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Abstract. We have tried in this article to detect, examine, and analyze the persistence in the 
conditional volatility of the major Moroccan stock market index called MASI, using a 
fractionally integrated EGARCH model that has the property of capturing long memory 
along with shocks to the conditional volatility. A GARCH (1,1) and IGARCH models were 
also estimated for comparative purposes using Akaike, Schwarz and log likelihood 
information criterion. We used daily returns of MASI index covering the period between 
04/01/1993 and 03/02/2017. Our results confirm the presence of a strong persistence in the 
volatility of the Moroccan index which is inconsistent with the weak efficiency form of 
Fama’s efficient markets hypothesis. The findings of this study could be of particular use to 
investors and academics interested in the forecasting of daily volatility in the Moroccan 
context. This paper broadens previous long memory estimation research by applying a 
FIEGARCH specification enabling it, not only to account for persistence, but also, to 
measure the leverage effect. Moreover, we believe that, to the best of our knowledge, this 
paper is the first to model the volatility of the Moroccan stock market using a FIEGARCH 
approach.  
Keywords. Volatility, Persistence, Long memory, FIEGARCH, MASI. 
JEL. G11, G17, C53, C58. 

 

1. Introduction 
olatility modeling continues, nowadays, to occupy a central place in 
financial economics, numerous studies and papers are being exclusively 
devoted to the study of this complex phenomenon. Among the hardest 

challenges one may face in the modeling of volatility are the stylized fact, or 
volatility patterns. 

These stylized facts describe the features that observed volatility exhibits, which 
means that any model that seeks to represent volatility is forced to incorporate 
these behaviors in order to produce quality estimates and forecasts. As these 
patterns tend to have a gradual importance in the process of representing volatility, 
in a way that some patterns are more essential than others, the long memory is by 
far the most determining pattern in volatility time series. It derives its eminent 
place from the idea of making volatility predictable. 

The stylized facts, and more precisely, the persistence of volatility is amajor 
threat to Fama’s (1970) famous efficient markets theory, since it goes a gainst its 
main principle, which is that prices incorporate all available information making 
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price forecasts impossible. However, a long memory process would imply that the 
present prices could be determined based on past prices considering that such 
processes entail significant autocorrelations rates in the price series for relatively 
long periods.  

For markets that prove to be marked with a long memory process, almost no 
modeling of volatility could be done without accounting for this process. 
Moreover, financial econometrics is continuously enriched by new frameworks and 
models aimed at the sole purpose of modeling this persistence. 

Being aware of the importance of such studies in the understanding of financial 
markets, and having in mind the lack of similar research in the Moroccan context, 
we propose in this article to perform an econometric study with the purpose of 
modeling the long memory in the volatility of the Moroccan financial market. The 
insight we intend to make lies in the application and use of a FIEGARCH 
parameterization, allowing not only to account for persistence, but also to 
incorporate the leverage effect. This approach represents an extension to the 
previous body of literature, relying almost exclusively on simple FIGARCH 
models. 

The rest of the paper is organized as follows. First, we expose a brief review of 
the literature covering the main papers on the subject, from theories and 
mathematical formulation to real applications. Second, we present a data and 
methodology section encompassing the data description and proprieties, along with 
the methodology followed. We follow up with a results and discussion section in 
which we draft the main results and conclusions. And end with a conclusion 
section. 

 
2. Literature review 
Before we can go on with the literature review, we find it convenient to start 

with a definition of long memory so that the following text may become easily 
understood. 

A long memory process could be defined as a slow hyperbolically decaying rate 
of autocorrelations, which means that the autocorrelations rates take too long to 
dissipate. Therefore, a current shock to the volatility would have long-lasting 
effects. Unlike the case of short memory processes in which autocorrelations 
disappear at an exponential rate leaving shocks to have a limited time impact.  

The first paper to ever address the issue was made by Hurst (1951). He was an 
engineer in charge of the construction of reservoirs for the Nile river water. He had 
to study the flow of the river through documenting its levels on different days for a 
time frame. This operation led to the discovery of the long memory property of the 
Nile river flow.  

After the discovery made by Hurst, and especially with the long memory 
measure baptized as the Hurst exponent, many scientists from different scientific 
backgrounds started to work on the issue, and to document similar patterns in their 
respective fields of expertise such as climatology, geology, physics and other 
natural sciences. 

Nevertheless, the credit for the first application of the long memory in 
economics and finance goes to Mandelbrot & Ness (1968). They were the pioneers 
of projecting Hurst’s discovery to stocks markets through the application of the 
Hurst exponent to the measurement of markets degrees of persistence. 

After Hurst’s works, it took several years for researchers to come up with 
another measure and conceptual frameworks to model this persistence. This was 
essentially due to the lack of comprehension of the impact of persistence on the 
determination of future values. 

The first paper to follow up Hurst’s insight was the implementation of the 
ARFIMA (Auto-Regressive Fractionally Integrated Moving Average) model by 
Granger & Joyeux (1980) and Hosking (1981). This linear model was considered at 
the time as a major breakthrough in the ARMA modeling. It enabled for the first 
time, the basic ARMA processes to embody the long memory estimation. The 



Turkish Economic Review 

TER, 4(4), O. El Jebari & A. Hakmaoui,  p.388-399. 

390 

advantages, as well as the quality performance of the ARFIMA processes, was a 
direct incentive for researchers to deepen the analysis in a quest for a better 
modeling, especially that linear models have started to show their weakness with 
the evolution of financial markets. 

The basis for the modeling of long memory in nonlinear models comes from the 
development of the ARCH (Auto-Regressive Conditional heteroskedasticity) 
models by the prize Nobel winner Engel (1982). He presented an innovative way to 
model conditional volatility using a nonlinear equation. This model was very 
successful that it knew many extensions in the years following its inception. As a 
matter of fact, the generalizing of the process made by Bollerslev & Taylor (1986) 
into a GARCH (Generalized Auto-regressive conditional heteroscedasticity) is 
considered the most notorious advancement to the process. This generalization of 
the initial process made it possible to model an important number of financial time 
series properties. GARCH was the first serious attempt to model long memory 
using a “sophisticated” nonlinear equation. The long memory was assessed through 
summing up the ARCH and GARCH parameters so that any closer results to unity 
was considered as a sign of strong persistence in the data. 

The success of the GARCH model coupled with the development of financial 
markets has led to a large series of extensions to the original model, making them 
every time, more capable of reflecting financial time series patterns. Among the 
main newly created models we can give the example of the EGARCH, TGARCH, 
EGARCH, IGARCH etc. They become so diversified that their number could only 
be limited to the imagination. 

Since the focus in this paper will be on the modeling of long memory we will be 
only limited to the GARCH family models related to the issue with a certain stress 
on leverage effect GARCH model of EGARCH(Exponential GARCH). 

As the initial GARCH model provided the first measure of long memory, it was 
limited in a sense that it has a finite persistence. It was only thanks to the integrated 
GARCH of Bollerlev & Engel (1986) that persistence got to be infinite, allowing, 
therefore, the shock to last infinitely. 

Arguably, and despite the success of the both GARCH and IGARCH, market 
data have had proven that the two models are still restricted in a way that they only 
represent extreme cases of persistence, and therefore, not allowing the persistence 
to be flexible, imposing either an I(0) process for GARCH or an I(1) process for 
IGARCH. It was only after the introduction of the FIGARCH model, which was 
inspired by the combination of the properties of GARCH models and the 
innovation of the fractionally integrated ARMA processes, that persistence could 
be efficiently modeled. The credits and the merits of this model go to Baillie et al., 
(1996). 

The FIGARCH model was a major discovery in terms of modeling long 
memory because, in contrast to previous models, it allowed the differentiating 
parameter d to range between 0 and 1 and not to be restricted to the two extreme 
values. This model, by definition, nests the GARCH and IGARCH as two special 
cases.  

Later on, even the notorious FIGARH was subject to development. The main 
extension that was brought to it, was the FIEGARCH by Bollerslev & Mikkelsen 
(1996). It was meant to further enlarge the initial FIGARCH in order to capture 
more stylized facts, and more precisely, to capture news impact. In the sake of 
simplification, we can say that the FIEGARCH nests now the three models of 
GARCH, IGRACH, and EGARCH as special cases. Or in other words, it is a 
combination of a FIGARCH and an EGARCH. 

After having presented a brief review on the emergence of long memory 
models, we will now shift the focus towards some of the many papers that made 
use of the above-expressed models in order to measure long-term dependencies in 
volatility time series across different markets and conditions. 

The presence of persistence and long-range dependencies in time series has 
motivated the works of Peters (1996), and Huang & Yang (1999), Barkoulas et al., 
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(2000) and Panas (2001) among others, to prove empirically the existence of this 
feature in financial markets. These papers have had for a common conclusion that 
long memory is a consistent feature of financial markets. 

Nevertheless, a certain number of papers like Chow et al., (1996) and Grau-
Carles, (2005) could not document any empirical evidence regarding the existence 
of persistence in the financial markets they studied. This conclusion would make 
judgments on the existence of long memory process market-specific.    

The measurement of long-term dependencies among time series has motivated 
the application of a large set of techniques and mathematical formulations. 
Nonetheless, the FIGARCH family of models was often said to be more efficient, 
and can, therefore, outperform any other conditional heteroskedasticity model in 
forecasting and modeling stocks returns Beine et al., (2002) and Banerjee & Sarkar 
(2006). 

In the same line of ideas, the superiority of FIGARCH over other models was 
documented in different sets of markets. For instance, Antonakakis & Darby 
(2013) have proven that the FIGARCH can be particularly more efficient than 
other models in the market of exchange rates, while Jin & Frechette (2004) have 
demonstrated the unique and remarkable performance of a FIGARCH model in 
predicting futures volatility. 

Regarding the application and use of the FIEGARCH model, we can cite the 
paper of Goudarzi (2010) in which they could prove the existence of a long 
memory process in the volatility of the Indian stock exchange market’s main index 
through a FIEGARCH model. Fakhfekh & Jeribi (2015) employing a FIEGARCH 
model were able to study the impact of the Tunisian revolution on the features of 
Tunisia stock exchange index such as asymmetry and long memory. 

   
3. Data and methodology 
3.1. Data 
Our dataset consists of the daily closing prices of the Moroccan leading 

financial market index labeled as the Moroccan all shares index or MASI, and 
spans the period ranging from 04/01/1993 to 03/02/2017. The period between the 
years of 1993 up to 2002 belonged initially to the IGB 1  index that was later 
substituted by the new MASI index. The data was collected from the CDG 
CAPITAL BOURSE’s2 website and totaled 5996 observations. We have chosen the 
longest period of study that the data allows in order to fully and thoroughly analyze 
and study the long memory properties of the series. The price series were later 
standardized into a series of returns to have zero mean and unit variance, following 
the formula:  

 

rt= log 
𝑋𝑡

𝑋𝑡−1
  

 

(1) 

Where rt stands for the returns at the moment t, Xt  the prices at moment t and Xt-1 
the prices at t-1. Using a daily frequency, from a statistical point of view, helps 
yield a relatively much more valid statistical analysis because of the large sample. 
Furthermore, a growing number of financial studies are now favoring high-
frequency data over low frequency. 

The returns series was later examined for the existence of a unit root employing 
the Augmented Dickey-Fuller test, the results in table 1 show that the null 
hypothesis of the presence of a unit root I(1) cannot be accepted and therefore the 
series returns are stationary at level. 

 
 
 
 
1 Indice général boursier  
2 www.cdgcapitalbourse.ma 
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Table 1. Augmented Dickey-Fuller unit root test results 
Index returns ADF Value t-stat at 1% 
MASI -43,11*** -3,43 
Note: *** values are statistically significant at levels 1%,5%,and 10% 
 

Later on, the following mean equation was estimated for the MASI return 
series: 
 
rt = c + rt-1 + ε (2) 

Where, c is a constant, and ε stands for the error term. 
This mean equation was used to test for ARCH effect in the series using the 

White test. The results as shown in Table 2, imply the rejection the null hypothesis 
of homoskedasticity and therefore, the acceptance of the alternative hypothesis that 
the series is marked by an ARCH effect.  

 
Table 2. ARCH effect test results 

Dependent variable White statistic 
MASI returns 433,01*** 

Note: *** values are statistically significant at levels 1%, 5% and 10% 
 

3.2. Methodology 
In this article, we will be extending the fractionally integrated generalized 

autoregressive conditional heteroskedasticity first developed by Baillie & 
Bollerslev (1996) FIGARCH, to a fractionally integrated EGARCH of Bollerslev 
& Mikkelsen (1996), in order to account for asymmetry often observed in financial 
markets around the world. The application of this model will enable us, to measure, 
model and estimate persistence in volatility of MASI as well as capturing 
asymmetric leverage effect.  

The methodological approach in this article starts with a descriptive statistics 
subsection in order to provide key data distribution parameters, which will help us 
understand its properties, and better calibrate our models. In the following 
subsection, we will be trying to enrich the preliminary tests with more advanced 
assessments to detect the existence of persistence in the volatility of MASI and 
analyze its characteristics, before lastly running our estimation model FIEGARCH 
along with the comparison-oriented GARCH(1,1) and Integrated GARCH(1,1). 

Regarding the estimation process and the presentation of our FIEGARCH 
model, we propose in the following paragraphs a brief mathematical description of 
the model as well as the attributes of its estimation. 

Before proceeding to the presentation of the FIEGARCH model we start first by 
exposing the mathematical formulas of GARCH and IGARCH since they were the 
departure models that led to the FIEGARCH parameterization, and considering that 
they represent two special cases of FIEGARCH. 

In general ARCH models are based on the principle of using lagged squared 
returns to model conditional variance. They represent a weighted average of past 
squared returns, with the weights being calculated based on historical volatility, in 
contrast to the exponentially weighted moving average (EWMA) model. 
To start, GARCH model of Engel (1982) and Bollerslev (1986) can be presented as 
follows: 

 
With u2

t-1 standing for lagged squared residuals called ARCH parameter, ht-1 as 
lagged conditional volatility known as GARCH parameter, and εt being the residual 
parameter. For this model α0; αi and αj must be positive i.e α0 ;αi ; αj > 1, which is 

ℎ𝑡 = 𝛼0 +  𝛼

𝑞

𝑖=0

𝑢𝑡−1
2 +  𝛽

𝑝

𝑖=0

ℎ𝑡𝑡−1
2 +  𝜀𝑡  (3) 
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also known as the non negativity constraint. The sum of  α1 and β must be inferior 
to unity, and the closer the sum is to 1 the stronger the persistence is. Nevertheless, 
if this condition is violated, the process is said to have infinite shocks in the 
variance which can be modeled via an IGARCH process. 

GARCH model allows lagged shocks (u2
t-1, u

2
t-2,…,u2

t-q) to impose a finite impact 
of q periods on the conditional variance ht. as well as it allows lagged conditional 
variance terms ( h2

t-1, h
2
t-2,…, h2

t-p) to have amemory longer than (p). The longer is 
the memory of the shock the bigger is β1. 

The IGARCH model of Bollerslev & Engel (1986) is presented in the following 
form: 

 
ℎ𝑡 = 𝛼0 +  𝛼

𝑞
𝑖=0 𝑢𝑡−1

2 +  𝛽
𝑝
𝑖=0 ℎ𝑡𝑡−1

2 +  𝜀t (4) 

The IGARCH specification is similar to a GARCH model. However, the 
IGARCH has a constraint implying α+β = 1.  

This suggests an infinite persistence in the conditional volatility due to shocks 
in the squared returns. This model can also be expressed in terms of an ARMA 
(p,q) process as: 

 
𝛷 𝐿 (1 − 𝐿)𝜀𝑡

2 =  𝜔 +   1 − 𝛽(𝐿) 𝑣𝑡; 
 

(5) 

With 𝛷 𝐿  and  𝛽(𝐿) being ARCH and GARCH polynomials. For this model, 
persistence of volatility that can be defined as the slow rate of decay in the 
autocorrelation function of a time series is equal to unity. (1- L) is the differencing 
operator that can be actually expressed as (1-L)d with d=1.  

By replacing the first difference operator (1-L) in the above model with the 
fractional differencing operator (1- L)d, where d is a fraction 0 < d < 1, the 
FIGARCH model can be implemented.  

Therefore, and Following Baillie Bollerslev & Mikkelson (1996), the 
FIGARCH(p,d,q) class of models may be presented as follows: 

 
ht = 𝛷 𝐿 (1 − 𝐿)𝑑𝜀𝑡

2 =  𝜔 +  1 − 𝛽(𝐿) 𝑣𝑡; (6) 

The FIEGARCH of Bollerslev and Mikkelson(1996) can be presented as: 
 

𝛷 𝐿 (1 − 𝐿)𝑑 ln𝜎𝑡
2 −  𝜔 =  𝜓 (𝐿) +  𝑔(𝑧𝑡−1) (7) 

In terms of conditional volatility the FIEGARCH (1,d,1) can be expressed by 
the following equation: 

 
ℎ𝑡 =  1 − 𝐿 𝑑 𝑙𝑛𝜎𝑡

2 −  𝜔 =  𝛷1ℎ𝑡−1 +  𝑔 𝑧𝑡−1 +  𝜓1𝑔(𝑧𝑡−2) (8) 

With 𝛷1 and 𝜓1 standing for polynomials in the lag operator,(1-L)d is the 
fractional difference operator that oscillates between 0 and 1 giving the model 
more flexibility in the capturing of persistence in time series. The asymmetry 
feature is then accounted for by 𝑙𝑛𝜎𝑡

2. g(.) is the news impact function that governs 
the way by which past returns impact current volatility. And at last ztstands for 
normalized innovations 𝑧𝑡 =

𝜀𝑡

𝜎𝑡
. 

Regarding the estimation process of our models, we have decided to assume a 
normal distribution for the error term after having run benchmark tests previously. 
According to the Baillie et al., (1996) methodology, the models were also 
estimated employing the maximum likelihood function. Furthermore, the Broyden 
Fletcher Goldfarb Shanno (BFGS) algorithm was used for the optimization of our 
unconstraint nonlinear models.  
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4. Empirical application 
4.1. Descriptive statistics:  

 
Graph 1. MASI’s series evolution of prices 

 
Graph 2. MASI’s series evolution of returns 

 
The observation of the graphs confirms the stationary tests that were conducted 

previously in this paper, since the graph of the evolution of prices is one of a 
deterministic nonstationary process with a trend, in contrast to the graph of returns 
that shows values oscillating around the mean which describes a stationary process 
with no trend. Furthermore, we can notice at the left graph how the evolution of 
prices was moving in a continuous upward trend until reaching a peak of 
approximately 15000, before making a spectacular decline as a consequence of the 
world financial crisis.  

The returns graph demonstrates some important volatility behaviors, firstly it 
enables us to clearly define periods of high and low volatility, high periods (which 
are of the more importance) are the ones coinciding with the adoption of the euro 
as a common currency in the eurozone between 1999 up to 2003, the financial 
crisis from 2007 up to 2009, and last the Arab unrest in 2011. Secondly and lastly, 
the returns series displays a clear pattern of volatility clusters since periods of high 
volatility tend to be followed by periods of high volatility and periods of low 
volatility are commonly followed by periods of low volatility in a persistent way.  

To provide further evidence on this volatility clustering behavior, we proceeded 
to apply the Ljung Box test statistic Q(12) to the series of absolute returns in order 
to assess the null hypothesis of a white noise process.  

 
Table 3. Ljung Box Q statistic test applied to absolute returns series 

Dependent variable Ljung Box Q(12) 
MASI absolute returns series 433,01*** 

Note: ***: values are statistically significant at levels 1%, 5% and 10% 
 
Following the estimated value of Q(12) in Table 3, the null hypothesis of no 

serial correlation i.e white noise was rejected and we could deduce that the absolute 
returns series is affected by autocorrelation. 
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Graph 3. Plot of the autocorrelation function of the MASI absolute returns series 
 
The horizontal bands represent Bartlett’s formula for MA(q) 95% confidence 

intervals. 
The persistence of volatility can be particularly seen in the plot of the sample of 

the Autocorrelation function of the absolute returns series in Graph 3. Absolute 
returns have the property to provide estimates of the returns’ variance at every 
moment t. Consequently; the autocorrelation function (ACF) of absolute returns 
should display positive and statistically significant autocorrelations. These 
properties are drawn from the fact that financial markets are generally featured by 
volatility clustering, and in many cases long memory processes. 

The absolute returns were chosen instead of rt, because, according to the 
efficient markets hypothesis, the latter cannot be forecasted. 

The graph represents up to 1950 lags of the autocorrelations of absolute returns, 
and as one can notice, peaks of autocorrelations are still significant on a very long 
time range, since they are outside of the 95% no serial correlation confidence 
interval, implying long-term dependencies in the autocorrelations i.e long memory 
property.  

At last, we propose to make use of an additional important long memory metric 
which is Hurst’s exponent. 

For a given time series Xt= 1, 2, …., T of the mean 𝑋 𝑡  , the R/S statistic can be 
formulated as  

 
𝑅

𝑆
=  

1

[
1

𝑇
Σ𝐽=1
𝑇  𝑋𝑖−𝑋 𝑡 

2]
1
2

 𝑚𝑎𝑥1≤𝑘≤𝑇  (𝑋𝑗
𝑘
𝑗=1 −  𝑋 𝑡)  −   𝑚𝑖𝑛1≤𝑘≤𝑇  (𝑋𝑗

𝑘
𝑗=1 −  𝑋 𝑡)  (9) 

 
The R/S statistic can be defined as a statistical tool which allows the analysis of 

a time series data in order to attempt to find repeated patterns in the data.  
The Hurst exponent denoted by H can be derived from the R/S statistic 

according to the following formula: 
 

 𝐻 =  
log 𝑅/𝑆

log 𝑇
                                                                       (10) 

 
The statistic H can take values ranging between 0 and 1. 0 being the anti-

dependence, 0.5 denoting a random walk process while a 1 is a synonym of strong 
persistence in the time series. It is noteworthy to specify that the H in contrast to 
previous long memory metrics, does not allow statistical significance tests, which 
can be a considerable drawback.  

For our Time series, the calculus of the Hurst exponent yields the following 
result: H = 0.71 

The results being comprised between 0.5 and 1, suggest the presence of strong 
serial dependency in the time series. Therefore, we can clearly add the Hurst 
exponent to the other statistics which have all indicated the presence of a long 
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memory process in the Moroccan financial market data. These conclusions 
motivate our choice of a FIEGARCH model. 

 
Table 4. Descriptive statistics 

Descriptive statistics MASI Returns 
Mean 0.000392 
Median 0.000290 
Max 0.045547 
Min -0.050167 
Standard deviation 0.006767 
Skewness -0.086517 
Kurtosis 10.30330 
Jarque-Bera 1330.91 
P-value 0.000000 

Note: ***: values are statistically significant at levels 1%, 5%,and 10% 
 
The descriptive statistics of the returns series exhibit a positive and a very small 

mean value in comparison to the more important standard deviation value. The 
skewness statistic implies that the returns series is skewed to the left revealing a 
non symmetric behavior, while the high value of the kurtosis indicates the 
existence of thick tails. 

Lastly, the Jarque-Bera statistic confirms the previous shape-related results 
implying the rejection of the null hypothesis of a normal distribution in favor of a 
fat-tailed distribution of returns, which is very common in financial time series.    

 
4.2 Model estimation 
As all the preliminary tests are run, we can now step forward, and start 

estimating our principal model FIEGARCH, as well as the benchmark models that 
are GARCH(1,1) and IGARCH. 

 
Table 5. Model estimation results 

Model parameters GARCH(1,1) IGARCH(1,1) FIEGARCH 
Constant in mean 0.000262*** 0.000293*** 0.0002545*** 
Constant in variance 1.38E-06*** 1.527633*** 0.0374628 
Alpha 0.284154*** 0.091386*** -0.926871*** 
Beta 0.727950*** 0.908614*** 0.962261*** 
Leverage ------ ------ 0.645537*** 
d ------ 1 0.690718*** 
AIC -7.674530 -7.676671 -7.676739 
SIC -7.658943 -7.663319 -7.667100 
Log Likelihood 23099.33 23013.82 23016.927 

Note: ***: values are statistically significant at levels 1%, 5%,and 10% 
 
Before going into the analysis of the estimation results, we can also test the 

persistence of volatility by summing up the ARCH and GARCH parameters and 
see how close they are to 1. Since the GARCH model has an Alpha+Beta< 1 
restriction, results have atendency to show a number close to the value of 1 as it is 
the case of our example. And since we cannot statistically decide whether they are 
equal, or smaller than unity, we will apply the Wald test, which has the following 
null and alternative hypothesis: 

 

 
 
Table 6. Wald test results 

Wald test x2 P value 
0.925314 0.339 
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The results of the Wald test suggest the acceptance of the null hypothesis 
implying an infinite persistence in the volatility of MASI. These results favor the 
estimation of an IGARCH model.   

Since the IGARCH Model have an infinite persistence of volatility assumption, 
it was predictable that the model was going to be remarkably significant. 
Consequently, and judging by the previous results we could safely assume that the 
d parameter in FIEGARCH is going to be also statistically significant. 
Accordingly, the only task that is left, will be measuring the differentiating 
parameter and see how it ranges in the 0 to 1 interval. The parameter d will provide 
us with an empiric answer regarding the degree of persistence in the MASI 
volatility. 

As for the analysis of the estimation results, an apparent fact is that the three 
models are notably significant which features their validity. The FIEGARCH 
model entails a persistence degree of 0.69, this involves strong serial dependence 
on a long-term scale in the volatility function. The leverage parameter being 
positive emphasizes the existence of positive shocks in the conditional volatility 
equation. Judging by the AIC, SIC and log likelihood information criterions, we 
can safely state that the FIEGARCH model is not only able to capture this strong 
temporal interdependence, but it is also the best model to estimate and forecast the 
variance of MASI by capturing other stylized facts such as leverage effect and 
ARCH behavior, hence, outperforming the two other models. 

 
5. Conclusion 
We have tried in this article to investigate and assess the persistence in the 

volatility of MASI. The persistence or long memory in volatility has a crucial 
impact on its modeling and is of a paramount importance to risk managers.  

The main merit of this paper is to empirically demonstrate the existence of a 
strong persistence in the volatility of MASI which is inconsistent with the EMH. 
Hence, proving that the volatility of the MASI is actually predictable and can be, 
therefore, forecasted based on its past values. 

To further highlight the validity and the implications of our model, we proposed 
a comparison with two other competing models, which are GARCH (1,1) and 
IGARCH.  

The results prove a certain superiority of FIEGARCH model, which can be 
explained by the fact that it nests both models as special cases in addition to the 
capturing of the persistence in volatility. Our results could be consequently of great 
use to financial risk managers, hedge managers as well as academics interested in 
the modeling of volatility in the Moroccan financial market.  
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