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Abstract. A measure of aversion to a risk akin to the risk premium is the required payoff 
truncation – a probability level, or a point of the distribution range - of the – null mean - risk 
distribution that allows an expected utility equal to the deterministic level. For a small risk – 
a noise of null expected value - added to the argument of an utility function, it is straight-
forward to show that – for a risk-averse individual - such subsistence probability equals the 
conventional risk-premium over the symmetric of the worst possible outcome. However, 
both measures do not take into account aversion (or proneness) to risk in the utility 
distribution itself – they apply to expected utility maximizers. Maxmin behaviour and 
quantile preferences, applicable in the presence of uncertainty (or non-cooperative 
opponents) rather than risk, can be suggested to circumvent the problem. An alternative 
theory – constrained expected utility - relies on the use the expected utility over the upper 
truncated distribution (lower - or doubly truncated - in case of risk-loving behavior) at a 
given (individual specific) truncation point, or probability level. Then, a conventionally 
defined risk-premium weighs both the truncation bias and risk dispersion. Such distinction 
also applies if preference truncation – or rather, “trimming” - is (instead) accompanied by a 
switch of probability mass to tail “focal” points. Then, if the latter are sufficiently extreme, 
the effect on attitude towards risk may be reversed relative to standard preference 
truncation: lower trimming enhancing risk-aversion, upper one reducing it. Applications of 
truncated principles to mean-variance “utility” preferences – and risk-loving attitudes - were 
also briefly outlined. Illustrations for normal and uniform risks were often appended. 
Keywords. Subsistence-payoff; Non-expected utility theories; Constrained expected utility; 
Truncated preferences towards risk; Maxmin, maxmax; Trimmed preferences towards risk; 
Focal points; Mean – variance(-utility) preferences; “Trimmed” normal (with tail focal points) 
distribution; Triangular distribution; Triangular preferences. 
JEL. D81; C10; C16; C24; D11. 

 

1. Introduction  
measure of aversion to a risk akin to the risk premium is the required 
payoff truncation – a probability level, or a point of the distribution 
range - of the – null mean - risk distribution that allows an expected 

utility equal to the deterministic level. For a small risk – a noise of null 
expected value - added to the argument of an utility function, it is straight-
forward to show that – for a risk-averse individual - such subsistence 
probability equals the risk-premium over the symmetric of the worst possible 
outcome. 

However, both measures do not take into account aversion (or proneness) 
to risk in the utility distribution itself – they apply to expected utility 
maximizers. And there is now historical empirical evidence that individuals 
do not comply with conventional expected utility axioms. Minimax behaviour 
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and quantile preferences can be suggested to circumvent the problem: they 
are used in decision theory under uncertainty – i.e., when the probability 
distribution is not known – (and in non-cooperative games) rather than risk 
itself. An alternative theory relies on the use the expected utility over the 
upper truncated distribution (lower in case of risk-loving behavior) at a given 
truncation point, or probability level – a concept in some sense compatible 
with VaR but specified in opposite fashion - of the randomness to represent 
attitude towards risk. Then, a conventional risk-premium must compensate 
both the truncation bias and risk dispersion. 

The existence of a subsistence level of individual consumption is generally 
accepted in economic modelling. Likewise, one can adventure that a minimal 
level of certainty is required for human activity to develop. It can take the form 
of acceptance of no lotteries but of those truncated from below over the 
outcome range possibilities; or discarding – disregarding – outcomes outside 
some range of the distribution. Such constrained expected utility behavior – 
even if partly consistent with von Neumann-Morgenstern’s (VNM) axioms -, 
as generating corner solutions, can give rise to similar consequences as those 
of ambiguity-type – prospect or focal point preferences 1 - decision contexts. It 
also bears realistic features, specially to evaluate firm’s behavior under 
uncertainty: it applies for example to limited liability, a common legal status; 
insurance schemes often include compensation thresholds suggesting some 
truncation… On a psychological point of view, it could explain (add to the 
explanation of… they may just have low probability) why people may find some 
states surprising even if arising - “lawfully” - from a known risk. It is the 
purpose of this research to infer some consequences of such optimization 
behavior. 

A different truncation concept involves “trimming” of the original 
distribution with accumulation of the tail probability masses to individual-
specific focal points. Optimization relying on trimming with sufficiently 
extreme focal points may represent a different deviation of the individual risk-
aversion relative to expected utility maximizer than (plainly) truncated 
preferences: lower (upper) trimming may now induce an increase (reduction) 
in the risk-premium. 

Other decision theories allow for individuals to weigh expected utility 
along with other risky elements in their objective function; a simple case is the 
inclusion of the variance of utility itself as argument of the individual’s 
maximand 2 . Constrained mean-variance utility forms were thus also 
inspected.  

Finally, even if directed towards risk, the proposed theories may be 
generalized to attitudes involving subjective probabilities towards uncertain 
outcomes 3 . But then the subjective probabilities themselves must be 
specified. Triangular preferences – see the Appendix –, single-peaked or 
kinked at a modal point, spanning between two extreme outcomes, would be 
an alternative to the other special cases inspected. 

The exposition is organized as follows: in section 1 advances general 
notation: risk-premium, and links truncated with “trimmed” moments, in 
 
1  See Starmer (2000) for a recent survey of non-expected utility theories. Also Rieskamp, 

Busemeyer and Mellers (2006) for an overview of theories of preferential choice under 
bounded rationality. 

2 See Martins (2004), for example. 
3 See Kelsey and Quiggin (1992) for a survey. 



Turkish Economic Review 

A.P. Martins, TER, 10(1-2), 2023, p.9-33. 

11 

11 

general and of normal and uniform distributions used in illustrations. Section 
2 defines the subsistence payoff (and threshold probability), highlighting 
connections between it and the standard univariate risk-premium. Section 3 
suggests truncated preferences of both risk-averse and risk-loving types, and 
section 4 further qualifies the risk premium when truncation is accompanied 
by probability mass accumulation on “focal” tail points. Section 5 considers 
other non-expected utility extensions. The main conclusions are contained in 
this introduction. 

 

2. Notation 
Admit a general (uni-dimensional) function of r attributes, represented by 

the column vector Z, ψ(Z). The risk premium to a randomness X added to Z is 
associated to a vector mVNM such that: 

 
ψ (Z - mVNM)  =  E[ψ(Z + X)]       (1.1) 

 
f(X) denotes the probability density function of X and F(X) the 

corresponding cumulative distribution function. Let E[X] =   = 0, and Cov(X) 

= V, a symmetric positive semi-definite matrix. Then mVNM stands for a 

multivariate risk premium defined over the quantities of all the arguments of 
(.). It can be specified in the metric of a particular attribute – vector mVNM 

must embed r-1 linear restrictions for an appropriate definition - if mVNM 

stands for a vector of zeros except for that attribute. 
Considering the Taylor expansion of ψ(Z - mVNM) to the first order only: 

 

ψ(Z - mVNM)    ψ (Z) - 
Z




 mVNM      (1.2) 

 
Replacing in (1.1), we deduce that: 
 

Z




 mVNM    ψ [E(Z + X)] - E[ψ(Z + X)]      (1.3) 

 

Z




 mVNM – the sum of the elements of vector mVNM weighted by their 

marginal contribution to the function ψ (.) – is a measure of the difference 
between the function evaluated at the expected value of the argument and the 
expected value of the function. 

Using Taylor’s expansion of E[ψ (Z + X)] to the second order, we infer that 
 

Z




  mVNM  =  - 

1

2
 

'
2

´
vec

Z Z

  
  

   
 vec(V)     (1.4) 

 
where vec(A) creates a column vector stacking the columns of matrix A, 

Z




 and 

2

´Z Z



 
 the gradient and the Hessian of ψ(Z) respectively. For the 
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common univariate case, 
Z




 mVNM  =  - 

1

2
 

2

2Z




 Var(X), or ψ’(Z) mVNM  =  

- 
1

2
 ψ”(Z) 2. We always assume ’(Z) > 0. 

 

As is well-known, if e   f(e), the truncated distribution at probability levels 

 (to the left) and  (1 -  at the right) such that  0   <   1, exhibits: e | 

)(1 F < e < )(1 F     
 

)(ef
 (with cdf 







)(eF
) over )(1 F < e < 

)(1 F . ( (.)1G  denotes the inverse function of G(.).) 

1) Being F(e) a normal cdf with mean   and standard deviation   4: 

 

E[e | )(1 F < e < )(1 F ]  =    + 






  )]([)]([ 11

      (1.5) 

 

Var[e | )(1 F < e < )(1 F ]  =  {1 + 






  )]([)()]([)( 1111

 

- 

 - 

2
11 )]([)]([












 




}  2   (1.6) 

and 
 

E[e2 | )(1 F < e < )(1 F ] = {1 + 






  )]([)()]([)( 1111

} 

 2 +  

 + 2 






  )]([)]([ 11

    +  2   (1.7) 

 
(.)  and (.)  refer the pdf and cdf of the standard normal respectively. 

)(1 F  =   +   )(1   and )(1 F  =   +   )(1  . 

The normal exhibits, thus, the property that the bias in expected value 

induced by truncation, E[e | )(1 F < e < )(1 F ] - E[e], is independent of 

the mean of the original distribution,   (even if not of its variance). Also, the 

variance of a truncated normal is independent of the mean of the mother pdf.  

Also, if  < 
1

2
 and  > 

1

2
, truncation always reduces the variance of a 

normal pdf – (1.6) is smaller than  2. 

2) If e is uniform over the interval (a, b), i.e., e    f(e) = 
ab 

1
 (F(e) = 

ab

ae





) over a < e < b, E[e] = 
2

ba 
, Var(e) = 

12

)( 2ab 
 5, E[e2] = 

3

22 abba 
. Then 

 
4 See, for example, Johnston and Kotz (1970), p. 81. 
5 See, for example, Johnston and Kotz (1970a), p. 59. 
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the truncated distribution is also uniform, e | )(1 F < e < )(1 F     
 

)(ef
 

= 
))((

1

  ab
 (with cdf 







)(eF
 = 

))((

])([









ab

abae
) over a + (b - a)  = 

)(1 F < e < )(1 F  = a + (b - a)  = b – (b – a) (1 - ) with: 

 

E[e | )(1 F < e < )(1 F ] = 
2

)1()(  abba
    (1.8) 

 

Var[e | )(1 F < e < )(1 F ]  =  
12

)])([( 2  ab
  =  Var(e) 2)(    (1.9) 

 
and 

 

E[e2 | )(1 F < e < )(1 F ]  =  

 = 

3

])(][)([])([])([ 22  abaabaabaaba 
  (1.10) 

 
The triangular density – see definitions and first two moments derived in 

the Appendix – may also be an alternative.  
Truncation – trimming - with focal points can be defined as generating, 

departing from a mother distribution e  f(e), a random variable )(Te  | , XL, 

, XU    g[ )(Te ], with the same density as e – g[ )(Te ] = f[ )(Te ] - for )(1 F < 

)(Te  < )(1 F , and concentrating the lower probability mass (of f(e)) before 

)(1 F , , on a point XL, the upper (1 - ) after )(1 F  on a point XU – and, 

of course, XL < )(1 F  and XU > )(1 F .  

It is straightforward to show that the expected value of any function of )(Te

, h(.): 
 

E[h(
)(Te ) | , X

L
, , X

U
]  =   h(X

L
) + 





)(

)(

1

1





F

F

 h(e) f(e) de + (1 - ) h(X
U

) = 

 =   h(X
L

) + ( - ) E[h(e) | )(1 F < e < )(1 F ] + (1 - ) h(X
U

) (1.11) 

 

Then, this would apply to E[ )(Te ] itself, and to E[ )(Te 2], for example. If f(e) 
is normal, the replacement of (1.5) and (1.7) in the corresponding form (1.11) 
would be valid. If uniform, of (1.8) and (1.10). 

Also, in general: 
 

Var[
)(Te  | , X

L
, , X

U
]  =  E[

)(Te 2
| , X

L
, , X

U
] - E[

)(Te  | , X
L

, , X
U

]
2
 = 

 =   X
L

2
 + ( - ) E[e

2
 | )(1 F < e < )(1 F ] + (1 - ) X

U
2
 -  
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 - { X
L

 + ( - ) E[e | )(1 F < e < )(1 F ] + (1 - ) X
U

}
2  (1.12) 

 
Again, for the normal, the replacement of (1.5) and (1.7) applies. For the 

uniform, (1.8) and (1.10). 
 

3. An alternative definition of risk aversion: 
Subsistence payoff or probability 

Assume that X is uni-dimensional. Likewise, if (Z + X) is concave, we can 
refer the individual’s aversion to risk X (for E[X] = 0, with variance Var(X)) to 

the probability value  - or, equivalently, the point of the distribution range 

F-1() – at which we have to truncate the distribution f(X) at its left hand-side 
for him to accept the lottery, i.e., that solves: 

 

(Z)  =  


 )(1 F

(Z + X) 
( )

1

f X


 dX  =  E[(Z + X) | X > F

-1
()]   (2.1) 

 
An individual may exhibit a larger subsistence payoff (or probability) than 

another individual for some distribution f(X), but a smaller one for other 
distribution g(X). An individual would be more risk-averse than another iff his 
subsistence payoff (or probability) towards any null mean risk is always larger 
than that of the latter. 

Obviously, the three criteria – risk-premium, subsistence payoff and 
subsistence probability – may generate a different ranking of individuals that 
face the same risk (then, only subsistence criteria agree with each other), and 
a different ranking of the risks faced by a given individual. It is therefore 
important to inspect the properties of the newly advanced measures and, if 
possible, relate them with the risk premium in at least an approximate 
manner. We proceed to both throughout this section. 

 

For any truncation level F-1() of the distribution of X: 
 

1

1

[ ( ) | ( )]

[ ( )]

dE Z X X F

d F

 







 
 = 

1[ ( )]

1

f F 






 { - [Z + F

-1
()] + 



 )(1 F

(Z + X) 

( )

1

f X


 dX } = 

1[ ( )]

1

f F 






 {E[(Z + X) | X > F

-1
()] - [Z + F

-1
()]}  (2.2) 

 

Obviously, for an increasing function (.), E[(Z + X) | X > F
-1

()] > [Z + 

F
-1

()] for any truncation level F-1() and (2.2) is always positive. Given how 

the truncation level was chosen, around  = : 
 

1

1

[ ( ) | ( )]

[ ( )]

dE Z X X F

d F

 







 
 
|  = 

  = 

1[ ( )]

1

f F 






 {(Z) - [Z + F

-1
()]} (2.3) 

 

We can therefore conclude that for  to exist, F-1() < 0. 
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Also, from (2.1): 
 

1[ ( ) | ( )]dE Z X X F

d

 



 
 = 

1

1

[ ( ) | ( )]

[ ( )]

dE Z X X F

d F

 







 
 

1[ ( )]d F

d







 = 

1

1

[ ( ) | ( )]

[ ( )]

dE Z X X F

d F

 







 
 

1

1

[ ( )]f F 
 = 

1

1 
 {E[(Z + X) | X > F

-1
()] - [Z 

+ F
-1

()]}         (2.4) 
 
The second derivative is: 
 

2 1

2

[ ( ) | ( )]d E Z X X F

d

 



 
 = 

1

1 
 {2 

1[ ( ) | ( )]dE Z X X F

d

 



 
 - 

1

1

[ ( )]f F 
 ’[Z + F

-1
()]}        (2.5) 

 
Again, evaluated at the susbsistence payoff: 
 

1[ ( ) | ( )]dE Z X X F

d

 



 
 
|  = 

 = 
1

1 
 {(Z) - [Z + F

-1
()]} 

2 1

2

[ ( ) | ( )]d E Z X X F

d

 



 
 
|  = 

 = 
1

1 
 ( 2 

1

1 
 {(Z) - [Z + F

-1
()]} 

- 
1

1

[ ( )]f F 
 ’[Z + F

-1
()] ) 

 
Using Taylor’s expansion to the second-order term in  around 0: 
 

E[(Z + X) | X > F
-1

()] = E[(Z + X) | X > F
-1

(0)] +  
1[ ( ) | ( )]dE Z X X F

d

 



 
|  = 0

 + 
1

2
 

2
 

2 1

2

[ ( ) | ( )]d E Z X X F

d

 



 
|  = 

0
 + ... = E[(Z + X)] +  

1[ ( ) | ( )]dE Z X X F

d

 



 
|  = 0

 + 
1

2
 

2
 

2 1

2

[ ( ) | ( )]d E Z X X F

d

 



 
|  = 0

 + ... = 

=  E[(Z + X)] +  {E[(Z + X)] - [Z + F
-1

(0)]} + 
1

2
 

2
 (2 {E[(Z + X)] - [Z + 

F
-1

(0)]} - 
1

1

[ (0)]f F 
 ’[Z + F

-1
(0)]) + ...    (2.6) 

Then, from the definition of : 

 



Turkish Economic Review 

A.P. Martins, TER, 10(1-2), 2023, p.9-33. 

16 

16 

(Z) = (1 + ) E[(Z + X)] -  [Z + F
-1

(0)] + 
1

2
 

2
 (2 {E[(Z + X)] - [Z + F

-

1
(0)]} - 

1

1

[ (0)]f F 
 ’[Z + F

-1
(0)]) + ...     (2.7) 

 

With a first-order approximation only 6  – and/or say, 2 is relatively 
negligible: 

 

  
1

( ) [ ( )]

[ ( )] [ (0)]

Z E Z X

E Z X Z F

 

  

 

  
      (2.8) 

 
The last expression suggests the importance of the minimum payoff – 

reminding maximin criteria – as determinant of the magnitude of . It also 
weighs the expected value of utility and not only the worst possible outcome. 
Replacing a first-order approximation to the conventional risk premium: 

 

  
1

'( )

( ) [ (0)] '( )

VNM

VNM

Z m

Z Z F Z m



    
       (2.9) 

 

Alternatively, if we expand E[ (Z + X)] to the second-order in (2.8), we can 
further infer that: 

 

 = - 
1

2
 

1

"( ) ( )

1
( ) "( ) ( ) [ (0)]

2

Z Var X

Z Z Var X Z F



     

  - 

2

2 1

"( )

"( ) 2 '( ) (0)

Z

Z Z F

 

   
        (2.10) 

 
or, also attending to the risk-premium definition mVNM: 

 

1




        - 

1

2
 

1

"( ) ( )

'( ) (0)

Z Var X

Z F



 
  =  

1(0)

VNMm

F 
      (2.11) 

 or    m
VNM

    [- F
-1

(0)]   

 

From the first part of (2.10),  is larger the more concave is (Z), and the 

smaller is the distance between (Z) and the utility of the minimum possible 

pay-off - the larger the utility derived from the worst outcome.  increases 

with Var(X), but also with F-1(0) (which is negative).  

As m  [- F
-1

(0)] , we conclude that for a given variance Var(X) distributions 

with lower [- F
-1

(0)] – i.e., with a higher minimum of X – will have higher . 

Therefore, risk-aversion is also influenced by F
-1

(0) if measured by , while it does 

not – directly - when assessed by m
VNM

.  

 

6 These approximations are valid for small risks. For the normal, as F
-1

(0) = - , they may not be 
very useful… 



Turkish Economic Review 

A.P. Martins, TER, 10(1-2), 2023, p.9-33. 

17 

17 

In the reverse angle, m
VNM

 weighs two effects: the threshold probability, , and 

(multiplied by) the absolute value of the worst possible outcome, [- F
-1

(0)].  

Using Taylor’s expansion to the second-order term - now - in Z we can also 
approximate: 

 




 )(1 F

(Z + X) 
( )

1

f X


 dX = 



 )(1 F

(Z) 
( )

1

f X


 dX + 



 )(1 F

’(Z) X 
( )

1

f X


 dX + 

1

2 


 )(1 F

”(Z) X
2
 

( )

1

f X


 dX  + … = (Z) + ’(Z) 



 )(1 F

X 
( )

1

f X


 dX + 

1

2
 ”(Z) 




 )(1 F

X
2
 

( )

1

f X


 dX  + …       (2.12) 

or 

E[(Z + X) | X > F
-1

()]  =  (Z) + ’(Z) E[X | X > F
-1

()] + 
1

2
 ”(Z) E[X

2
 | X  

> F
-1

()]  + ...         (2.13) 

 

Then, definition (2.1) suggests that  is the probability at which the ratio 
between the truncated mean and variance plus squared mean of the 

exogenous risk X equals 
1

2
 of the Arrow (1965)-Pratt (1964)’s measure of 

absolute risk aversion: 
 

1

2 1

[ | ( )]

[ | ( )]

E X X F

E X X F












 = 

1

1 1 2

[ | ( )]

[ | ( )] [ | ( )]

E X X F

Var X X F E X X F



 



 



  
 = 



 )(1 F

X 

( )

1

f X


 dX / [ 



 )(1 F

X
2
 

( )

1

f X


 dX] = 



 )(1 F

X f(X) dX / 


 )(1 F

X
2
 f(X) dX    - 

1

2
  

"( )

'( )

Z

Z




          (2.14) 

 

Then, we can further write that  obeys: 

 
1

2 1

[ | ( )]

[ | ( )]

E X X F

E X X F












    

( )

VNMm

Var X
   or   m

VNM
    

1

2 1

[ | ( )]

[ | ( )]

E X X F

E X X F












 Var(X) (2.15) 

 

For any truncation probability , 

 

  

1

2 1

1

[ | ( )]
{ }

[ | ( )]

[ ( )]

E X X F
d

E X X F

d F
















 = F

-1
() f[F

-1
()] {F

-1
() 



 )(1 F

X f(X) dX / 


 )(1 F

X
2
 f(X)  

dX  -  1}           (2.16) 

 

At the level  = , and because F
-1

() < 0: 
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1

2 1

1

[ | ( )]
{ }

[ | ( )]

[ ( )]

E X X F
d

E X X F

d F
















  =  F

-1
() f[F

-1
()] [- F

-1
() 

1

2
 

"( )

'( )

Z

Z




  -  1]  > 0  (2.17)   

 
1

2 1

[ | ( )]

[ | ( )]

E X X F

E X X F












 must be increasing with F

-1
() and therefore with . 

For a particular risk X – or distribution F(X) -, the higher -
"( )

'( )

Z

Z




, because  is set 

such that 

1

2 1

[ | ( )]

[ | ( )]

E X X F

E X X F












 = - 

1

2
 

"( )

'( )

Z

Z




, the higher will  be. 

Exemplifying with the (null mean) normal distribution – using (1.5) and 

(1.7) -  (;  = 1) solves: 

 
1

2 1

[ | ( )]

[ | ( )]

E X X F

E X X F












  =  

)]([)(1

)]([
11

1











 

1


   - 

1

2
 

"( )

'( )

Z

Z




  (2.18) 

 

With the uniform – using (1.8) and (1.10) and (;  =  = 1) - over (a, b) with a 

= - b: 

 
1

2 1

[ | ( )]

[ | ( )]

E X X F

E X X F












  =  

babababa

abba

])([])([

)(
22 






 
2

3
  = 

 =  




bb 2)21(

2
2 

 
2

3
     - 

1

2
 

"( )

'( )

Z

Z




    (2.19) 

 

We can easily verify that for the normal, 
1

2 1

[ | ( )]

[ | ( )]

E X X F

E X X F












 decreases 

with  2
 the parameter of variance for the normal and increases with F

-1
(). 

It decreases with b for the uniform case – and 

1

2 1

[ | ( )]

[ | ( )]

E X X F

E X X F












 increases 

with . For the equality to be maintained at a given Z,  increases with  2
 for the 

normal and with b for the uniform. Also,  will increase with - 
"( )

'( )

Z

Z




, the Arrow-

Pratt measure of risk-aversion. 

 

If (Z + X) is convex, the degree of risk-proneness could be measured by the 

upper truncation probability mass, , that would still allow the same utility as 

complete certainty, i.e., such that: 

 

(Z)  =  




 )1(1 F

(Z + X) 
( )

1

f X


 dX  =  E[(Z + X) | X < F

-1
(1 - )]  (2.20) 

 

The concept can be extended to the multivariate domain measuring the aversion 

to a risk added to j subject to background noise. The premium in the Arrow-Pratt 

sense would be the value n
j
 that solves: 
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E[(Z
1
 + X

1
, Z

2
 + X

2
, ..., Z

j
 – n

j
, ..., Z

r
 + X

r
)]  =  E[(Z + X)]    (2.21) 

 

Then, provided such n
j
 > 0 and the individual exhibits risk-aversion, an 

equivalent measure of its degree would be the lower truncation probability 
j
 – with 

F
j
(X

j
) denoting the cumulative marginal distribution of X

j
 – such that: 

 

E[(Z
1
 + X

1
, Z

2
 + X

2
, ..., Z

j
, ..., Z

r
 + X

r
)]  =  















 

......

)(
1

jjF 

(Z + X)  

( )

1 j

f X


 dX = E[(Z + X) | X

j
 > F

j
-1

(
j
)]     (2.22)   

 

A general multivariate risk-premium can be either formulated as an  such that: 

 

(Z)  =  














 

......

)(
1
jF

(Z + X) 
( )

1

f X


 dX  =  E[(Z + X) | X

j
 > F

j
-1

()] (2.23) 

 

One could suggest the minimum (or the maximum…) of the r different ’s that 

could be then calculated – one for each of the r arguments of Z. 

Or if all risks have similar dimensions as  = F(a,a,...,a) – or a itself – such that: 

 

(Z)  = 


aaa

... (Z + X) 
( )

1 ( , ,..., )

f X

F a a a
 dX = E{(Z + X) | X > [a a ... a]’} (2.24) 

 

Or considering the marginal distributions, F
j
(X

j
), 

 

(Z)  =  


 )()()( 11
2

1
1

...

 rFFF

(Z + X) 
1 1 1

1 2

( )

1 [ ( ), ( ),..., ( )]r

f X

F F F F    
 dX =  

E{(Z + X) | X > [F
1

-1
()  F

2
-1

()  ...  F
r
-1

()]’}    (2.25)   

 

Also important is the variance of that conditional variable: 

 

Var[(Z + X) | X > F
-1

()] =  E[(Z + X)
2
 | X > F

-1
()] - E[(Z + X) | X > F

-1
()]

2
  

=   E[(Z + X)
2
 | X > F

-1
()] - (Z)

2
        (2.26) 

 

Suppose a non-expected utility maximizing consumer with deterministic utility 

function (Z). Suppose ’ is his subsistence payoff in face of risk X added to Z; 

when ’ > , the individual is more averse to risk X than the expected utility 

maximizer. By analogy with (2.1), we can advance that 

 
1

2 1

[ ( ) | ( ')]

[ ( ) | ( ')]

E Z X X F

E Z X X F

 

 





 

 
        (2.27) 

 

would contain some measure of aversion to risk in (.). This suggests extensions 

in line with mean-variance theories, postponed to section 5. 
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3. Truncated Preferences 
We can posit that a risk-averse individual maximizes: 
 

E[(Z + X) | X < F
-1

()]  =  





)(1 F

 (Z + X) 
( )f X


 dX  =  (Z) + ’(Z) E[X | X <  

F
-1

()] + 
1

2
 ”(Z) E[X

2
 | X < F

-1
()] + ...      (3.1) 

 

He optimizes not expected utility but truncated expected utility. The higher , 

measuring, along with the shape of his utility function, his optimism - more 

appropriately, (1 - ) his pessimism -, the more optimistic he is. Obviously, if F
-1

() 

= -  ( = 0), the individual is a Maxmin (utility) character. 

A risk-cum pessimism-premium m can then be derived if we consider a noise 

added to Z such that E[X] = 0, and define m such that: 

 

E[(Z + X) | X < F
-1

()]  =  (Z) + ’(Z) E[X | X < F
-1

()] + 
1

2
 ”(Z) E[X

2
 | X <  

F
-1

()] + ... =  (Z - m)        (3.2) 

 

Now, we have: 

 

m    -  E[X | X < F
-1

()]  -  
1

2
 

"( )

'( )

Z

Z




 E[X

2
 | X < F

-1
()]    (3.3) 

 

The risk-premium now contains two elements: one weighting the change in the 

expected value of the randomness, the bias, due to truncation, another weighing 

dispersion; in the latter, variance plus the square bias are included. The 

decomposition also suggests the independence of the subsistence payoff concept 

defined in section 2 from the truncation level of preferences… Of course, there will 

be a subsistence payoff in the spirit of (2.1) equating: 

 

(Z) = 




)]1([

)(

1

1





F

F

(Z +X)
( )

(1 )

f X

 
dX = E{(Z+X) | F

-1
() < X < F

-1
[ + (1- 

)]}         (3.4) 

 

The concept becomes more difficult to deal with than the risk-premium. 

 

If X is normal with variance  2
 – using (1.5) and (1.7)  for ( =  = 0;  = ): 

 

m    


 )]([ 1
   - 

1

2
 

"( )

'( )

Z

Z




 {1 - 



 )]([)( 11  
}  2

 = 

=  m
VNM

 + 


 )]([ 1
   + 

1

2
 

"( )

'( )

Z

Z




 



 )]([)( 11  
  2  

(3.5) 
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For a VNM entity, m
VNM

  - 
1

2
 

"( )

'( )

Z

Z




  2

. The premium is now increased 

by the bias, 


 )]([ 1
  , but – being (Z) concave and  > 

1

2
 so that )(1   > 

0 - attenuated by a change in dispersion effect captured by 
1

2
 

"( )

'( )

Z

Z




 



 )]([)( 11  
  2

.  

 

m > m
VNM

    iff    - 
1

2
 

"( )

'( )

Z

Z




 )(1     < 1    (3.6) 

 

If (Z) is concave, the truncated expected value maximizer, when  > 
1

2
 and 

)(1   > 0, will be more risk-averse than the von Neumann-Morgenstern one when 

concavity, measured by - 
"( )

'( )

Z

Z




, is relatively mild. 

For the interesting special case in which  = 
1

2
 and )(1   = 0, i.e., if 

individuals maximize E[(Z + X) | X < 0], (3.5) becomes: 

 

m    2 )0(    - 
1

2
 

"( )

'( )

Z

Z




  2

  =  m
VNM

  +  2 )0(       (3.7) 

 

only the bias effect is registered, penalizing (increasing) the risk-premium. 

If X is uniform in the interval (a, b) – with a = - b < 0 so that E[X] = 
2

ab 
 = 0: 
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Again we devise a bias effect – positive - and a dispersion one – negative for risk-

averse individuals if  is large. 
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Likewise, a (“truncated”) optimist will maximize: 

 

E[(Z + X) | X > F
-1

()]  =  (Z) + ’(Z) E[X | X > F
-1

()] + 
1

2
 ”(Z) E[X

2
 | X >  

F
-1

()]           (3.9) 

 

with  being a degree of his optimism. The limiting case F
-1

() =  ( = 1) 

represents a Maxmax utility individual. 

Being X normal, the risk-premium becomes ( = ;  =  = 1): 
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m < m
VNM

  iff  - 
1

2
 

"( )

'( )

Z

Z




 )(1     < 1      (3.11) 

 

If (Z) is concave, the truncated expected value maximizer, when  < 
1

2
 and 

)(1   < 0, will always be less risk-averse than the von Neumann-Morgenstern 

one. 

If (Z) is convex, the truncated expected value maximizer will love risk more 

intensely (m will be more negative) - when  < 
1

2
 and )(1   < 0 – than the von 

Neumann-Morgenstern one when convexity, measured by 
"( )

'( )

Z

Z




, is relatively 

mild. 

For the interesting special case in which  = 
1

2
 and )(1   = 0, i.e., if 

individuals maximize E[(Z + X) | X > 0]: 

 

m    - 2 )0(    - 
1

2
 

"( )

'( )

Z

Z




  2

  =  m
VNM

  - 2  )0(       (3.12) 

 

Only the bias further affects the risk-premium, necessarily reducing it relative to 

the VNM magnitude. 

Being X uniform ( = ;  =  = 1): 

 

m    -
2

)( abba 
  -  

 -  
1

2
 

"( )

'( )

Z

Z




 

3

)](][)([)]([])([ 22 abaabaabaaba  
 = 
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 =  -
2

2 b
  -  

1

2
 

"( )

'( )

Z

Z




 

3

]2[]2[ 22 bbbbbb  
  = 

 =  m
VNM

 - 
2

2 b
 - 

1

2
 

"( )

'( )

Z

Z




 

3

]2[]2[ 2 bbbbb  
  = 

 =  m
VNM

 - 
2

2 b
 - 

1

2
 

"( )

'( )

Z

Z




 

3

2]2[  bbb 
    (3.13) 

 

A composition of the two effects suggests individuals maximizing E[(Z + X) | 

F
-1

() < X < F
-1

()]. Then: 

 

m    -  E[X | F
-1

() < X < F
-1

()]  -  
1

2
 

"( )

'( )

Z

Z




 E[X

2
 | F

-1
() < X < F

-1
()]  (3.14) 

 

For the normal ( = ;  = ): 

 

m    -  






  )]([)]([ 11

   - 

-  
1

2
 

"( )

'( )

Z

Z




 {1 + 







  )]([)()]([)( 1111

}  2
 =  

=  m
VNM

 - 






  )]([)]([ 11

  -
1

2

"( )

'( )

Z

Z




 







  )]([)()]([)( 1111

 2
      (3.15) 

 

m > m
VNM

 iff   

 - 
1

2
 

"( )

'( )

Z

Z




 { )]([)()]([)( 1111    }   > 

)]([)]([ 11            (3.16) 

 

For a symmetric truncation of expected utility, i.e., if )]([ 1    = )]([ 1   , 

and )(1   = - )(1   < 0, the bias-correction effect disappears: 

 

m  =  m
VNM

  +  
"( )

'( )

Z

Z




 

12

)]([)( 11



 




  2

      (3.17) 

 

m < m
VNM

 iff (Z) is concave: a symmetric truncation always softens risk-

averse behavior. And it also softens risk-loving behavior when (Z) is convex – 

then, m becomes less negative than m
VNM

. 

For the uniform ( = ;  = ): 

 

m  - 
2

)1()(  abba
  -  
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- 
1

2

"( )

'( )

Z

Z



 3

])(][)([])([])([ 22  abaabaabaaba 
  = 

=  - 
2

)1(2 b
  - 

1

2

"( )

'( )

Z

Z





3

]2][2[]2[]2[ 22  bbbbbbbb 
   

 =  m
VNM

 - 
2

)1(2 b
  -  

- 
1

2
 

"( )

'( )

Z

Z




 

3

]2][2[]2[]2[ 222 bbbbbbbbb  
   (3.18) 

 

If we apply symmetric trimming and 1 -  = : 

 

m    -  

- 
1

2

"( )

'( )

Z

Z





3

])()][1)(([])([)]1)(([ 22  abaabaabaaba 
  = 

=   - 
1

2

"( )

'( )

Z

Z



 3

]2)][1(2[]2[)]1(2[ 22  bbbbbbbb 
   

=  m
VNM

  - 
1

2
 

"( )

'( )

Z

Z




  

3

]2)][1(2[]2[)]1(2[ 222 bbbbbbbbb  
     (3.19) 

 

Only the dispersion term remains. For risk averse individuals, the premium 

may rise with b – but decrease with . 

Intermediate cases are far from quantile maximization and possess more 
encompassing value. 

 

4. Trimmed Preferences with Tail Focal Points 
A similar decision criteria would be provided for the truncation with focal 

points to which (1.11) applies. Individuals facing randomness X  f(X) added to 
Z with deterministic utility function (Z) would maximize: 

 

E[(Z +
)(TX ) | , X

L
, , X

U
]  = 

=   (Z + X
L

) + 





)(

)(

1

1





F

F

(Z + X) f(X) dX + (1 - ) (Z + X
U

)  = 

=   (Z + X
L

) + ( - ) E[(Z + X) | )(1 F < X < )(1 F ] + (1 - ) (Z +  

X
U

)           (4.1) 

 

In general, X
L

 would be a point in the lower tail, i.e., X
L

 < )(1 F , and X
U

 in 

the upper one and X
U

 > )(1 F . 
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We could define a pessimist as an individual for whom: 

 

X
L

 < 





)(1 F

 X 
( )f X


 dX    and   X

U
 < 



 )(1 F

 X 
( )

1

f X


 dX    (4.2) 

 

This would suggest (even if it would not guarantee) that E[
)(TX  | , X

L
, , X

U
] 

< E[X]. For an optimist, the inequality signs would be reversed. Yet, the (tail) focal 

points also affect the variance of the distribution.  

Alternatively, trimming may just represent “blurred” preferences towards 

extreme outcomes. 

 

As before, we can infer a risk-premium, call it m
T

, from: 

 

E[(Z + 
)(TX ) | , X

L
, , X

U
]  =  (Z - m

T
)     (4.3) 

 

Using (4.1), one immediately concludes that m
T

 relates to the risk premium of 

the equivalent truncated preferences m of section 3 as: 

 

(Z - m
T

)  =   (Z + X
L

) + ( - ) (Z - m)  + (1 - ) (Z + X
U

)    (4.4) 

 

Then:  

 

m
T

 > m iff (Z - m
T

) < (Z - m)  or  (Z - m) = E[(Z + X) | F
-1

() < X < F
-1

()]  

> 
( ) (1 ) ( )

1

L UZ X Z X   

 

   

 
       (4.5) 

 

We can further expand in (4.4) (Z - m) and (Z - m
T

) to the first order  

 

m
T

  =  ( - ) m  –  
( ) (1 ) ( )

'( )

L UZ X Z X

Z

   



   
    (4.6) 

 

Also expanding (Z + X
L

) and (Z + X
U

) to the second to conclude that: 

 

m
T

 = ( - ) m – [ X
L

 + (1 - ) X
U

]  - 
1

2
 

"( )

'( )

Z

Z




 [ X

L
2
 + (1 - ) X

U
2
]  = 

=  m  - [ (X
L

 + m) + (1 - ) (X
U

 + m)]  - 
1

2
 

"( )

'( )

Z

Z




 [ X

L
2
 + (1 - ) X

U
2
]   (4.7) 

 

Assume as before that X is normal. Then m obeys (3.15); replacing it in (4.6): 

 

m
T

    ( - )  { -  






  )]([)]([ 11

   - 

-  
1

2
 

"( )

'( )

Z

Z




 {1 + 







  )]([)()]([)( 1111

}  2
 } – 
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 – [ X
L

 + (1 - ) X
U

]  - 
1

2
 

"( )

'( )

Z

Z




 [ X

L
2
 + (1 - ) X

U
2
]   =  

= ( - ) { m
VNM

 - 






  )]([)]([ 11

   - 
1

2
 

"( )

'( )

Z

Z




 







  )]([)()]([)( 1111

  2
 } -   

– [ X
L

 + (1 - ) X
U

]  - 
1

2
 

"( )

'( )

Z

Z




 [ X

L
2
 + (1 - ) X

U
2
]       (4.8) 

 

The bias effect is captured by  

 

- )]}([)]([{ 11       – [ X
L

 + (1 - ) X
U

]     (4.9) 

 

and dispersion by: 

 

-  
1

2
 

"( )

'( )

Z

Z




 ( {( - )  + )]([)()]([)( 1111    }  2

 +  

 +  [ X
L

2
 + (1 - ) X

U
2
] )   =  

= ( - )  m
VNM

 - 
1

2
 

"( )

'( )

Z

Z




 ( { )]([)()]([)( 1111    }  2

  +   

 +  [ X
L

2
 + (1 - ) X

U
2
] )        (4.10) 

 

If X is uniform (b = -a): 

 

m
T

  =  ( - ) {- 
2

)1()(  abba
  -  

- 
1

2

"( )

'( )

Z

Z



 3

])(][)([])([])([ 22  abaabaabaaba 
 }   

–  
( ) (1 ) ( )

'( )

L UZ X Z X

Z

   



   
  =   

=  ( - ) {- 
2

)1(2 b
 - 

1

2

"( )

'( )

Z

Z





3

]2][2[]2[]2[ 22  bbbbbbbb 
}   

–  
( ) (1 ) ( )

'( )

L UZ X Z X

Z

   



   
   = 

 =  ( - ) ( m
VNM

 - 
2

)1()(  abba
  -  

- 
1

2

"( )

'( )

Z

Z




{

3

])(][)([])([])([ 22  abaabaabaaba 
 -  

12

)( 2ab 
}  )           (4.11) 



Turkish Economic Review 

A.P. Martins, TER, 10(1-2), 2023, p.9-33. 

27 

27 

–  
( ) (1 ) ( )

'( )

L UZ X Z X

Z

   



   
   

=  ( - ) { m
VNM

 - 
2

)1(2 b
  -  

- 
1

2

"( )

'( )

Z

Z




 

3

]2][2[]2[]2[ 222 bbbbbbbbb  
}    

–  
( ) (1 ) ( )

'( )

L UZ X Z X

Z

   



   
   

 

We could easily deduct the appropriate expressions for the special cases 

considered in section 3. They allow us to infer – confirm - the different effect of the 

single-sided truncation of section 3 from that of the current one: if lower (left hand-

side) truncation induced a less risk averse behavior of an individual with a concave 

utility function, now, truncation with a “focal” lower outcome -  = 1 – is likely to 

enhance – provided X
L

 is sufficiently negative- his risk-premium. Illustrating with 

the normal: 

 

m
T

    -  )]([ 1      -   X
L

   

-  
1

2
 

"( )

'( )

Z

Z




 ({(1 - ) + )]([)( 11    }  2

  +   X
L

2
)  =  

= (1 - ) m
VNM

 - )]([ 1      –  X
L

 - 
1

2
 

"( )

'( )

Z

Z




 { )]([)( 11      2

  

+  X
L

2
}          (4.12) 

 

For the uniform: 

m
T

  =  (1 - ) {- 
2

)( abba 
  -  

- 
1

2

"( )

'( )

Z

Z



 3

)](][)([)]([])([ 22 abaabaabaaba  
 }   

–  
( )

'( )

LZ X

Z

 




  =   

=  (1 - ) {- 
2

2 b
 - 

1

2

"( )

'( )

Z

Z



 3

]2[]2[]2[ 22 bbbbbbb  
}   

–  
( )

'( )

LZ X

Z

 




   = 

=  (1 - ) ( m
VNM

 - 
2

)( abba 
  -  

- 
1

2

"( )

'( )

Z

Z




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=  (1 - ) { m
VNM

 - 
2

2 b
  - 

1

2

"( )

'( )

Z

Z




 

3

]2[]2[ 2 bbbbb  
} –   

( )

'( )

LZ X

Z

 




          (4.13) 

 

5. Other Non-Expected Utility Extensions 
We can depart from individual’s behavior relying on the maximization of a mean 

variance utility function – see Martins (2004): the individual, maximizing in a 

deterministic context (Z), if faced with a risk X added to Z, maximizes U{E[(Z 

+ X)], Var[(Z + X)]} (instead…).  

We can then generalize the criterion to truncated preferences at the two tails. The 

pertaining risk premium, p, is defined as: 

 

U[(Z – p), 0]  =  U{E[(Z + X) | F
-1

() < X < F
-1

()], Var[(Z + X) | F
-1

() < X  

< F
-1

()]}           (5.1) 

 

By Taylor expansion and if we denote by U
i
(, .) the partial derivative of U(., .) 

with respect to the i-th argument and U
12

(, .)  the cross derivative with respect to 

the two arguments: 

 

U[(Z),0] - U
1
[(Z), 0] ’(Z) p = U{E[(Z+X) | F

-1
() < X < F

-1
()],0} + 

U
2
{E[(Z+X) | F

-1
() < X < F

-1
()], 0} Var[(Z+X) | F

-1
() < X < F

-1
()] = 

=  U[(Z),0] + U
1
[(Z),0] {E[(Z+X) | F

-1
() < X < F

-1
()] - (Z)} +  

+ (U
2
[(Z),0] + U

21
[(Z),0] {E[(Z+X) | F

-1
() < X < F

-1
()] - (Z)}) 

Var[(Z+X) | F
-1

() < X < F
-1

()] 7 

 

Noting that (Z) - E[(Z+X) | F
-1

() < X < F
-1

()]    ’(Z) m, where m is the 

premium of the truncated expected utility maximizer (of section 3): 

 

’(Z) p  =  ’(Z) m + (- 2

1

[ ( ),0]

[ ( ),0]

U Z

U Z




 + 21

1

[ ( ),0]

[ ( ),0]

U Z

U Z




 ’(Z) m) Var[(Z+X) | F

-

1
() < X < F

-1
()]   

 

Assuming a negligible cross derivative of U(., .): 

 

p  =  m  - 
1

'( )Z
 2

1

[ ( ),0]

[ ( ),0]

U Z

U Z




 Var[(Z+X) | F

-1
() < X < F

-1
()]   (5.2) 

 

 
7 Of course, a direct – and more complete - second-order Taylor expansion of the right 

hand-side would add terms in the square of the variance and in square the of 
{E[ (Z+X)] | …] - (Z)}. We are assuming that its size is negligible relative to the other 
terms. 
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m is the premium of the truncated expected utility maximizer that relates to that 

of the VNM agent as previously described. Provided 2

1

[ ( ),0]

[ ( ),0]

U Z

U Z




 < 0 – the 

marginal rate of substitution between the two arguments of U(., .) 8, p > m. 

If  < 
1

2
 and  > 

1

2
, the second term, however, may decrease with truncation: 

that is the expected effect of trimming on the variance of a (for example, for the 

normal) random variable. 

Finally, a further obvious generalization allows for differentiated truncation of 

the two arguments of the mean-variance utility function, i.e.,  

 

U{E[(Z + X) | F
-1

() < X < F
-1

()], Var[(Z + X) | F
-1

(’) < X < F
-1

(’)]} (5.3) 

 

Needless to say, trimming with focal points rather than truncation could 
constrain mean-variance-utility behavior. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
8 It has been identified – see Ormiston and Schlee (2001), Lajeri-Chaherli (2002), 

Eichner and Wagener (2003) - as the analog to the absolute risk-aversion Arrow-
Pratt measure when a function U[E(X), Var(X)] is present. 
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Appendix. The Triangular Continuous Distribution 
An interesting alternative to the rectangular – uniform – distribution of variable X is the 

triangular one. It assumes that density, non-null over the (a,b) interval for X, has a peak at c, a 
< c < b and exhibits a triangular form. It may be important in representing subjective 
probabilities: when the individual has an idea of what are the worst (a) and best (b) results and 
the most likelly one (c). Then he assigns linear decay of the density function from the most 
likely outcome towards those two extreme ones. Graphically: 

 
 
 
 
 
 
 
 
 

Fig. 1: The Triangular Distribution Density 
 
As the area under (in) the triangle must integrate to 1 = (b – a) f(c) / 2, we conclude that f(c), 

the ordinate of c, must be f(c) = d = 2 / (b - a). Then, only three parameters – a, b and c -specify 
the distribution. 

For a < x< c, f(x) = y is over the first, increasing line segment that crosses points (a, 0) and (c, 2 / 

(b – a)); then  (c – a) (b – a) / 2 = (x – a) / y or   

(A.1)    f(x) = (x – a ) 2 / [(b – a) (c – a)]    a < x < c 

(A.2)   F(x) =  
x

a

f(u) du = 
x

a

(u – a ) 2 / [(b – a) (c – a)] du  =  {[2 / [(b – a) (c – a)]} 
x

a

(u – 

a) du = {[1 / [(b – a) (c – a)]} 

x

a

|  u
2

 – 2 a u = {1 / [(b – a) (c – a)]} (x
2
 – 2 a x + a

2
) = (x – a)

2
 / [(b – a) 

(c – a)] = F
1

(x). 

 

(A.3)     F
1

(c) = (c – a)
2

 /[(b – a) (c – a)] = (c – a) / (b – a) 

For c< x < b, f(x) = y is over the decreasing line segment that crosses points (b, 0) and (c, 2 / (b – 

a)); then  (c – b) / [2 / (b – a)] = (x – b) / y or   

 

(A.4) f(x) = 2 (x – b ) / [(b – a) (c – b)] = 2 (b – x) / [(b – a) (b – c)] ,  c < x < b 

 

(A.5)  F(x) = F
1

(c) + 
x

c

f(u) du = F
1
(c) + 

x

c

 (b - u ) {2 / [(b – a) / (b - c)]} du  =  F
1

(c) + {[2 / 

[(b – a) (b – c)]} 
x

c

 (b – u) du = F
1

(c) + {[1 / [(b – a) (b – c)]} 

x

c

|  2 b u - u
2

   = F
1

(c) + {1 / [(b – a) 

(b – c)]} ( 2 b x - x
2
 – 2 bc + c

2
) = (c – a) / (b – a) + {1 / [(b – a) (b – c)]} ( 2 b x - x

2
 – 2 bc + c

2
),    c 

< x  < b. 

f(x) = 0 otherwise. 

 

(A.6)  E[x] = 
c

a

u f(u) du + 
b

c

u f(u) du  =  
c

a

 (u
2
 – a u) 2 / [(b – a) (c – a)] du  + 

b

c

2 (b u – 

u
2

) / [(b – a) (b – c)] du = {2 / [(b – a) (c – a)]} 

c

a

|  u
3
 / 3 - a u

2
 / 2 +  {2 / [(b – a) (b – c)]} 

b

c

|  b u
2

 / 2 – 

u
3

 / 3 = 

= {2 / [(b – a) (c – a)]} (c
3
 / 3 - a c

2
 / 2 - a

3
 / 3 + a

3
 / 2)  +  {2 / [(b – a) (b – c)]} (b

3
 / 2 – b

3
 / 3 - 

b c
2

 / 2 + c
3
 / 3)  

d = 2 / (b - a) 

x b c a 

f(x) 
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(A.7)  E[x
2
] = 

c

a

u
2

 f(u) du + 
b

c

u
2

 f(u) du  =  
c

a

 (u
3

 – a u
2

) 2 / [(b – a) (c – a)] du + 
b

c

2 (b 

u
2

 – u
3

) / [(b – a) (b – c)] du = {2 / [(b – a) (c – a)]} 

c

a

|  u
4

 / 4 - a u
3

 / 3 +  {2 / [(b – a) (b – c)]} 

b

c

|  b u
3
 

/ 3 – u
4

 / 4 = 

= {2 / [(b – a) (c – a)]} (c
4

 / 4 - a c
3

 / 3 -  a
4

 / 4 + a
4
 / 3)+  {2 / [(b – a) (b – c)]} (b

4
 / 3 – b

4
 / 4 - b 

c
3

 / 3 + c
4

 / 4. 

 

. Symmetry around c, requiring b – c = c – a; replacing then c = (b + a) / 2: 

(A.8)  f(x) = 4 (x – a ) / (b – a)
2

   ,    a < x < (b + a) / 2 

(A.9)  f(x) = 4 (b – x) / (b – a)
2

   ,    (b + a) / 2 < x < b 

 

(A.10)  E[x] = 
c

a

u f(u) du + 
b

c

u f(u) du  =  4 



2

ba

a

 u (u – a ) / (b – a)
2

  du  + 4 


b

ba

2

u (b – u) / 

(b – a)
2

  du = [4 / (b – a)
2
] (

2

|

ba

a



 u
3

 / 3 - a u
2

 / 2 +  

b

ba

2

|


 b u
2

 / 2 – u
3

 / 3) = 

= [4 / (b – a)
2
] ([(a+b)/2]

3
 / 3 - a [(a+b)/2]

2
 / 2 - a

3
 / 3 + a

3
 / 2)  +  (b

3
 / 2 – b

3
 / 3 - b [(a+b)/2]

2
 / 

2 + [(a+b)/2]
3

 / 3)  

 

(A.11)  E[x
2
] = 4 



2

ba

a

u
2
 f(u) du + 4 



b

ba

2

u
2

 f(u) du  = 4 



2

ba

a

 u
2

 (u – a ) / (b – a)
2

  du  + 4 


b

ba

2

u
2

 (b – u) / (b – a)
2

  du = [4 / (b – a)
2

] (
2

|

ba

a



 u
4

 / 4 - a u
3

 / 3 +  

b

ba

2

|


 b u
3

 / 3 – u
4

 / 4) = 

= [4 / (b – a)
2
] ([(a+b)/2]

4
 / 4 - a [(a+b)/2]

3
 / 3 - a

3
 / 3 + a

4
 / 4  +  (b

4
 / 3 – b

4
 / 4 - b [(a+b)/2]

3
 / 3 

+ [(a+b)/2]
4

 / 4)  

 

. Finally, with symmetry around 0, a = - b and: 

(A.12)  f(x) = (x + b ) / b
2

  ,    - b < x < 0 

(A.13)  f(x) = (b – x) / b
2

   ,    0 < x < b 

 

(A.14)  F(x) =  (x
2

 / 2 + b x) / b
2

 – (b
2

 / 2 - b
2

) / b
2

 = (x
2
 / 2 + b x) / b

2
 + 1 / 2,    - b < x < 0 

(A.15)  F(x) = 1 / 2 + (b x – x
2

 / 2) / b
2

   ,    0 < x < b 

 

(A.16)  E[x] = 0 

 

(A.17)  E[x
2
] = Var(X) = 



0

b

u
2

 f(u) du + 
b

0

u
2
 f(u) du  = 



0

b

 u
2

 (u + b) / b
2
  du  + 

b

0

 u
2

 (b 

– u) / b
2

  du = (1 / b
2

) (

0

|
b

 u
4
 / 4 + b u

3
 / 3 +  

b

0

|  b u
3

 / 3 – u
4

 / 4) = 

=  (1 / b
2

) (- b
4

 / 4 + b
4
 / 3  +  b

4
 / 3 – b

4
 / 4)  =  b

2
 / 6  
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The truncated version of the previous special case will exhibit ( < 
1

2
 and  > 

1

2
) 

(A.18)  f(x) = (x + b ) / [ b
2

 ( - )],    )(1 F  < x < 0 

(A.19)  f(x) = (b – x) / [b
2

 ( - )] ,   0 < e < )(1 F ]   

 

(A.20)  F(x) =  {[(x
2

 / 2 + b x) / b
2

 + 1 / 2 - }/ ( - )  ,    )(1 F  < x < 0 

(A.21)  F(x) =  {1 / 2 + [(b x – x
2
 / 2) / b

2
] - }/ ( - )  ,    0 < x < )(1 F  

 

)(1 F  (for  < 1 / 2) is the x that solves [(x
2

 / 2 + b x) / b
2

 + 1 /2 = ; )(1 F  (for  > 1 / 

2) is the x that solves 1 / 2 + [(b x – x
2

 / 2) / b
2
]  = .  

 

(A.22) )(1 F   =  b )211(    =  b )211(    >  - b 

(A.23) )(1 F   =  b )221(    =  b (1 22 )  <  b 

 

To simplify the expressions, we do not replace the solution in later expressions. 

 

(A.24)  E[x | )(1 F < x < )(1 F ]  =  


0

)(1 F

u f(u) / ( - ) du + 

 )(

0

1 F

u f(u) / ( - ) du  

= 


0

)(1 F

 u (u + b) / [b
2
 ( - )]  du  + 

 )(

0

1 F

 u (b – u) / [b
2

 ( - )] du = {1 / [b
2

 ( - )]} (

0

)(1

|
F

 

u
3

 / 3 + b u
2

 / 2 +  

)(

0

1

|
F

 b u
2

 / 2 – u
3

 / 3) = 

=  {1 / [b
2
 ( - )]} (- )(1 F 3

 / 3 - b )(1 F 2
 / 2  +  b )(1 F 2

 / 2 – )(1 F 3
 / 3)  

 

(A.25)  E[x
2

 | )(1 F < x < )(1 F ]  = 


0

)(1 F

u
2

 f(u) / ( - ) du + 

 )(

0

1 F

u
2
 f(u) / ( - ) 

du  =  {1 / [b
2

 ( - )} 


0

)(1 F

 u
2

 (u + b)  du  + {1 / [b
2

 ( - )} 

 )(

0

1 F

u
2

 (b – u)  du = {1 / [b
2

 ( - 

)} (

0

)(1

|
F

 u
4

 / 4 + b u
3
 / 3 +  

)(

0

1

|
F

 b u
3

 / 3 – u
4

 / 4) = 

=  {1 / [b
2
 ( - )]}  [- )(1 F 4

 / 4 - b )(1 F 3
 / 3  +  b )(1 F 3

 / 3 – )(1 F 4
 / 4] 
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