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How does atmospheric circulation affect the 

diffusion of Covid-19 in polluted cities? 

 

By Mario COCCIAa† 

 
Abstract. This paper endeavors to explain how wind speed can affect the diffusion of 

COVID-19. The statistical analysis, based on data from Italy, suggests that high wind speed 

can reduce air pollution commingled with viral agents and as a consequence reduce 

infected individuals of COVID-19; moreover, results reveal that polluted cities with low 

wind speed have a greater number of infected individuals and total deaths also because of 

bad air quality. This study suggests the important role of atmospheric pollution and 

atmospheric circulation in the transmission dynamics of the novel Coronavirus to support 

appropriate environmental policy to reduce concentration of pollutants in the atmosphere, 

improving air quality and human health. 
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1. Introduction 
he contemporary environmental and sustainability debate is based 

on new or relatively unexplored topics continually emerging. This 

study provides an investigation for the exploration of causes, 

consequences and policy responses linked to diffusion of Coronavirus 

disease 2019 in a context of environmental and sustainability science. 

The Coronavirus disease 2019 (COVID-19) is due to a new virus called 

Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) that 

produces minor symptoms inmost people, but is also the cause of death of 

many individuals (Ogen, 2020; Dantas et al., 2020). This Coronavirus 

Disease, started in China in 2019, is an on-going global problem for human 

health that is generating a socioeconomic crisis and negative world 

economic outlook projections (Saadat et al., 2020). Manifold studies suggest 

a possible relation between air pollution and diffusion of COVID-19 

infection with severe respiratory disorders (Fattorini & Regoli, 2020; 

Frontera et al., 2020; Wang & Su, 2020). Scholars also state that high levels 

of air pollution can increase the lethality of COVID-19 infection (Contini & 

Costabile, 2020). Conticini et al. (2020) argue that population living in 

regions with high levels of pollutant has also a high probability to develop 

respiratory disorders because of infective agents. In fact, the highest level of 

COVID-19 infection is in the USA, Spain, Italy, UK, Russia, China, France, 
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etc. having in some regions a very high level of particulate compounds in 

the atmosphere (Frontera et al, 2020). Studies confirm correlations between 

exposure to air pollution, diffusion and virulence of SARS-CoV-2 within 

regions with population having a high incidence of respiratory disorders, 

such as chronic obstructive pulmonary disease (COPD) and Lung Cancer 

(Fattorini & Regoli, 2020). Ogen (2020, p.4) finds that high NO2 

concentrations in the atmosphere, associated with downwards airflows, 

cause of NO2 buildup close to the surface and prevent the dispersion of air 

pollution, increasing mortality of COVID-19, such as in Italy, Belgium, etc. 

In particular, this geographical structure of regions associated with specific 

atmospheric conditions prevents the dispersion of particulate compounds, 

which are one of the factors of a high incidence of respiratory disorders and 

inflammation in population of some European areas, such as Norther Italy. 

In short, the exposure of air pollution and poor air quality can be a driver 

of high rate of mortality of Coronavirus infection, such as in Italy (13.91%), 

Spain (11.8%), UK (14.73%), Belgium (16.38%), etc. (cf., Center for System 

Science and Engineering at Johns Hopkins, 2020). The study by van 

Doremalen et al. (2020) revels that in China viral particles of SARS-CoV-2 

may be suspended in the air for various minutes and this result can explain 

the high total number of infected people and deaths of COVID-19 infection 

in the USA, Spain, Russia, France, Brazil, Turkey, Iran, etc. (cf., Center for 

System Science and Engineering at Johns Hopkins, 2020). In general, these 

studies suggest the hypothesis that the atmosphere having a high level of 

air pollutants, associated with certain climatological factors, may support a 

longer permanence of viral particles in the air, fostering a diffusion based 

on mechanisms of air pollution-to-human transmission in addition to 

human-to-human transmission (Frontera et al., 2020). In order to extend the 

investigation of these critical aspects in the development of COVID-19 

outbreaks worldwide, in the atmospheric environment with high levels of 

particulate compounds and specific climatological conditions, the goal of 

this study is to analyze the relation between infected people, wind speed in 

the atmosphere and air pollution that can explain some critical 

relationships determining the diffusion of COVID-19 infection and negative 

impact in environment and human health. This study has the potential to 

support long-run environmental policy directed to mitigation strategies of 

emissions and depositions of gaseous and particulate compounds in the 

atmosphere for reducing and/or preventing the diffusion of future 

epidemics similar to COVID-19 infection. 

 

2. Study design 
2.1. Data sources and research setting 
This study focuses fifty-five (N=55) cities that are provincial capitals in 

Italy, one of the countries with the highest number of deaths of COVID-19 

infection: more than 30,900 units at 12May, 2020 (cf., Lab24, 2020). 

Epidemiological data are from Ministero della Salute (2020); data of air 

pollution are from Regional Agencies for Environmental Protection in Italy 
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(cf., Legambiente, 2019); climatological information are based on 

meteorological stations in Italian provinces (il Meteo, 2020); and finally, 

data of the density of population are from the Italian National Institute of 

Statistics (ISTAT, 2020). 

 

2.2. Measurements 
 Air pollution and particulate compounds emissions. Total days 

exceeding the limits set for PM10  or for ozone in2018 per Italian provincial 

capitals. Days of air pollution are a main factor that affects atmosphere, 

environment and human health. Moreover, 2018 as baseline year for air 

pollution data, it separates out the effects of COVID-19 infection. 

 Diffusion of COVID-19 infection. Number of infected individuals on 

March-April, 2020  

 Atmospheric circulation. Average wind speed km/h on February-

March 2020  

 Interpersonal contact rates. Population density of cities (individual 

/km2) in 2019  

 

2.3. Primary data analysis and statistics 
Descriptive statistics is performed categorizing Italian provincial capitals 

in groups, considering: 

 Atmospheric circulation - wind speed  

­ Cities with high wind speed in the atmosphere (>9 km/h) 

­ cities with low wind speed in the atmosphere (9 km/h) 

 Air pollution and particulate compounds emissions in the atmosphere  

­ Cities with high air pollution and particulate compounds emissions in the 

atmosphere (with >100 days per year exceeding the limits set for PM10 or for 

ozone) 

­ Cities with low air pollution and particulate compounds emissions in the 

atmosphere (100 days per year exceeding the limits set for PM10 or for 

ozone) 

Correlation and regression analyses verifies relationships between 

variables understudy. Regression analysis considers that the number of 

infected people across Italian provincial capitals (dependent variable y) is a 

linear function of the explanatory variable of total days exceeding the limits 

set for PM10 (explanatory variable x). 

The specification of linear relationship is a log-log model: 

 

log yt =  + log xt-1+ u        (1) 

 

 is a constant; = coefficient of regression; u= error term  

The estimation of equation [1] is performed using a categorization of 

cities according to wind speed in the atmosphere. An alternative model [1] 

applies as explanatory variable the density of population per km2 

considering groups of cities with high or low air pollution and particulate 

compounds emissions in the atmosphere.  
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Ordinary Least Squares (OLS) method is applied for estimating the 

unknown parameters of linear models [1]. Statistical analyses are 

performed with the Statistics Software SPSS version 24.  

 

3. Statistical analyses 
Table 1 shows that cities in regions with low wind speed in the 

atmosphere have a higher level of days of air pollution and particulate 

compounds emissions than cities with a high wind speed in the atmosphere 

(about 88polluted days vs.65 polluted days exceeding PM10 or ozone per 

year). 
 

Table 1. Descriptive statistics of Italian province capitals according to atmospheric 

circulation - wind speed  

 

 Days 

exceeding 

limits set for 

PM10 or 

ozone 

2018 

Infected 

Individu

als 19h 

March 

2020 

Infected 

Individuals 

6th April 

2020 

Infected 

Individuals 

26th April 

2020 

Density 

inhabitants/

km2 

2019 

Wind 

km/h 

Feb-

Mar 

2020 

Temperatur

e °C 

Feb-Mar 

2020 

Cities in regions with 

high wind speed in the 

atmosphere  

(> 9 km/h) 

Arithmetic 

Mean 64.85 252.48 1198.52 1826.19 1153.85 11.12 9.82 

N=27 

Std. Error 

of Mean 6.93 40.91 176.32 290.02 303.74 0.58 0.54 

 

 Days 

exceeding 

limits set for 

PM10 or 

ozone 

2018 

Infected 

Individu

als 19h 

March 

2020 

Infected 

Individuals 

6th April 

2020 

Infected 

Individuals  

26th April 

2020 

Density 

inhabitants/

km2 

2019 

Wind 

km/h 

Feb-

Mar 

2020 

Temperatur

e °C  

Feb-Mar  

2020 

Cities in regions with low 

wind speed in the 

atmosphere 

( 9 km/h) 

 

Arithmetic 

Mean 87.89 850.32 2731.64 3963.86 1742.11 6.35 8.97 

N=28 

Std. Error 

of Mean 8.32 209.62 565.33 830.65 340.18 0.55 0.27 

 

This preliminary result suggests that high intensity of wind speed in the 

atmosphere improves the dispersion of gaseous and particulate matters, 

and as a consequence, it mitigates, i.e. reduces, diffusion of COVID-19 

infection in environment and society. In order to confirm this result, table 2 

considersair pollution and particulate compounds emissions in the atmosphereof 

cities: especially, cities with high air pollution and particulate compounds 

emissions in the atmosphere (>100 days exceeding limits set for PM10 or ozone 

per year) and low wind speed, they have a very high level of infected 

individualsin March and April 2020, in an environment with high average 

density of population. 

 

 

 

https://en.wikipedia.org/wiki/Statistical_parameter
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Table 2. Descriptive statistics of Italian provincial capitals according to air pollution and 

particulate compounds emissions in the atmosphere 
Cities with high air pollution and 

particulate compounds emissions in 

the atmosphere: 

 

>100days exceeding limits set for 

PM10 

 N=20 

Days exceeding 

limits set for PM10 

or ozone 

2018 

Infected 

Individuals 

19h March 

2020 

Infected 

Individuals 

6th April 

2020 

Infected 

Individuals  

26th April 

2020 

Density 

inhabitants/km2 

2019 

Wind 

km/h 

Feb-

Mar 

2020 

Temperature 

°C  

Feb-Mar  

2020 

Arithmetic Mean 125.25 1102.00 3575.15 5293.10 1981.40 7.67 9.19 

Std. Error of Mean 3.00 270.41 714.93 1036.63 444.68 0.64 0.33 

Cities with low air pollution and 

particulate compounds emissions in 

the atmosphere: 

 

100days exceeding limits set for 

PM10 N=35 

Days exceeding 

limits set for PM10 

or ozone 

2018 

Infected 

Individuals 

19h March 

2020 

Infected 

Individuals 

6th April 

2020 

Infected 

Individuals  

26th April 

2020 

Density 

inhabitants/km2 

2019 

Wind 

km/h 

Feb-

Mar 

2020 

Temperature 

°C  

Feb-Mar  

2020 

Arithmetic Mean 48.77 245.31 1066.94 1555.23 1151.57 9.28 9.49 

Std. Error of Mean 3.61 42.80 134.26 219.44 247.85 0.70 0.44 

 
Table 3. Bivariate Correlation 

 

Cities in regions with high wind speed in the 

atmosphere  

(> 9 km/h) 

Cities in regions withlow high wind 

speed in the atmosphere  

( 9 km/h)  

 

Log Days exceeding limits set for PM10 or 

ozone 

2018 

Log Days exceeding limits set for 

PM10 or ozone 

2018 

Log Infected Individuals 

19th  March, 2020   

Pearson Correlation .68** .51** 

Log Infected individuals  

6th  April, 2020   

Pearson Correlation .88** .96** 

Log Infected individuals 

26th  April, 2020   

Pearson Correlation .80** .93** 

Note:  **. Correlation is significant at the 0.01 level (2-tailed) 

 

Table 3 showsthat cities of regions with high and low wind speed, they 

have a high positive correlation (p-value<.01) betweenair pollution and 

particulate compounds emissions in the atmosphere and infected 

individualsof COVID-19 in March and April 2020.  

 
Table 4. Parametric estimates of the relationship of Log Infected individuals on Log Air 

pollution and particulate compounds emissions in the atmosphereconsidering the groups of 

cities with high or low wind speed  

Note: Explanatory variable: log Days exceeding limits set for PM10 or ozone 2018; dependent variable log 

infected individuals; *** p-value<0.001; ** p-value<0.01; * p-value<0.05 

 

Cities in regions low wind speed  

in the atmosphere ( 9 km/h)  

Cities in regions high wind speed  

in the atmosphere ( 9 km/h) 

DEPENDENT VARİABLE 

Explanatory variable: 

Log Days exceeding limits set for PM10 or ozone 

2018 DEPENDENT VARİABLE 

Explanatory variable: 

Log Days exceeding limits set for PM10 or 

ozone 

2018 

loginfected  

6th April, 2020 
 

loginfected  

6th April, 2020 

 

Constant  

(St. Err.) 

3.62** 

(1.26) 

Constant  

(St. Err.) 

2.14* 

(1.05) 

Coefficient  1 

(St. Err.) 

.88** 

(.29) 

Coefficient  1 

(St. Err.) 

1.14*** 

(..26) 

R2 (St. Err. of Estimate) .26 (.92) R2 (St. Err. of Estimate) .44(.74) 

F 9.28** F 16.27*** 
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Table 4 suggests that air pollution and particulate compounds emissions 

in the atmosphere explain the number of infected individuals of COVID-19. 

In particular,  

o cities with low wind speed in the atmosphere, an increase of 1% of air 

pollution and particulate compounds emissions, measured with days 

exceeding limits set for PM10, it increases the expected number of infected 

COVID-19 by about 0.88% (P<.01). 

o cities with high wind speed in the atmosphere, an increase of 1% of air 

pollution and particulate compounds emissions, measured with days 

exceeding limits set for PM10, it increases the expected number of infected 

COVID-19 by about 0.14% (P<.001). 

 

 
Figure 1. Regression lines of Log Infected Individuals on Log Air pollution and particulate 

compounds emissions in the atmosphere according to wind speed of cities. 
Note: This result suggests that diffusion of COVID-19 infection is higher in cities with low wind speed 

and moderate air pollution and particulate compounds emissions in the atmosphere. In order to 

confirm this result, table 6 considers cities with a high and low polluting industrialization. 

 

Figure 1.  shows a visual representation of regression lines that cities 

with low atmospheric circulation - wind speed, initially, they have a high 

number of total infected individuals driven by a moderate air pollution and 

particulate compounds emissions in the atmosphere. 

 
Table 5. Parametric estimates of the relationship of Log Infected individuals on Log 

Density inhabitants/km2 2019, considering the groups of cities with high and low air 

pollution and particulate compounds emissions in the atmosphere  

Note: Explanatory variable: log Density inhabitants/km2  in 2019; dependent variable log infected 

individuals; *** p-value<0.001; ** p-value<0.01; * p-value<0.05 

 

Cities with low air pollution and 

particulate compounds emissions  

Cities with highair pollution and 

particulate compounds emissions 

DEPENDENT VARİABLE 

Explanatory variable: 

Log Density inhabitants/km2 2019 DEPENDENT VARİABLE 

Explanatory variable: 

Log Density inhabitants/km2 2019 

loginfected  

6th April, 2020 
 

loginfected  

6th April, 2020 

 

Constant  

(St. Err.) 

4.62*** 

(.76) 

Constant  

(St. Err.) 

1.61 

(1.52) 

    

Coefficient 1 

(St. Err.) 

.32** 

(.12) 

Coefficient 1 

(St. Err.) 

.85*** 

(.21) 

    

R2 (St. Err. of Estimate) .18 (.78) R2 (St. Err. of Estimate) .48 (.75) 

F 7.42** F 16.63*** 
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Table 5 reveal that: 

 in cities with low air pollution and particulate compounds emissions in the 

atmosphere, an increase of 1% of the density of population, it increases the 

expected number of infected individuals with COVID-19 by about 0.31% (p-

value=.01) 

 in cities with high air pollution and particulate compounds emissions in 

the atmosphere, an increase of 1% of the density of population, it increases 

the expected number of infected individuals by about 85% (P<.001).  

Figure 2 shows regression lines on 6th April 2020, in the middle phase of 

COVID-19 outbreak in Italy: regions with an atmosphere rich of air 

pollutants, associated with a climatological factor of low wind speed, can 

support a stronger of diffusion of COVID-19 infection.  

In addition, if we consider regions with high/low air pollution and 

particulate compounds emissions in the atmosphere, using arithmetic mean 

of days exceeding limits set for PM10 or ozone of cities, the percentage of 

infected individuals and total deaths, weighted with population of these 

regions, reveals that about 74.50% of infected individuals and about 81% of 

total deaths in Italy because of COVID-19 infection are in regions with high 

air pollution and particulate compounds emissions in the atmosphere, 

cities located in hinterland zones (i.e. away from the coast, mostly those 

bordering large urban conurbations, such as Bergamo, Brescia and 

Cremona close to Milan in Lombardy region of North-West Italy), cities 

also having a low average intensity of wind speed and cities with a lower 

temperature. 

 

 

 
Figure 2. Regression line of Log Infected people on Log population density inhabitants, 

considering the groups of cities with high or low air pollution and particulate compounds 

emissions in the atmosphere. Note: This result reveals that diffusion of COVID-19 is higher 

in cities with high Air pollution and particulate compounds emissions in the atmosphere 

 

4. Discussion 
The current pandemic of Coronavirus disease and future epidemics 

similar to COVID-19 cannot be solved only with research and practice of 

medicine, immunology and microbiology but also with the development of 

environmental policy to reduce emission of particulate compounds, 

improving air quality and ecosystem. These findings here provide valuable 
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insight into atmospheric-environmental factors that may accelerate the 

diffusion of COVID-19 and similar viral agents. The main results of the 

study, based on case study of COVID-19 outbreak in Italy, are cities with 

little wind, and frequently high levels of air pollution and particulate compounds 

emissions in the atmosphere — exceeding safe levels of ozone or particulate matter 

— had higher numbers of COVID-19 related deaths.   

Considering the result just mentioned, the fundamental question is:  

 what is the link between diffusion of COVID-19 infection, air pollution 

and particulate compounds emissions in the atmosphere and low atmospheric 

circulation with low wind speed? 

Results suggest that, among Italian provincial capitals, the number of 

infected people is higher in cities with air pollution and particulate 

compounds emissions in the atmosphere, cities located in hinterland zones 

(i.e. away from the coast), cities having a low average intensity of wind 

speed and cities with a lower temperature. In particular, in hinterland cities 

(mostly those bordering large urban conurbations, such as Bergamo, 

Brescia, Lodi, close to Milan in Lombardy region of North Italy) with a high 

levels of air pollution and particulate compounds emissions in the 

atmosphere, coupled with low wind speed in the atmosphere, the average 

number of infected people in April 2020 more than doubled that of more 

windy cities. Therefore, cities in regions, with an atmosphere having a high 

intensity of wind speed, sustains clean days from air pollution and 

particulate compounds emissions, which current studies suggest is one of 

the drivers of the diffusion of Coronavirus infection. As a matter of fact, 

cities in hinterland zones (i.e. away from the coast) of Northern Italy with 

high air pollution and particulate compounds emissions, also having a low 

wind speed, have a stagnation of air pollution and particulate compounds 

in the atmosphere that can support diffusion of COVID-19 infection 

(Contini & Costabile, 2020; Conticini et al., 2020; Fattorini & Regoli, 2020). 

The implications for an environmental policy are clear: COVID-19 outbreak 

has low diffusion in cities of regions with low air pollution and particulate 

compounds emissions and atmosphere with a high circulation given by wind speed. 

Northern Italian regions and in particular hinterland cities, covered by the 

study, considering the structure of the atmosphere with low circulation 

given by low wind speed over time and space, as a consequence, in future 

should applyan environmental policy based on strategies of mitigation of air 

pollution and particulate compounds emissions, so that the accelerated 

transmission dynamics of infections similar to COVID-19 re not triggered. 

In order to reinforce these conclusions with a perspective of 

environmental policies, Xu et al. (2020) found out the effect of moisture on 

explosive growth in fine particulate matter (PM), and propose a new 

approach for the simulation of fine PM growth and dissipation in ambient 

air. In particular, winds significantly aid the dissipation of fine PM, and 

high concentrations of fine PM only persisted for a very short time and 

dissipated after several hours. The role of climatological factors, such as 

wind speed and direction, temperature, and humidity are critical for urban 

ventilation and the pollutant concentration in the streets of cities (Yuan et 
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al., 2019). Hence, cities and regions should consider the benefit of a high 

atmospheric circulation with high wind speed wind that can increase the 

dispersion of air pollution and particulate compounds emissions and, as a 

consequence, reduce diffusion of viral infectivity with main public health 

benefits, as well as cities have to consider a pollution industrialization in 

areas with low wind speed that can increase stagnation of the air in the 

atmosphere with potential problems for public health in the presence of 

viral agents. Gu et al. (2020) argue that a strategy to enhance air quality in 

cities is improving urban ventilation: the ability of an urban area to dilute 

pollutants and heat by improving the exchange of air between areas within 

and above the urban canopy. Of course, urban ventilation is a function of a 

manifold urban geometry parameters, e.g., frontal area density, and plan 

area density and the aspect ratio of the urban morphology (Gu et al., 2020). 

Studies show that variations of building height have beneficial effects in 

terms of breathability levels, whereas larger aspect ratios of urban canyons 

can lead to high levels of pollutant concentrations inside the streets of 

cities. Hence, cities located in hinterland zones of the northern Italian 

region with low wind speed have an urban climatology and aspects of 

urban and regional topography that sustain the stagnation of air pollution 

and particulate compounds that can support the spread of viral infectivity 

in fall and winter season. These regions have to design environmental and 

industrial policies to reduce the level of air pollutants directed to reduce 

polluting industrialization and support a sustainable production with 

benefits for air quality and human health (Wang & Zhu, 2020). In fact, 

health and economic benefits associated with national and local reduction 

of air pollution are now rarely contested. Cui et al. (2020), based on a study 

in China, show that where reductions in ambient air pollution have 

avoided more than 2,300 premature deaths and more than 15,80 related 

morbidity cases in 2017, with a total of about US$ 318 million in economic 

benefits. In addition, these scholars argue that reduction of PM2.5 

concentrations to 15 μg/m3 would result in reductions of 70% in total PM2.5-

related non-accidental mortality and 95% in total PM2.5-related morbidity, 

with economic benefits of more than US$ 1,289.5 million. In short, 

environmental policies that improve air quality and reduce air pollution 

generate significant health, social and economic benefits in the ecosystem. 

Overall, then, in order to prevent epidemics similar to COVID-19 and 

other infection, nations have, more and more, to apply an environmental 

and sustainable policy and technologies directed to reduce air pollution 

that improvespublic health of population and mitigates the negative effects 

of airborne viral diseases1. A comprehensive environmental policy for a 
 
1For studies about the interaction between science, technology and innovation, their sources, 

evolution, diffusion and impact on socioeconomic systems, see: Cavallo et al., 2014; Coccia, 

1999, 2001, 2004, 2005, 2005a, b, c, 2006, 2007, 2008, 2009, 2009a,b,c; 2010, 2010a,b; 2012, 

2012a,b; 2013; 2014, 2014a, b, c,d; 2015, 2015a, b; 2016, 2016a; 2017, 2017a, b, c, d, e, f, g, 

2018, 2018a, b, c, d, e, f, g, h, i; 2019, 2019a, b, c, d, e, f, g, h, i, l, m; Coccia, 2020a, b, c, d, e, f, 

g, h, i, l, m, n, o, p, q; Coccia and Bellitto, 2018, Coccia and Cadario, 2018; Coccia et al., 
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sustainable development has to consider the urban climatology and 

atmosphere of regions with the study of climatic properties of urban areas 

and support a better air quality (Gu et al., 2020; Wang & Zhu, 2020).  

 

5. Conclusions 
The concentration in specific areas of a combination of atmosphere with 

low wind, specific urban climatology of hinterland cities, high Air pollution 

and particulate compounds emissions, aspects of regional topography and 

physical geography sustains, in fall and winter season, the stagnation of air 

pollution that has supported the spread of COVID-19 infection and likely in 

future of other infections(cf., Contini & Costabile, 2020; Conticini et al., 

2020; Fattorini & Regoli, 2020). New findings here show that geo-

environmental and atmospheric factors of hinterland zones with low wind 

may have accelerated the spread of COVID-19 in northern Italian cities, 

leading to a higher numbers of COVID-19 related infected individuals and 

deaths.   

However, these conclusions are of course tentative because there are 

several challenges to such studies, particularly in real time because the 

sources can only capture certain aspects of the on-going complex relations 

between air pollution and particulate compounds emissions, atmospheric 

composition and impact, and diffusion of viral infectivity in ecosystem. 

This study therefore encourages further investigations on these aspects of 

the diffusion of COVID-19 outbreaks in regions that have a specific 

atmosphere composition and impact on environment to design appropriate 

environmental policies that are also main public health measure to reduce 

air pollution and control the spread of infection similar to COVID-19 (Ou et 

al., 2020). In short, in the presence of high air pollution and particulate 

compounds emissions and low wind speed in the atmosphere that can 

support diffusion of epidemics in environment, this study must conclude 

that a comprehensive strategy to prevent future epidemics similar to 

COVID-19 has also to be designed in terms of environmental science to 

improve air quality and human health. 

To conclude, a proactive environmental strategy to help cope with 

future epidemics should concentrate on reducing levels of air pollution in 

hinterland and polluted cities. Therefore, such a strategy needs to take into 

account socioeconomic and environmental factors of affected regions, not 

only factors related to biology and medicine. 
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