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Abstract. The derivation of the maximum entropy distribution of particles in boxes yields 

two kinds of distributions: a "bell-like" distribution and a long-tail distribution. The first 

one is obtained when the ratio between particles and boxes is low, and the second one - 

when the ratio is high. The obtained long tail distribution yields correctly the empirical Zipf 

law, Pareto's 20:80 rule and Benford's law. Therefore, it is concluded that the long tail and 

the "bell-like" distributions are outcomes of the tendency of statistical systems to maximize 

entropy.  
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1. Introduction 
ccording There are two common distributions in life: The first one is the 

"bell-like" distribution, which is found in the distribution of IQ, human 

heights, human age at death etc. This "almost universal" distribution was 

introduced for the first time by Moivre in the 18
th
 century and explored by Laplace 

and Gauss around 1800. 

As opposed to the bell curve distribution, many quantities are distributed 

unevenly (Bak, 1996). For example, the probability to live in a big city is higher 

than the probability to live in a small village. Similarly, the probability to be poor 

is higher than the probability to be rich. Although intuitively it is logical for cities' 

population and wealth to have a bell curve distribution, it is not so. Their 

distributions are uneven and are characterized by a long tail to the right, in which 

few have a lot and many have quite a little. These distributions were observed by 

Pareto, Zipf, Newcomb and Benford about a century later and received their name 

accordingly: Zipf law (Zipf, 1949; Miller, & Newman, 1958), Pareto's rule (Pareto 

1897; Jurgan, 1951), and Benford's law (Newcombs, 1881; Benford, 1938). 

The first to discover it was Pareto. In 1896 he observed that the ownership of 

lands in Italy is distributed among the population in the ratio of around 20:80, 

namely, about 20% of the population own about 80% of the land. From his 

observations of other countries as well, he concluded that this ratio is general. 

Mussolini embraced the Italian Marquis Pareto because he believed that the 

Pareto's rule proves nature's preference of the fittest. Zipf - a Harvard professor of 

linguistics - found out that the ratio between the first most frequent word and the 

second one, in any text in many languages, is two. Similarly, the ratio between the 
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second most frequent word and the fourth one is also two, etc. He claimed that the 

shortest and most "efficient" words appear more frequently (Zipf, 1949). 

Zipf believed in the evolutionary philosophy, i.e. the most "useful" and 

"efficient" words are the winners, in the spirit of "the survival of the fittest". On the 

other hand, many people and political movements believe that Pareto's rule is 

unfair and the wealth should be shared more equally, namely, as in the bell curve 

distribution. The discovery of Newcomb about the uneven frequency of digits in 

logarithmic table in 1881 (Newcomb, 1881), (the higher the value of a digit, the 

lower its frequency) raises some doubts as for the real reason for the uneven 

distributions. Later, in 1938, Benford confirmed Newcomb's uneven distribution of 

digits in a wide range of numerical data (Benford, 1938). He attempted, 

unsuccessfully, to present a formal proof to Newcomb's equation, see Eq. (12). 

Since then, this distribution was found also in prime numbers (Cohen, 1984), 

physical constants, Fibonacci numbers and many more (Kossovsky, 2012). 

In this paper it is argued that the "bell-like" distribution and the long tail 

distribution are the boundaries of the same probability distribution. This probability 

function is obtained by a fair and unbiased random distribution of particles in 

boxes. 

We consider a set of N boxes scoring P particles; it is assumed that all the boxes 

have an equal probability to score a particle, namely, the probability of a box to 

score a particle is = 1/𝑁  . Therefore, the probability to score n particles is 

𝑞𝑛 = (
1

𝑁
)𝑛 . It is clear that 𝑞𝑛 < 𝑞. This is the basic reason why the rich are fewer 

than the poor. In the case of  𝑃 ≪ 𝑁,  where a multiple score is negligible, the 

“bell-like” distribution is obtained; and in the case of 𝑃 ≫ 𝑁 , a long tail 

distribution is obtained. 

 

2.  How P particles are distributed in N boxes? 
The answer to it is not new: the particles are distributed in a way that maximizes 

the entropy (Planck, 1901). 

According to Boltzmann, entropy is proportional to the maximum possible 

number of the different configurations (microstates) of a set. Namely, 

 

𝑆 = ln Ω          (1) 

 

(we take here the Boltzmann constant kB≡ 1). A microstate is one possible 

distinguishable configuration of a set of boxes and particles. Boltzmann entropy is 

obtained from the Gibbs-Shannon entropy by assuming that all the microstates 

have an equal probability. The Gibbs-Shannon entropy is given by: 

 

𝑆 = − 𝑝𝑗
Ω
𝑗=1 ln𝑝𝑗          (2) 

 

where 𝑝𝑗  is the probability of the microstate 𝑗  and Ω  is the number of 

microstates to be maximized. If all the microstates have an equal probability, 

namely,𝑝𝑗 = 1/Ω , Boltzmann entropy  ln Ω  is obtained. 

Therefore, the distribution of particles that maximizes Boltzmann entropy 

means an equal probability to any configuration as well as an equal probability to 

any particle to be in any box. 

The number of microstates (different configurations) of 𝑃 particles in 𝑁 states is 

given by the Planck expression (Planck, 1901) namely, 

 

Ω 𝑃,𝑁 =
 𝑁+𝑃−1 !

𝑝! 𝑁−1 !
           (3) 
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To visualize the problem we start with a numerical example; namely, 

calculating the distribution of 3 particles in 3 boxes that maximizes entropy. 

According to Eq. (3) the number of microstates Ω 3,3 = 10 as follows: 

 

|300| 030| 003| 210| 201| 120| 021| 102| 012| and |111|. 

 

We see that although each box has an equal chance to score 1, 2, or 3 particles, 

the boxes with 1 particle appear 9 times, those with 2 particles appear 6 times, and 

those with 3 particles appear 3 times. The relative frequency of the boxes with one 

particle in a set of three boxes is therefore f(1)=0.5; with two particles 

f(2)=0.333and with three particles f(3)=0.166. 

To calculate the relative frequencies f(n), we designate 𝑛 = 𝑃/𝑁, where 𝑛 is the 

number of particles in a box, and apply the Stirling's formula  

lnN!≅N ln N−N . We obtain (Planck, 1901) from Eqs.(1) and (3) that, 

 

𝑆 ≅ 𝑁{ 1 + 𝑛 ln 1 + 𝑛 − 𝑛 ln𝑛} ≅  {(1 + 𝑛) ln 1 + 𝑛 − 𝑛 ln𝑛}𝑁
𝑛=1   (4) 

 

Now we write the Lagrange equation, 

 

𝐹 𝑛 ≅  {(1 + 𝑛) ln 1 + 𝑛 − 𝑛 ln𝑛}𝑁
𝑛=1 − 𝛽{𝑃 −  𝑛𝜙(𝑛)}𝑁

𝑛=1    (5) 

 

The first term on the RHS is the entropy and the second term is theconstraint of 

the number of particles. Namely, 𝑃 =  𝑛𝜙(𝑛)𝑁
𝑛=1  is the number of particles, 𝜙 (n) 

is the number of boxes that scored n particles and β is a 

Lagrange multiplier.𝜙 (n) can be interpreted as the probability of a box to have 

𝑛 particles. The normalized (𝑛) , 𝑓(𝑛) is the relative frequency of the boxes that 

scored 𝑛 particles. From     
𝜕(𝐹(𝑛)

𝜕𝑛
= 0  one obtains, 

 

𝜙 𝑛 = 𝛽−1 ln(1 +
1

𝑛
)                                       (6) 

 

Eq. (6) is the analogue of Planck equation (Kafri, 2007, 2009, 2016), namely, 

 

𝑛 = 1/[𝑒𝛽𝜙 𝑛 − 1]        (7) 

 

Hereafter, we examine three cases: 

In the first case we assume that n>> 1. Here one can expect to find a large 

number of particles (limited by P) in any of the boxes. For example, if we conduct 

a popularity poll between the N words among P authors, and there are many more 

authors than words, then the maximum entropy distribution of the votes between 

the words is shown to be the Zipf law. 

In the second case we consider the intermediate zone where n is in the range of 

the number of the boxes. This case fits well to the distribution of ranks, namely, 

Pareto's rule and Benford's law. 

In the third case we consider n<< 1, where the number of particles is negligible 

as compared to the number of boxes. This case fits well to the probability of 

guessing correctly the IQ of a person in a single guess based only on the 

knowledge of the average. This case yields the "bell-like" distribution. 
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3. Zipf law 
Consider the case where 𝑃 ≫ 𝑁 where ≫ 1. In this case  𝛽𝜙 ≪ 1, therefore 

from Eq. (7) 𝜙(𝑛)  can be approximated to, 

 

𝑛𝜙(𝑛) =
1

𝛽
                 (8) 

 

Eq.(8) is the Zipf law. Namely, the ratio in the frequencies between n=1 (the 

most frequent word) and n=2 (the second most frequently word) is 2 which is 

identical to the ratio between 𝑛 = 2 and 𝑛 = 4 etc. This ratio is not a function of  𝛽 

as   
𝜙 1 

𝜙 2 
=

𝜙 2 

𝜙 4 
= ⋯

𝜙 𝑛 

𝜙 2𝑛 
= ≅ 2. 

 

4.  Pareto's rule 
to calculate the relative frequency of Eq.(6), namely, f(n) we have to divide 

𝜙(𝑛)  by the sum over all the M occupied boxes M≤N , namely, 

 

 𝜙 𝑛 =
1

𝛽
(ln

2

1
+ ln

3

2
+ ⋯ . . + ln

𝑀+1

𝑀
)𝑀

𝑖=1 =
1

𝛽
ln

𝑀+1

𝑀
    (9) 

 

Therefore, 

 

𝑓 𝑛 =
ln (1+

1

𝑛
)

ln (𝑀+1)
                   (10) 

 

Like in the Zipf law, for integer n's, the relative frequency is not a function of 𝛽 

.We define a rank 𝑟 ≡ 𝑛𝑁/𝑃where  𝑟 = 1, 2, 3,… .𝑅. By defining the ranks we 

combined the boxes into clusters of boxes such that each cluster will contain 

𝑟 = 1, 2, 3,… .𝑅 groups of  𝑃/𝑁 particles. Therefore 𝑟 = 10 means 10 times more 

particles than r= 1. We can repeat the calculation of the frequency again but instead 

of using n, we will use r, and obtain; 

 

𝑓 𝑟 =
ln (1+

1

𝑟
)

ln (𝑅+1)
                    (11) 

 

In Graph.1 The relative frequencies𝑓(𝑟) for a set of R=10
6
 clusters and r= 

1,2,3,...., Raccording to Eq.(11) is plotted. A long tail distribution is demonstrated. 

 

 
Graph 1. A million clusters and their probabilities. The rank increases as its probability 

decreases. 
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Eq.(11) "behaves" as a power law, this is so because a plot of the logarithm of 

the cluster r versus the logarithm of its probability yields a straight line as 

demonstrated for a million ranks. 

 

 
Graph 3. Log-Log plot of frequency versus the rank for R=million is a straight line. 

 

The Pareto's 20:80 rule of thumb was proved to be correct not only in wealth 

distribution but in many other phenomena as well. For example, it is believed that 

20 percent of customers yields 80 percent of the revenue; 20 percent of the drivers 

cause 80 percent of the accidents; etc (Jurgan, 1951). In order to find the ratio 

obtained from Eq. (11) we divide the boxes into 10 ranks. Each rank contains 1, 2, 

3,….,9, 10 equal groups of particles. We construct the table below from 𝑓 𝑟 =
ln (1+

1

𝑟
)

ln (11)
 

 
Table 1. The relative frequencies of 10 ranks 

r 10 9 8 7 6 5 4 3 2 1 

f(r)% 4 4.4 4.9 5.6 6.6 7.6 9.3 12 16.9 28.9 

 

The total number of groups is 𝑟 = 5510
𝑟=1 .  However, the richest five ranks 

contain  𝑟 = 4010
𝑟=6  groups. Their total frequencies are  𝑓 𝑟 = 25.5%10

𝑟=6 , 

which means that about 73% of the packages are in the hands of about 25% of the 

boxes. This is a typical behavior of the Pareto's rule but with a small deviation 

from the empirical rule of thumb of 20:80, namely, a 25:75 rule. 

 

5.Benford's Law 
Another application of Eq. (11) is Benford's law. Newcomb suggested Benford's 

law in 1881 from observations of the physical tear and wear of books containing 

logarithmic tables (Newcomb, 1881). Benford further explored the phenomenon in 

1938, and empirically checked it for a wide range of numerical data. The main 

application of Benford's distribution is based on its existence in numerous random 

numerical files like financial data, street addresses, etc. Since one intuitively 

expects to obtain an even distribution of digits, as would be in the case of an 

unbiased lottery, some income tax authorities are looking at balance sheets for digit 

distributions in order to detect fraud detection. If the balance sheets don't fit to 

Benford's law, a further inspection is done (Nigrini, 1996). 

In the derivation of Benford's law we assume that a digit is a box with n 

particles. This assumption is logical as a digit, unlike a word, has an absolute 

meaning as compared to other digits, exactly as the meaning of the number of 

particles in a box. There is a constraint though: the number of particles in a digit 

cannot exceed 9. The digit zero does not appear in Benford's law distribution of the 

first order. In Eq. (11) r may have any number. In digits, per definition, r≤ 9, 
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therefore, it is legitimate to calculate the equilibrium distribution of the occupied 

boxes and to add as many empty boxes without affecting the distribution. In this 

case R is 9 and Eq. (11) yields the relative frequency, 

 

𝑓 𝑟 =
ln 1+

1

𝑟
 

ln 10 
= log(1 +

1

𝑟
)                     (12) 

 

This is the Benford's law. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Graph 3. Benford's law predicts a decreasing frequency of first digits, from 1through 9. 

 

6. "Bell-like" distribution 
Zipf law, Pareto's rule and Benford's lawoccurs where the number of particles is 

larger than the number of boxes. Hereafter, the case where P<<N is considered. 

In this case n<< 1, we neglect the boxes that scored several particles, because, 

practically there are no such boxes. We want to find the probability distribution of 

N boxes to score one particle. In this limit, 𝑒𝛽𝜙  ≫ 1 and Eq. (7) can be 

approximated to, 

 

𝑛𝑖 = 𝑒−𝛽𝜙 𝑖                     (13) 

 

Here ni is the fraction of a particle in a box and the frequency 𝜙i=𝜙 (ni ) is the 

probability to find this fraction. The total number of particles P is given by the 

same expression that we used in the Lagrange equation (5) namely, 

 

𝑃 = 𝑁𝜙i𝑛𝑖 = 𝑁𝜙𝑖𝑒
−𝛽𝜙 𝑖                   (14) 

 

in the limit β→ 0 one obtains that all the frequencies 𝜙𝑖  of the boxes are equal, 

namely 𝜙𝑖=𝑃/𝑁. This is an even distribution. The even distribution isthe intuitive 

distribution that one expects to find in a distribution of particles in boxes. This 

distribution causes us to believe that uneven distributions are counterintuitive. 

In the case where β is finite 

 

𝑃 =  𝜙𝑖𝑒
−𝛽𝜙 𝑖 =  𝑃(𝑁

𝑖=1
𝑁
𝑖=1 𝜙𝑖 ,𝛽)                (15) 

 
𝑃 𝜙 𝑖 ,𝛽 

𝑃
is the relative probability to find a particle in a box. From Eq. (15) it is 

seen that 𝑃(𝜙𝑖 ,𝛽) has two components, the first is the frequency 𝜙𝑖  of the fraction 

𝑛𝑗of the particle and the second is the fraction of particles. As opposed to the case 

where P>>N, the frequency  𝜙(𝑛) itself is not the probability to find n particles but 
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the probability to find a fraction of a particle. To find the probability of a single 

particle we have to multiply the frequency by the fraction of the particle namely 

𝜙𝑖𝑛𝑖  . When the frequency increases the associate fraction of particles decreases 

exponentially with the frequency. The larger the β , the steeper is the decay. Since 

P(𝜙 , β ) is a linearly increasing function of 𝜙𝑖  multiplied by an exponentially 

decay function of 𝜙𝑖  , the distribution of particles in a box has a definite maximum. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Graph 4. The number of boxes and their probability to find a single particle for N=1000 

and 𝛽 = 1/50 

 

The maximum probability is obtained from
𝜕𝑃

𝜕𝜙
= 𝑒−𝛽𝜙 − 𝛽𝜙𝑒−𝛽𝜙 = 0 and is 

given by𝜙𝑚𝑎𝑥 = 1/𝛽 . In Graph (4) we see that the obtained curves is typical to 

the distributions of velocity of molecules, human age at death etc. 

 

7. Discussion 
The long tail distribution attracts a considerable attention because it is so 

ubiquitous [15]. Sometimes it is called a power law distribution and scale-free 

distribution. This is because a Log-Log presentation of the distribution yields a 

straight line as seen in Fig.2. When a power law fits are done, different slopes 

obtained for different statistics. For example, in Zipf law the ratio between the 

frequency of the 1
st
 and the frequency of the 2

nd
 is 2; in Pareto's rule and in 

Benford's law this ratio is about 1.7. Namely, in different regimes of P / N different 

"slopes" are obtained as is seen in Graph 5. Another notable point is that the 

normalized frequencies f (n)𝑓(𝑛) for𝑃 ≫ 𝑁 are not a function of β .This is with 

contradistinction to the case P<<N in which the distribution is a function of β. 

 

 

 

 

 

 

 

 

 

 

 
Graph 5. A plot of ln𝜙versus ln𝑛: for high values of n a “power law” decay is 

obtained, however for low values of n an exponential decay is obtained. 
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The Lagrange multiplier 𝛽 has a meaning. In ther modynamic the temperature is 

related to it via 𝑇 ∝
1

𝛽
.We see that in the case of Zipf law the frequency multiplied 

by the number of particles is proportional to the temperature. In the case of 𝑛 ≪
1 the temperature is proportional to the frequency in which the probability to find a 

particle is the highest. This is the main difference between the long tail distribution 

and the "bell-like" distribution. In the long tail the temperature means the average 

wealth of a box. In the bell curve the temperature means the maximum probability. 

 

8. Summary 
The distribution of P non-interacting particles in N boxes iscalculated for a fair 

system. Since there is no preference to any configuration of particles and boxes, the 

entropy principle can be applied. It is shown that when the number of the particles 

is negligible as compared to the number of boxes, the "bell-like" distribution 

(which prefers the average) is obtained. However, when the number of particles is 

higher than the number of boxes, a long tail distribution is obtained. The obtained 

long tail distribution yields correctly Zipf law, Pareto's rule and Benford's law. 

The Pareto's rule usually is conceived as an evolutionary law. Namely, the 20% 

of the drivers that cause 80% of the accidents are the bad drivers. Maybe the 

personality of these drivers is the reason for their excessive involvement in car 

accidents. Similarly, there might be good reasons for the fact that few people get 

rich and the majority remains poor. These kinds of questions cannot be answered 

by this kind of analysis. However, one should bear in mind that particles without 

personality, interactions or statistical bias are also distributed in the same way. 
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