infrastructure
assets and have increasingly been treated as a distinct investment class over
the past decades Yu (2020). The global aviation sector supports roughly US$4.1
trillion in economic activity at about 3.9% of world GDP and involves 86.5
million jobs worldwide Economics and Group (2024). Their values are shaped
not only by technical aging and maintenance cycles, but also by
macroeconomic forces, regulatory environments, and shifts in airline business
models. With more than half of the global fleet leased rather than owned,
accurate valuation has become central to managing residual value risk,
structuring financing arrangements, and pricing leases. Yu (2020) emphasizes
that appraisal values are provided by independent third parties under
standardized definitions, but they remain sensitive to prevailing mar- ket
conditions and assumptions about future use. Thisdualrole of aircraftas both
physical operating assets and financial instruments underscores the
importance of robust, data-driven approaches to analyzing depreciation and
value dynamics.

Machine learning offers powerful tools for modeling depreciation because
it can capture non-linear patterns, incorporate heterogeneous data sources,
and adapt to structural changes over time. Ye et al. (2024) highlight how ML
methods ranging from supervised learning and ensemble approaches to deep
neural networks, graph-based models, and reinforcement learning have
transformed asset pricing by improving prediction accuracy and enabling
dynamic adaptation to changing market conditions. These same advantages
are relevant for aircraft depreciation modeling, where asset values depend on
complex interactions among technical, operational, and macroeconomic
variables.

In this paper, we apply these capabilities by building Rolling origin fore-
casting models of narrow-body aircraft current market value. We evaluate
both regularized linear models and ensemble learning methods, finding that
gradient boosting delivers the most stable out-of-sample accuracy across
Boeing and Airbusvariants. By incorporating appraisal-standard features such
as age, delivery year, and variant identifiers alongside macroeconomic drivers
including CPI, jet fuel price, interest rates, and traffic indices, our framework
produces depreciation surfaces that capture price changes across varying
market conditions and different points in time.

We use a feature set that combines both lifecycle and macroeconomic
drivers of aircraft value. Appraisal-standard characteristics such as age,
delivery year, and variant identifiers are included to capture the orderly
progression of depreciation across vintages, as emphasized by industry
analyses of market value determinants (Ackert, 2012). To account for external
influences, we incorporate macroeconomic variables such as consumer price
index (CPI), jet fuel price, interest rates, and traffic indices, which have been
shown to fundamentally shape operating costs and residual values (Gordon,
1990). By integrating these intrinsic and extrinsic factors, our framework
provides a comprehensive basis for modeling aircraft depreciation dynamics.
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2. Literature review

Nelson & Caputo (1997) examined depreciation dynamics in single -and
twin-engine aircraft, showing that both deterioration and depreciation rates
respond systematically to economic factors such as liability costs and
maintenance expenses, rather than being constant exogenous parameters.
Their findings highlight the importance of treating depreciation as an
endogenous process, aligning with our manuscript’s focus on modeling
aircraft value tra- jectories using data-driven approaches that incorporate
market and macroe- conomic influences. Geursen et al. (2023) applied an
Advantage Actor-Critic (A2C) reinforcement learning algorithm to airline
fleet planning, explicitly modeling demand and fuel price uncertainty.

Vasigh et al. (2020) proposed a modified discounted cash flow (DCF)
framework to capture both revenue and cost dynamics in aircraft valuation,
demonstrating that passenger yield, maintenance, and fuel costs exert the
greatest influence on asset values. Their sensitivity analysis using Monte Carlo
simulations underscores how valuation outcomes vary with economic
fluctuations, which complements our focus on data-driven forecasting
approaches that integrate lifecycle depreciation patterns and macroeconomic
factors. Earlier perspectives on financial evaluation emphasized direct
operating cost comparisons and net present value analysis, but also
highlighted the limitations of these methods in capturing residual value risk
and flexibility Gibson & Morrell (2004). More recent modeling has explicitly
incorpo- rated depreciation costs in optimization frameworks for fleet
planning. For instance, Chen et al. (2018) propose a mathematical
programming model for airlines that evaluates operating leases, capital leases,
and purchases under budget and debt constraints, showing how depreciation
affects acquisition strategies.

Gilligan (2004) investigated adverse selection in the used business aircraft
market, showing that depreciation rates are proportional to trading volumes
for less reliable brands, consistent with the classic “lemons” problem. Impor-
tantly, the study highlights how leasing arrangements mitigate asymmetric
information by increasing the average quality of aircraft entering the resale
market. These findings complement our manuscript’s emphasis on modeling
aircraft values under heterogeneous market conditions, where both
information frictions and institutional mechanisms influence observed
depreciation trajectories. Recent studies have also examined how regulatory
changes (e.g., IFRS 16) and fluctuations in demand, interest rates, and
exchange rates af- fect aircraft acquisition strategies Chen & Wu (2023).

Bergmann & Feuerriegel (2025) advanced resale value prediction by
incorporating highly granular vehicle equipment information into machine
learning models, demonstrating a statistically significant improvement in
accuracy. Their use of automated feature engineering and explainability
techniques (e.g., SHAP values) highlights how nuanced asset characteristics
can enhance model interpretability and business decision-making. These
insights are directly relevant to our aircraft valuation study, where
incorporating detailed technical and usage attributes may likewise improve
predictive per- formance beyond standard depreciation models.
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3. Methodology

3.1. Current fair market value (CFMV)

A clear definition of CFMV is essential to ensure consistency and
comparability across aircraft appraisals, financial modeling, and regulatory
reporting. Establishing this definition provides the foundation for our
analysis and allows us to align predictive modeling with industry-standard
appraisal practices. We follow the ISTAT standard.

Definition 3.1 (Current Fair Market Value). Current Fair Market Value
is the appraiser’s opinion of the most likely trading price that may be
generated for an aircraft under the market circumstances that are
perceived to exist at the time in question. Market Value assumes that the
aircraft is valued for its highest, best use, that the parties to the
hypothetical sale transaction are willing, able, prudent and knowledgeable
and under no unusual pressure for a prompt sale and that the transaction
would be negotiated in an open and unrestricted market on an arm’s
length basis, for cash or equivalent consideration and given an adequate
amount of time for effective exposure to prospective buyers Yu (2020).

A formal appraisal seeks to provide a CFMV. Appraising an aircraft is
essential to establish its value for transactions such as sales, leases, and
loan collateral, as well as for determining residual insurance required and
lease rates. It also provides a reliable basis for fleet valuation in mergers or
bankruptcies, property tax assessments, and values acceptable to tax
authorities for contributions to entities such as aviation schools and
museums.

Market value is typically determined through appraisal-based methods
that consider recent comparable transactions, adjustments for aircraft age,
maintenance condition, and economic environment. Appraisers rely on
stan- dardized definitions and valuation approaches, including cost,
income, and market comparison methods, to provide consistent
benchmarks across aircraft types. These approaches ensure that market
value reflects both technical asset characteristics and prevailing
macroeconomic conditions, as em- phasized in Section 5.2.2 of Yu (2020).

3.2. Data and features

We use year-frequency observations aligned by delivery year and target
year for multiple narrow-body variants. Table 1 summarizes the features
used in our models, grouped by category. Prior research confirms that
technical aircraft characteristics such as seating capacity, range, and
performance measures are strong determinants of market value Plotner et
al. (2012). Similarly, hedonic analyses of aviation externalities show that
estimated values can vary significantly depending on methodology, as
highlighted in a meta- analysis of aircraft valuation noise Schipper et al.
(1998). Feature importance scores were extracted from XGBoost gain
metrics. To ensure transparency in our machine learning models, we apply
SHAP analysis to interpret feature contributions. This aligns with best
practices outlined by Ponce-Bobadilla et al. (2024).

The dataset contains nearly 200,000 observations. Key attributes
include aircraft descriptors such as Body Type, Manufacturer, Plane Type,
Sub-Type, and Year of Delivery. For example, a narrow-body airplane
refers to a single aisle aircraft, typically seating between 100 and 240
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passengers and designed for short to medium-haul flights. The dataset
spans a broad historical window, covering aircraft values from 1995
through 2020. Within this period, it captures market information for a
wide range of aircraft, totaling 171 unique narrow-body plane types. Types
chosen for analysis, Airbus A321-200, Boeing 737-700, and Boeing 737-800
are particularly well represented. Each of these types contributes on the
order of 10 ooo data points, providing robust samples for analysis.

Macro indicators are sourced from public series: CPI, jet fuel/crude, and
the 10-year rate from FRED, and air-traffic indices from ICAO (Federal
Reserve Bank of St. Louis, 2025a, b, ¢; International Civil Aviation
Organization, 2025). CFMV values are reported in millions (USD).

We aggregated aircraft valuation panels from IBA Group, Collateral
Ver- ifications LLC and BK Associates, and standardized them to a
common schema (types, units, and time alignment). We then applied
cleaning and data-quality checks for completeness, validity,
range/consistency rules, and referential integrity; missing or inconsistent
fields were corrected where possible using crosssource reconciliation.
Outliers were identified via interquartile range (IQR) and removed from
the aircraft price data to mitigate the influence of transactions driven by
extraordinary circumstances (e.g., distressed sales, lease restructurings, or
atypical market shocks) that do not reflect underlying market value
dynamics. Finally, the sources were time-aligned and joined on canonical
identifiers, and duplicate records were resolved using joins.

Table 1. Feature set used for rolling-origin evaluation, after feature engineering.
XGBoost column reports grouped total-gain share %. SHAP column shows grouped
mean |SHAP).

Feature Description XGBoost Importance ~ SHAP
Categorical (encoded)

Manufacturer Aircraft manufacturer (e.g., Boeing, Airbus) 0.330 1.003
Family Aircraft family (e.g., 737, A320) 5.175 0.602
Plane type Official type category (e.g., narrow-body) 1.899 2.776
Subtype Subclassification of type 22.297 0.593
Age / Cohort

Age (years) Effective age in years 1.050 2.443
Age? Curvature term for depreciation 2.312 1.463
Age bucket Coarse age grouping (e.g., 0-5, 6-10) 1132 0.761
Delivery year Year the aircraft was delivered < 0.05 0.571
Temporal / PIT alignment

Calendar year Year of observation 3.621 0.330
Month/Year source Month/Year of the data source 7.446 1.982
Target

CFMV Current Market Value

External Macros (yearly)

CPI Consumer Price Index 1.527 0.001
Jet fuel price Energy / crude proxy < 0.05 < 0.05
10-year rate U.S. 10-year Treasury vyield < 0.05 < 0.05
Air traffic index ICAO air transport traffic index < 0.05 < 0.05

Table 1 shows that subtype identifiers and age contribute the largest
predictive power, while cohort features capture the non-linear progression
of depreciation. XGBoost importance reflects the relative contribution of

D. Yuet al, JITKE, March 2026, 2(1), e-2705

5



Journal of Innovation, Technology and Knowledge Economy
each feature to model gain, while SHAP values quantify the average
marginal impact of each feature on individual predictions. Overall,
technical aircraft characteristics dominate the prediction of market values,
with macro variables having relatively low predictive power.

3.3. Performance evaluation

To assess the predictive accuracy of the proposed models, we employ
two primary performance metrics: the coefficient of determination (R?)
and the Mean Absolute Percentage Error (MAPE), as they are widely
applied in recent aviation machine learning studies to jointly capture
explanatory power and relative forecast accuracy Szrama & Lodygowski
(2024). These metrics capture complementary aspects of model
performance. R*>measures the proportion of variance in the target variable
explained by the model, thereby indicating goodness-of-fit, while MAPE
quantifies the relative size of prediction errors, offering an intuitive
percentage-based interpretation of accuracy.

The R> statistic is defined as:

B Z?’=1(3’i_§’i) 2
Z?’:l(}’i—}_’ ) 2

Rz =1

where y; denotes the observed value, j; the predicted value, ythe mean of
observed values, and N the number of samples. An R? close to 1 indicates
that the model explains most of the variation in the data, while lower or
negative values reflect poor explanatory power.

N
100
N

i=1

MAPE = y"_y"|

Vi

This metric is scale-independent and particularly useful for expressing
forecasting accuracy in financial and asset valuation contexts.

3.4. Models

We evaluate regularized linear baselines (ridge, elastic net) and
ensemble trees (random forest, gradient boosting, XGBoost, LightGBM)
with version-safe early stopping for boosters. XGBoost consistently
delivered the strongest predictive performance, with lower mean errors
and greater stability across aircraft variants compared to all other models.
In the remainder of this paper, we focus on reporting the XGBoost results,
including its forecasting accuracy and interpretability analysis.

3.5. Rolling-origin evaluation

While our study applies rolling-origin forecasting with ensemble
learning, prior work on loan and lease modeling emphasizes Monte Carlo
simulation of defaults, value shocks, and interest rate fluctuations
Hallerstrom (2020).

Model performance was assessed using a rolling origin evaluation
framework, which mirrors real-world forecasting conditions by
progressively updating the training window over time. Under this design,

D. Yuet al, JITKE, March 2026, 2(1), e-2705



Journal of Innovation, Technology and Knowledge Economy
the model is initially trained on all observations available up to a chosen
cutoff year and subsequently evaluated on the immediately following
period. The cutoff is then advanced sequentially, with the model retrained
and retested at each step. A minimum of 5 years of historical data was
required for each evaluation. The training window was advanced in
increments of 1 year and forecasts were 3 years ahead.

To ensure the validity of our predictive modeling framework, we
applied the Cramé-von Mises two-sample test as described in Erlemann
(2021) to compare the training and test datasets. This nonparametric
goodness-of-fit procedure evaluates whether two samples are drawn from
the same under- lying distribution. By confirming distributional similarity
between training and test subsets, we mitigate the risk of model bias due
to covariate shift and ensure that performance metrics reflect genuine
generalization rather than artifacts of sampling imbalance.

Split 1 Train Test E E E
Split 2 Train Test i i !
Split 3 Train Test i i
Split N | Train | Test

6 7 &8 9 10 N +4 Dataend

ar --

Data start

Figure 1. Rolling origin evaluation: the training window expands forward in time,
and the fixed size test set is rolled forward by 1 year.

4. Results
41. Model accuracy

Figure 2 presents rolling-origin forecasting results for CFMV at a
prediction horizon of H = 3 across the Airbus A321-200, Boeing 737-700,
and Boeing 737-800. For the A321-200, the mean absolute percentage error
(MAPE) rises from approximately 3% in 2005 to above 5% in 2007, before
stabilizing around 4-4.5%. The 737-700 achieves the lowest initial error
(just over 2%), peaks at roughly 4.8% in 2007-2008, and then remains in
the 4-4.6% range. The 737-800 shows an increase from 2.2% in 2005 to
nearly 5% in 2009, followed by a decline to about 3.5% by 2012.

Turning to R?, the A321-200 improves steadily from 82% in 2005 to more
than 94% by 2012. The 737-700 starts near 93%, declines to below 82% in
2007, but subsequently recovers to 93% by 2012. The 737-800 demonstrates
consistent gains, moving from 91% in 2005 to over 95% by 2012. Overall,
performance improves with the length of the training window, with all
three variants ultimately achieving R* > 93% and MAPE below 5%.
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Figure 2. CFMV rolling-origin evaluation. Top graph shows MAPE (%) vs. train-
end year and bottom graph shows R? (%). Legend uses official plane type and
variant.

4.2. Example

Figure 3 indicates that prediction errors are small across all three
variants, generally within 1 unit of CFMV. The Airbus A321-200 shows
consistent overpredictions, with errors increasing toward 2015. The Boeing
737-700 alternates between minor over- and underpredictions, reflecting
balanced accuracy overall. In contrast, the Boeing 737-800 tends to be
modestly underpredicted in the later years, though errors remain stable
and limited. Since the models were trained on data from 2005-2012 and
evaluated on the 2013-2015 horizon, these results demonstrate that the
framework captures depreciation dynamics consistently while
maintaining only minor variant-specific biases in the out-of-sample
period.

\ l0A321-20000737-70000737-800

I i
=
=
o
: 0 EID= D _
g DD ]
=
1L i
20‘13 iZOI'L—l 20‘13
Year

Figure 3. Residuals for 2013-2015 by variant. Positive bars indicate overprediction;
negative bars indicate underprediction.

4.3. Depreciation Surface
A depreciation surface is a two-dimensional representation of how asset
values decline jointly with age and calendar time. It visualizes annual
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depreciation rates across both lifecycle effects and market effects, as
economic or industry conditions change over years. By combining these
dimensions, the surface highlights how technical aging and external
shocks together shape the trajectory of fair market values.

Figure 4 presents the depreciation surface for Boeing 737-700 aircraft,
showing the evolution of annual depreciation rates as a function of both
aircraft age and observation year. The color gradient highlights lifecycle
and market dynamics: younger aircraft (o-5 years) experience relatively
modest depreciation in the 4-6% range, while mid-life aircraft (6-15 years)
depreciate more steeply, often between 6-8%. Older aircraft exhibit the
highest rates, exceeding 8% annually, reflecting diminished market
demand and increasing maintenance costs. Time-dependent variation is
also evident, with lower depreciation observed during market downturns
(e.g., 2008-2009) and sharper declines during periods of oversupply,
notably post-2020. The dashed line marks the start of the forecasting
horizon, where projected depreciation rates remain elevated due to
continued fleet replacement pressures and limited secondary market
resilience.
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Figure 4. Annual Depreciation Rates of Boeing 737-700 Aircraft Across Age and
Observation Years.

Figure 5 shows the depreciation surface for Boeing 737-800 aircraft,
illustrating annual depreciation rates across aircraft age and observation
year. Similar to the 737-700, younger aircraft (o-5 years) depreciate more
gradually, while mid-life and older aircraft experience steeper declines.
Timedependent patterns highlight periods of accelerated depreciation,
particularly after 2010, followed by stabilization in later years. The dashed
line again denotes the start of the forecasting horizon, with depreciation
remaining elevated due to sustained replacement pressures from next-
generation aircraft. Compared to the 737-700 (Figure 4), the 737-800
exhibits less extreme volatility across market cycles and maintains lower
depreciation rates at mid-life ages. This reflects the stronger and more
enduring market demand for the 737-800, which benefited from larger
operator bases and greater alignment with fleet replacement strategies.
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Figure 5. Annual Depreciation Rates of Boeing 737-800 Aircraft Across Age and
Observation Years.

5. Conclusion

This study demonstrates the effectiveness of machine learning, and
gradient boosting in particular, for forecasting aircraft current market
values. Using a rolling-origin evaluation framework, the models achieved
stable accuracy across Airbus and Boeing narrow-body variants, with mean
MAPE below 5% and R* values near 0.9o. While technical features such as
age, subtype, and cohort were the dominant drivers of predictive power,
incorporating macroeconomic indicators provided little predictive power.
The results confirm that aircraft depreciation is shaped mostly by lifecycle
dynamics, and that modern ensemble methods can capture these
interactions with high reliability. These insights support the use of machine
learning for valuation, lease structuring, and risk management, and the
findings are consistent with prior aviation valuation and fleet economics
literature that emphasizes lifecycle effects and replacement dynamics (Yu,
2020; Bazargan & Hartman, 2012).

Depreciation modeling has important implications for lessors, investors,
and airlines, as more accurate forecasts of aircraft values can improve lease
structuring, risk management, and capital planning. By quantifying
depreciation trajectories with high out-of-sample accuracy, our framework
provides a data-driven complement to traditional appraisal practices,
enhancing transparency and decision-making in aircraft finance. Future
work could extend this approach by incorporating higher-frequency
transaction data, exploring the role of maintenance and utilization patterns
in greater detail. Also, future research could expand depreciation modeling
to fully integrate aircraft financing frameworks, linking asset value forecasts
with lease structures, debt service, and equity returns. Such an approach
would connect depreciation dynamics with airline revenue generation and
cash flow capacity, offering a holistic view of how asset values interact with
financing decisions and profitability.
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