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Abstract. This paper presents, in brief, the fundamentals of optimal control theory together
with some notes for differential games, which is the game theoretic analogue of the optimal
control. As it is recommended by literature references the main tool of analysis in open
loop information structure for environmental models is the Pontryagin’s Maximum
Principle, while the Hamilton-Jacobi-Bellman equation is the tool of analysis for any closed
loop informational structure. As applications of the above theoretic considerations we
present some environmental economic models which are solved both as optimal control
problems and as differential gamesas well.
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1. Introduction

ptimal controlis one of many strands of control theory which uses

mathematical methods to address a wide area of applications in

many scientific fields. The mathematics of optimal control theory is
the generalization of the ancient theory called "calculus of variations". The
early applications in calculus of variations were in physics, since 1662 Fermat
derived “the law of refraction” asa solution to a minimum time problem. Only
after more than 250 years, in 1924, Evansstudied a dynamic economic model
for monopolists, whereas Ramsey (1928), using techniques of calculus of
variations, solved the famous capital accumulation model (the well known
Ramsey model). The first environmental model analyzed with the calculus
of variations was the optimal exploitation of exhaustible resources, first
proposed by Hotelling (1931). To begin with optimal control theory it is
better to set the statement of a calculus of variations problem and then to
compare with the same optimal control problem statement and solution.
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The fundamental calculus of variations problem appears as an
optimization problem of the form:

dt
subjectto  x(0) = A(A given) (1)
and X(T) =Z (T, Z given)

Max or min V [x] = .Tl. F[t, X(t) dx(t)}

The task of the calculus of variations is to select from a set of admissible
X paths the one that yields an extreme value of the integral V[x]. Note that
the solution path is restricted to those curves that are continuous with
continuous derivatives.

For the solution process of problem (1) one has to deal with the basic first
order condition, also called the Euler equation, which briefly says that every
small perturbation e*p(t) of the optimal time path x'(#), i.e. x(H)=x"(t)+e*p(t),
has no action on the integral V[x], as this perturbation tends to zero, or
formally

Y~ @

so the condition dV /de = 0 is a necessary condition for the extremal.

Since (2) is not operating, as many arbitrary variables are involved, the
final form of the Euler equation, after the appropriate development,
becomes:

F, _% =0 forall te [O,T] @)

and the more explicit version of the Euler equation, after (3)’s expansion,
is the following second order nonlinear differential equation

Forytx"(t) + Fyrprx'(t) + Frr —E, =0  forall te[0,T] 4)

That is (4) is a more familiar, since the only calculations needed are the

derivatives of the objective functional F with respecttox’x’, x', tx'and x.

Suppose you need to find the extremal of the functional V[x] =
f02(12tx + x'*)dt with boundary conditions x(0) = 0 and x(2) = 8. Since

F=12tx+x"", following (4) we compute F, =12t,F =2x', Fyrr =
2and Fy,' = F¢y' = 0. The Euler equation and its solution is the following:

2x" M)-121=0 > x" (=6t > x 1)=3t+c; > x' ()=L+cqt+e
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The values of the constants of integration are ¢, = ¢; = 0, setting in the
solution t = 0 and t = 2 and substituting into the boundary conditions. So
the extremal, the optimal time path, is the cubic time function x*(t) = ¢3.

A special class of the isoperimetric problems arising in the case the
constraint is substituted by an integral of the type: fot G(t, x,x")dt = k with k
a constant. In such a situation the problem appears in general (with m
integral constraints) as

.
maximize IF(t,xl,xZ,....xn,xi,x'z,....x;])dt
0

.
subject to IGl(t, Xy Xgyeee Xy X, Xg e X, YAt = Ky
0

.
IGm(t, X0, Xy yoer Xy Xy Xoyorn X YAt = K
0

and appropriate boundary conditions

In this case the Euler equation becomes the following Euler-Lagrange
equation (it is assumed only one integral constraint)

(F, —ﬂGX)—%(FX- _G,)=0 5)

where Ais the Lagrange multiplier which in the isoperimetric case is a
constant.

Moreover, in the one-state—variable problem with a single integral
constraint, it can be shown that the modified Lagrange integrand

L =F(t,X,X) — AG(t, X, X ) can be used and then apply the Euler — Lagrange
equation to X alone. Now the value of the (constant) A can be determined
from the isoperimetric constraint.

In the above class of the isoperimetric problems belongs the model
proposed by H. Hotelling in the classic article “The Economics of Exhaustible
Resources” (Hotelling, 1931). The major conclusion of the Hotelling model is
that the pure competition can yield a socially optimal extraction path for an
exhaustible resource, while the monopoly cannot. The resulting condition,
after the solution! of the isoperimetric problem, which ensures the above
conclusion, is the following

' t
P(Q)-C (Q) = e’ (6)
! For a detailed analysis of thesolution process, see among others Chiang (1982).
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which in turn says that, in the pure competition, the quantity P(Q)—C (Q)
grows at the interest rate r . Note that the Lagrange multiplier 4 in (6)
represents the initial value of the difference price minus marginal cost
(PQ-C Q).

In the monopoly the final solution leads to the conclusion “the difference
between the marginal revenue and the marginal cost grows at the interest
rate”, i.e. R (Q)—C (Q) = Ae”, which is suboptimal compared with the
socially optimal extraction. After the Pontryagin's et al. (1962) book
"Mathematical Theory of Optimal Processes", the Maximum Principle
became the main tool of analysis in economics and management, physics,
biology and so on. The absolute success of the Maximum Principle is due to
the introduction of the two, instead of one, types of variables in the
optimization process. Thefirst is the control and the other is the state variable.
The control variableis a steering mechanism which one can maneuver so that
as to drive the state variable to various positions at any time via one or more
equations of motion. That is, the Maximum Principle is this tool which sets
an order in the mess of the corner solutions that may appear in the
optimization process. Here the goal of the optimal control theory, is the
determination of the optimal time path of the control variable first and then
the determination of the state variable, unlike the calculus of variations
where the main task is to find the optimal time path of the state variable.

Especially the simplest optimal control problem can be derived from the
calculus of variations problem if the time derivative of the state variable,
involved in the objective functional, is replaced by the so called equation of
motion. Below we present a simple calculus problem together with the
equivalent optimal control problem. The calculus problem is:

.
Maxormin V = I F[t, X, )'()dt]
0

subjectto  X(0) = A(A given)
(7a)
and X(T) free (T given)

Now introducing the control variable u and the equation of motion X=U
the same problem in optimal control fashion can be written as:

;
Max ormin V = [ F[t,x,u)dt]
0

subjectto  X=U(A given)
(7b)
and x(0) = A, x(T) free (A T given)
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and the fundamental link between the two variables became apparent.

It is important to say that at the solution process, according to the
Maximum Principle, except the time, state and control variables one more
class of variable(s) will emerge. This is the so called costate variable,
measuring the shadow price of the state variable, denoted by A(t).

Except the maximum principle thereis another solution method for optimal
control problems which is called the "dynamic programming". Starting with
a wider class of similar problems which can be solved, the original problem
is embodied in the larger class of problems. A policy oriented expression for
the principle of optimality could be the following: “An optimal policy has the
property that whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from
the first decision”. Now, it remains to set as simple as possible in rigorous
mathematics the maximum principle and principle of optimality .

2. The formulation of the problem and the solution process

We discuss the class of optimal control problems that appears in the
modeling of dynamic systems. Then, the state of a system at time t canbe
described by the following n—dimensional column vector

X(t) = (X, (1), X, (t),...x, (1)) €R",t€[0,T]

where the terminal time T >0 in many economic applications is infinity,
i.e. T =oo0. Moreover suppose that there is a decision maker influencing the
time path of the state variable by choosing the time path of the m-
dimensional control value. That is

u(t) = (U, (£),u,(t),...u,, (1)) € Q(x(t),1),te[0,T]

The control variable u(t) is a piecewise continuous function and
€ Q(x(t),t) is the given control region, i.e. u(t) € Q(x(t),t). Additionally it
is assumed that the dynamis of the state variable is governed by the
following Ordinary Differential Equation (ODE)

X(t) = f(x(t),u(t),t) te[0,T] (8a)
subject to X(0) = X, (8b)

with terminal constraints:

x(T)=x/, i=1...n (8¢)
X (T)>x/, i=n+1...,n (8d)
x,(T) < free, i=n+1..,n (8e)
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where n' >0,n >0,n +n <n, f:R"xR™xR — R" is a vector valued
function, f =(f,f,,....,f) where for all i=1..,n f(x,u,t) and
of,(X,u,t)/Ox are continuous functions with respect to their arguments.
Equation (8a) is the system dynamics or the equation of motion.

Now we suppose that the decision maker has a time discounted objective
in the form of the following functional

V()= je*ﬁg(x(t),u(t),t)dt +e TS(x(T),T) ©)

g(x(t),u(t),t) is the instantaneous profit gained by exerting the control
variable u(t) at time, t, X(t) is the current state, while pis the positive
discount rate. At the end horizon T the state would be x = (T), while the

corresponding payoff is described by the term S(x(T),T) also called, in the
optimal control language, the salvage or scrap value. The payoff function
g(x(t),u(t),t) and its partial derivative Og(X,u,)/0x are assumed
continuous with respect to their arguments as well as the scrap value
function S:R"xR — R with respect to x and T. Then the task of the
regulator is to choose the best policy u(.) among all the admissible
trajectories. As a consequence the optimal control problem is the
maximization of the reward V (u(.)) taking into account that the state’s
motion is governed by equation (8a).

As it is mentioned above, generally there exists two different approaches
to solve an optimal control problem of the type (8)-(9). Oneis based on the
Pontryagin’s Maximum Principle (Pontryagin et al., 1962; Grass et al., 2008),
while the other hinges upon the Hamilton—Jacobi-Bellman (HJB) equation
introduced by Bellman (1957).

2.1. The Maximum Principle

Before we proceed with the necessary first order conditions of the
maximization with the Maximum Principle approach, it is important to
introduce the Hamiltonian function (H), which has as arguments all the
involved variablest, X,u, A . The Hamiltonian function is defined as

H =(t,x,u,A) = g(t, x,u) + A(t) f (t,x,u) (10)
Once the Hamiltonian function is defined by (10) there is the requirement

to maximized with respect to the control variable u at every point of time.

Pontryagin’s Maximum Principle states as:
Theorem 1 (Pontryagin et al., 1962; Grass et al, 2008).
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Let X (.),u"(.) beanoptimal solution of the problem (8)-(9) with free terminal
state. Then there exists a continuous and piecewise continuously differentiable
function A(.) with A(t) e R satisfying forall t €[0,T ]

H(x"(t),u” (t), A(t),t) = max )H(x*(t),u(t),l(t),t)

ueQ(x” (t),t

and at every point of time ¢ where u(.) is continuous
A(t) = pA(H) = H, (X" (1),u” (1), A(t),t) (10a)
Furthermore the transversality condition

A(T)S, (X'(T).T) (10b)

holds, where the Hamiltonian function is defined as (10).
Next in the lines of Forster (1980) we provide an example of a pollution

abatement model solved as an optimal control problem.
Example 1

A question raised in Environmental Economics is how much of a given
level of emissionsshould be abated (with a given abatement technology) and
how much should be diffused in the environment. To focus on this problem
let us assume that P(t) represents the pollutants flows generated by the
firms” production process and E(P) are the emissions produced by these
pollutants flows. These emissions can either be abated or diffused in the
environment. Let A be the amount of emissions allocated for abatement, so

D = E(P) — A is the corresponding diffusion rate or net emissions dispersed
in the environment. The stock of pollutants is raised according to the
equation

P=D-P=E(P)-A-6P P(0) =P,

where § is natural decay rate.
Furthermore let U (A) be the utility which the society enjoys from the

abatement at rate A and p is the discount factor of the society. Then the
regulator has to solve the following optimal control problem

max OTe"‘U(A)dt+epTS(P(T))} (11a)
P=E(P)-A-&P (11b)
P(0) =P, (11¢)

where S is the salvage function mentioned above.
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The necessary assumptions on the functions U and E are the following:

U'(A)>0,U'(0)=o,U"(A)<0 forall A>0 (12a)
E'(P)>0,E"(P)<0 forall P>0 (12b)
E(0)=0,E'(0)> p+35,E'(0) <5 (12¢)
S"(P)<0 (12d)

The properties summarized in (12) are the well known Inada conditions.
For the solution of the optimal control problem (11), first we formulate the
Hamiltonian function

H=U(A)+A(E(P)-oP-A) (13)

The Hamiltonian function is concave with respect to A due to the
assumptions (12), i.e. forall H,U"<0 . Thus the maximizer A" of the
Hamiltonian H (P, A, 4) for fixed P and Alies in the interior of Q =[0,x]
and satisfies the following first order condition

H,(P,A,2)=U'(A")-1=0
from which the Maximum Principle yields
A=U"'(A") (14)

Dueto the concavity of the utility function U, theinverse function (U')™

exists and therefore A’ is a function of the adjoint variable A given by
A (A)=U")"() (15)

The Hamiltonian's concavity in (P, A)is assured. This is easily seen, by
using the positivity of 4, which can be deduced from (14) and (12a), which
in turn implies the negative definiteness of the matrix

Hee  Hpa _ AE"(P) O
He H,) \ 0 U"
and therefore the concavity of the Hamiltonian. Moreover the hypothesis
that any solution that satisfies the necessary conditions is optimal is ensured
(applying the maximum principle), due to the concavity of the salvage
function.

Next we derive the equation of motion for the costate variable by
applying (10b). For the Hamiltonian (13), (10b) yields

G.K. Patorisantis, JSEED, September 2025, 1(1), pp.1-24.
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A=pi-H, = pi+ A(S—E'—~(P)) = (p+5—E'(P))A (16)
Substituting (15) into the state equation (11b) establishes
P=E(P)-U")"(1)-0P 17)

Equations (16) an (17) is the so called canonical system of equations which
is appropriate for further analysis.

Since the control function given by (15) is differentiable with respect to
time, the time derivative of the H , (P, A, 1) =0is:

d .
—H,=U"(A)A-A
g =V

and using the adjoint equation (16) and equation (14), the time derivative
of the control A can be written as:

A:M(mp)—ﬂ (17a)

U™ (A) U™ (A)

Equation (17a) together with the state dynamics P = E(P)—A—oP
constitute the transformed state—control system.

The infinite horizon version of the Maximum Principle was first
introduced by Halkin (1974) as:

Theorem 2 (Maximum Principle for an Infinite Time Horizon)

Let the pair (X (.),u"(.)) bean optimal solution of the infinite horizon problem
analogue to (8)-(9) problem. Then there exists a continuous and piecewise
continuously differentiable function A(.) with A(t) € R" and aconstant 4, >0

satisfying for all t € [0,T |

(4, A() =0
H (X (t),u” (t), A(t),1) = m§>§) , H (X (t),u(t), A(t),1)

eQ(x (

and at every point of time t where U(.) is continuous
A1) = pA) — H, (X (1),u" (1), A(1), 4., 1)

Note that there is no transversality condition in the sense of (10b), a result
that is a consequence of the proof strategy presented in Halkin (1974).

Continuing with the pollution abatement model in infinite horizon, the
basic equations are transformed below as
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rr/l?;({!eptu (A)dt}

(18a)

P=E(P)-A-pP (18b)

PO)=F, (18¢)

0<A<E(P) (18d)

P>P (18e)
and the canonical system

P=E(P)-A-pP (19a)

i U'(A) :

Next we draw the phase portrait for the canonical system of equations
(19a)-(19b). Therefore we consider the P, A, isoclines, yielding

A=E(P)-oP (200)
E'(P)=6+p (20b)

Under the assumptions (12b), (12c), the P isocline (20a) reduces to a
strictly concave function. This concave function vanishes at the origin and

for some P >0, but meets its maximum at some 0< P, >P . The other

isocline A becomes a vertical line. The condition (12c) together with (20b)
now assures the existence of a unique P satisfying (20b). Finally we find a
unique equilibrium at P,A with A=E(P)-oP for which the

corresponding Jacobian is the following matrix:

o E'(P)-& 4
J(P1A): _UI(A) " o
U"(Z\)E (P)o

Since detJ <0 there exists a saddle point equilibrium, ie. the
equilibrium exhibits a stable path. Therefore, for initial values in a
neighborhood of P the stable path is a possible candidate for an optimal
solution.

Further phase portrait analysis includes the following two cases.

Case 1: Under the constraint (18d) there exist points ISl < IS2 , with the

property: for initial values between these points the resulting path is the

G.K. Patorisantis, JSEED, September 2025, 1(1), pp.1-24.
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unique optimal solution (see Figure 1). The exit point ISl is an intersection

point of the state path with the axis A= 0, but the point IS2 lies into the
intersection of the stable path with the curve A= EP).

Case 2: With the constraint (18e) the solution for P < P'< IS1 is depicted
in Figure 1.b. In this case it is optimal to control the system into the marginal
equilibrium point P', A'. For initial values of the state into the open interval
between P'and F~>1 the optimality of the above solution can be explicitly

shown. Since  A(t)>0 for all t and lim P(t)>P , the limiting

transversality condition is satisfied for any admissible orbit of the state.
Finally, we conclude that the depicted solution in Figure 1.b is the unique
optimal solution, because the adjoint and the control variables are both
continuous at the point I51.

Note that Figures 1.a and 1.b are drawn for the functional forms
E(P) = JP and U (A) =log A and the parameter values are 0=0.5 and
0=0.1.

¥

P

Figure 1.a. The black dotted curve is the optimal solution path for the pollution
abatement model. Startingbetween thestates P, and P, the path which converges

to the saddle point A, P is the optimal solution. For all other initial values except

the previously noted the control trajectory under consideration is on its boundary

until the exit point P, or P, is met.
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F
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0 P P P

Figure 1.b. Here we consider P > P', i.e, for state values into the interval
between P'and P,, the optimal controlline lies in the interior of the control region
and the optimal path leads to the boundary equilibrium A', P'.For states P > P,
the control values are chosen from the upper boundary of the control region, until

the exit point P, is reached.

2.2. The Principle of Optimality

As it is mentioned above the other approach to solve optimal control
problemsis the principle of Optimality and is based on the HJB equation.
According to that principle, the wider class of these problems, in which an
optimal control problem belongs, is sated as follows:

max [ g(x(x),u(s),s)ds +S(x(T),T) (21a)
X(s) = f(x(s),u(s),s) selt,T] (21b)
x(t)=¢

As it is assumed above the optimal control problem under consideration
has an optimal solution for any pair (£,t) . The Bellman equation with the

pair (£,1),V (&,1), as arguments, is defined as

V(&) = max [ g(x(5),u(s). $)ds + S((T). T) )

Now in order to produce the HJB equation the following Principle of
Optimality must be used.

G.K. Patorisantis, JSEED, September 2025, 1(1), pp.1-24.
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Theorem 3 (Principle of Optimality)
We suppose that there exists a solution (X (.),u” (.))of the problem (21) and this
solution exists for each pair (£,t) with t €[0,T],& e R". Then (X (.),u (.) is
an optimal solution for the problem of class (21) with x(t) = & if and only if

V(f,t):Ig(x*(r),u*(r),r)dr+V(x*(s),s) (23a)
V(X'(T),T)=S(x'(T),) (23b)

Note that, the information which records the relative change of W (&,t)
with respect to ¢ when s tends to t is given by relation (23a). The
resulting HJB equation formally is defined as follows.

Theorem 4 (HJB equation).

Let there exist an admissible control U (.) and their corresponding trajectory X (.)
for the state. Moreover the Bellman function V (&,t) is continuously differentiable
with respect to X and t. Then (X (.),u”(.)) is an optimal solution of the problem
(21) if and only if the Bellman function V (&,t) satisfies the H]B equation:

V(€0 =max{g(£,u,1)+V, (£, T (,u. D)} (24a)
V(S T)=S(.T) (24b)

forall (&,t)e R"x[O,T] forwhich u”(.) is continuous.

Note that for the problems which the discount factor is entered into the
objective functional, equation (24a) is not operative in the solution process.
Therefore another condition, for the HJB equation provided by Dockner et al
(2000), satisfies the following partial differential equation:

PV (x,1) =V, (x,t) = muax{g(x,u,t) +V, (x,t) f (x,u,t)} (25)

and (25) is the HJB function for discounted problems, which is very useful
for our economic problems under consideration.

Next we present an example of a very simple environmental model for
which the HJB equation is used in order to extract feedback strategies and
the optimal value function.

Example 2

Assume we have a nonrenewable resource extraction monopolistic firm

thatsells the extracted productat a fixed price p > 0. Wedenoteby U(t) the
resource’s extraction rate and we suppose that this rate equals to the sales
rate, thus preventing the resource’s stock up. Moreover we denote by X(t)

the remainder resource stock at time t . The system dynamicsis described as

G.K. Patorisantis, JSEED, September 2025, 1(1), pp.1-24.
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“the rate of reduction of the resource stock equals to the extraction rate”. Thus the
equation of motion is the following:

(X(t) = —u(t) (26)

and with boundary conditions x(t) > 0,u(t) >0
Extraction cost is an increasing function with respect to the extraction rate
u(t) and decreasing with respect to the remainder stock X(t).

The monopolistic firm maximizes its discounted profits, given by the
objective functional:

I(u)) = Je* [pu) —c(u(t), x(o)Jdt 7)

And the optimal control problem is:

max J (u(.) = e [pu(t) —c(u(t), x(O)]dt 8)

Subjectto  X(t) = —u(t)

With the boundary conditions X (t) >0, u (t) >0

Specifying the cost function as:

2

c(U, X) = % (29)

we have the following result.
Proposition 1

“An optimal feedback extraction strategy U(X,t) of the problem (28) under the
constraint (26) is the following:

u(x().t) =

where A(t) is the unique solution of the following Riccati differential equation:

x[p— At)]
/4

_ 2
2y
Proof
The HJB equation of the above problem is:
PV (1) =V, (x,t) = max{g(x,u,t) +V, (x,t) f (x,u,t)}

G.K. Patorisantis, JSEED, September 2025, 1(1), pp.1-24.
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2

with g(X,U,t): pu(t)_%, f(X,U,t):—U(t)

Taking the first order conditions of the above HJB function we have:

2

M
a‘{‘91<X1u't>+vx<x,t>f(x,u,t)}zoj6{'0” e k)

ou ou

=0=>

x(p -V, (x.1)

= p- v (xt)=0=u(xt) =
X y

(30)
Making use of the well informed guess for the value function

V (x,t) = A(t)x
thus giving the following derivatives:

V, (x,t) = A(t)
V, (x,t) = A(t)x

Now substituting the value function derivative (with respect to state) into
the strategy (30) we have the final strategy

U(X(t),t) _ X[ p _}/A(t)]

Now it remains to verify that this strategy satisfies theinitial HJB equation
for the conjectured linear value function V (x,t) = A(t)x.

First, substituting the strategy into theright hand side of the HJB equation
gives:

X2 (p-A®)?]

2X

y b
RHS(HJB) = p[x(p‘A(t)} o, A(t){——x(p_A(t))} _
7 y

_ (p=AW®)’
2y

Second, the left hand side of the same equation becomes:

G.K. Patorisantis, JSEED, September 2025, 1(1), pp.1-24.
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LHS (HIB) = 1V (x,t) =V, (x,t) = X[ pA(t) — A(t)]

Equating both sides, i.e. LHS(HJB)=RHS(HJB) the result is the
differential equation

A0 = )P0

for which the solution mustbe A(t) in order to satisfy the HJB equation.

3. Differential Games

Game theory is intended to be a useful tool for modeling situations in
which there are many (rational) decision makers and for guessing the
outcome of decision makers' competition or cooperation. Here we deal only
with differential games. Differential games involved in dynamic conflict
situations, for which an arbitrary number of decision makers (such as
renewable or nonrenewable resources extractors, pollution regulators etc)
interactin an environmente.g., afishery place, a mine, a factory or a society).

In fact, differential games are those dynamic games for which the
maximization of each player's objective is subject to some limitations. All
those constraints which are subject to the payoffs of each player are included
in one or more differential equations describing the state's evolution of the
game.

Since every player involved in a differential game has its own objective
functional to maximize (or minimize), optimal control theoretic methods can
be used. Considering the game’s solution, we seek for the Nash equilibrium
which is the appropriate, but not the only, concept of solution. Under the
Nash equilibrium concept therenoincentive for none of the involved players
to deviate from his/her own Nash equilibrium strategy.

Before we continue with the (brief) description of the solution it is
necessary to give some definitions of the type of the available strategies
depending on information patterns. An open loop strategy is only a time
dependent rule of decision, i.e., the resulting controls are functions of time
as:

U () =4 (t)

An open loop strategy is used only if the players commit at the start of the
game to follow a fixed time path. This strategy is applied only if it is
impossible for every one player to observe the current state variable
involved.

A closed loop of feedback or Markovian strategy is that for which each
player observes the system’s current state i.e., according to the state — time
pair (X,t) and decides about her action according to the rule:
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u; (1) = ¢, (x(0),1)

while the stationary closed loop strategy is defined independently of the
time as:

u; (t) = ¢ (x(1))

The major question raised in differential games is how we can compute the
Nash equilibrium. Supposing that all the other N-1 rivals of player i use
closed loop strategies U (t) = ¢, (X(t),t), j # i , then player i has tosolve an

optimal control type problem, which is of the following form:

max [€7g, (6,4, (x,0),0dt + 7S, (x(T))

u; (e 0

x=1(x,u;, ¢4, (x1),t,) x(0) = X,

where ¢ (X,t) = (4, (X, 1), 8, (X, 1), 4,1 (%, 1), 4,1 (X, 1), By (X, 1))

Since one differential game is faced as N optimal control games the above
theorems 2 and 4 for the Maximum Principle and for the Principle of
Optimality are in use.

Next we present an example of a differential game model.
Example 3

As a differential game example we deal with the basic renewable resource
model, but we modify its growth function to be a Gompertz type. The
Gompertz growth function is given by the expression (see for instance
Schafer, 1967)

g(x) = x(OL-In(x(t))]

Concerning the properties of the Gompertz growth this function first of
all fulfills the conditions:

g'(x) = —In(x) g"<x)=_§<o 9(0) =0

Second, it is a concave function and therefore it has "the pure
compensation property" as it is defined by Clark (1984).
Third, it is right-skewed and has the same properties as the logistic growth
function, while the upper stationary solution of X = g(X), i.e. the solution

X =g, is asymptotically stable.
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g(x)
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¥

0 1 e X
Figure 2: The shape of the Gompertz growth function g(X) = X(t)[1— In(x(t))]

According to that growth function the stock of the resource obeys to the
following differential equation law of motion:

X(t) = xR~ In(x(1)9] - ¢, - ¢,

where ¢,,1 =1,2 is the harvesting function for the two players of the model.
If we define the fishing effort for the i player as @;(t) = ¢,(t)/ X(t) , then the
game is a non-cooperative one for which every agent chooses a time path of
his own fishing effort @;(t) that maximizes the discounted utility. We

transform the utility in the form of an additive separable function, i.e.
dependent on the fish stock X(t) and on utility that every player enjoys from

harvesting ¢, (t) as well.

We specify the utility functions to be in logarithmic form arising from the
following utility function specification often used in growth models

x -1
U=y 5 PO
In(x) p=0

for which the elasticity of intertemporal substitution is given by 1/(1- f).
Moreover, we define y(t) =In x(t) in thecase f=0.

A number of calculations are performed in order to set up the problem.
The calculations are the following:
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y(®) = InX(t) = x(t) =" = dff‘) X(t) = €Oy (t) = X(t) = X() Y1)

Now, the transformed evolution equation becomes:

1_| X( ) — I ¢1 _ﬁ
() = x(OL-In(x(®)]-¢ - ¢, = X n(x(t)) - 0 xt)
= y(O) =1-y(t) -a, () -a,()

This is the transformed stock evolution equation that depends on the
logarithm of the resource stock as well as on the players’ fishing effort.

The utility function that is maximized is depending on the resource stock
and on effort as well. It is assumed that original present value maximized

utility is dependent on the harvesting function, i.e. max_[e*p‘ In(g (t))dt,

but the latter can be transformed as follows:

m¢axTeP‘ In(g (t))dt = mq}axjfevt [In(¢ (1)) — In(x(t)) + In(x(t))]dt

o0

= max e“"{ln[¢((t))j+ In(x(t))}dt = max_[e“"[ln(a (1)) + y(t)]dt

4 5

The differential game now becomes:

m{;’;lx]ge"‘[In(ai (t) + y(t)]dt (31)

Subjectto  y(t) =1— y(t)—a,(t) - a,(t) (32)

In what follows we explore the Nash equilibriaof the game which maybe
a time consistent one in the sense of subgame perfectness.

Time consistency could be seen as a minimal requirement for the
credibility of an equilibrium strategy. If player i (i=1,2) had an incentive to
deviate from his strategy Y; during the time interval [0,T), the other player

J,J =12 would not believe his announcement of ¢; in the first place.
Consequently, player j computes his own strategy taking into account the
expected future deviation of player i which, in general, would lead to
strategies different from ¢;,]#1 . Open-loop informational structure

strategies are not in general time consistent; while closed-loop or Markovian
strategies are certainly time consistent (Dockner et al., 2000).
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On the other hand subgame perfectness is the concept for which an
equilibrium strategy remains unchanged regardless the starting period the
game begins. So, subgame perfectness is a sole requirement for the
credibility of an equilibrium strategy that is time consistency for that
strategy. We conclude if we can found an equilibrium strategy for the game,
independently of the initial state and regardless of the informational
structure employed, this strategy has the subgame perfectness property and
can be a time consistent strategy.

Equilibrium analysis

Proposition 2

The game with the Gompertz as the resource growth function, admits an
equilibrium strategy of the form a; = p +1, which is time consistent.

Proof

The Hamiltonian of the above problem for the player i (i=1,2) is

H; =y +Ina(t) + 21— y(t) -2, (t) -a,(t)]

and the conditions for an interior solution are

oHi 1 o (=1
a0 At)=0=a (1) 0

The costate’s variable equation of motion becomes:

At) = —% + pA(t) = A(t) =—1+ (p+DA()

With solution A(t) = 1 +e' 0
p+1

along with the transversality condition !im A y@®) =0,
which must be satisfied, so it is reasonable to set Q2=0 and the costate

. 1 I .
variable becomes A(t) = 1 Substituting the value of the costate variable
p+
into the strategy, the resulting strategy becomes & = r+1 which is
independent of the initial state, and therefore it is time consistent.
Proposition 3
In the case the players cooperate the joint cooperative time consistent equilibrivum

+1
harvesting strategy is given by the expression a(t) = iy

Proof
The evolution equation in the cooperative case becomes
y(t) =1-y(t) — 2a(t) where a(t) = a, (t) +a,(t) is thejoint fishing effort of
the two players. The Hamiltonian for the cooperative case is,

H, = y(t)+Ina(t) + A(t)[1- y(t) —2a(t)]
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and the rest of algebraic manipulations for maximization reveals the
: o r+1 ... L :
cooperative equilibrium strategy a = wE which is again time consistent.

The payoff (Value) function
Proposition 4
In the case the players do not cooperate the payoff function for each player is

V, =L+i In(1+p)+i—2
1+p p 1+p

Proof

We check whether the equilibrium strategies given by proposition 2 are
verified by the above value function. The Hamilton—Jacobi-Bellman (HJB) of
the differential game (31)-(32) becomes:

P, = max{y(t) #nay )+ -y a0 -3 (t)}
i#j,i=12)=12
and the maximization of the RHS of the H]B equation yields:

oV,
ol y(t)+Ina;(t)+
{y()+ na(t)+ &

[1-y®-a®)- ajt(t)]:|
=0=>—L=—"+r
i o &)

oa

Differentiation of the proposition’s 4 value function with respect to the

oV, 1 oV,
state variabley, yields — = —— .Now equatingthe derivatives —-, the

1+p
final resultis a; = p+1

4. Main Points

In this paper we first discus the dynamical methods as they applied in
environmental and resource economics, given in a rigorous mathematical
language; and second, as a contribution, we introduce and solve two
environmental and resource models. The first model is an optimal control
one, touching the classical monopolistic extraction of a depletable resource,
disposed after the extraction in a market. One of the first model’s crucial
characteristic is that the extraction cost is dependent not only from the
monopolist’s utility but also from the remaining stock of the resource. At the
solution process, under the closed loop informational structure, we found
the analytic expression of the optimal monopolistic strategy, which also is
time consistent and therefore an objective for further research and policy
instrument, as well.

In the game theory part of the paper we tackle with a renewable resource
model for which as the growth function of the resource is set the well known
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(from biology) Gompertz growth function. In the equilibrium analysis that
follows, pointing out the closed loop solutions of the game, we found the
analytic expressions of the cooperative and non cooperative strategies. All
the above strategies are independent the state’s variable as well as the
control’s variable, but only hinges upon the discount factor. Therefore, these
strategies have the important properties of time consistency, thus they
constitute economically acceptant policies. Regarding the players’ payoffs,
we also found the analytic expressions of the value functions which are
functions of the state variable and functions of the common discount rate as
well.
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