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Abstract. This research develops and expands the concept of risk-premium to a multivariate 

environment, providing an operational framework for the analysis of mean-variance 
optimizers’ attitudes towards exogenous uncertainty. Firstly, it digresses over possible 
approximations to the risk premium. Secondly, importance and properties of the variance of 
the objective function are highlighted. Thirdly, impact of uncertainty on the objective 
function and on control variables of mean-variance agents is confronted with that of 
expected function optimizer’s. The analysis is also applied to ex-post flexible or adjustable 
environments with respect to the decision variables. Production theory examples are briefly 
sketched.Innovation in tools include matrix algebra results and representation of higher than 
second moments – with reference to the multinormal as a special case -, and implicit rules 
of first-order condition point-wise optimization of functions of expected value and of 
variance of other functions. 
Keywords. Multivariate uncertainty: Multivariate risks; Risk-premium and risk-aversion; 

Background noise; Firm’s valuation; Mean-variance; Commitment under uncertainty; The 
value of information/flexibility; Uncertainty and the firm; Matrix algebra; Matrix 
vectorization and differentiation; Kronecker product; Multivariate normal distribution. 
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1. Introduction  
ultivariate analysis in the theory of uncertainty is highly technical 
and often redounds in unintuitive outcomes. It is the purpose of this 
research to contribute to the understanding of its mechanics and 

frameworking.  
Even in the univariate domain, where the role of concavity of the objective 

function is graphically understood, the quantitative measurement of the 
response to uncertainty only becomes perceptible through the mathematical 
development of the properties of the risk-premium – of how much of a given 
asset or income is the individual willing to forego to avoid the randomness. 
The risk-premium provides a measure of the impact of uncertainty on the 
expected value of a given function in the metric of one of its arguments. 
Through its inspection, the Arrow (1965) and Pratt (1964)’s absolute (and 
relative) measure of risk-aversion measure emerge as conditioning the 
magnitude of passive impact on expected utility, Kimball’s (1990) prudence of 
the effect of risk on control/decision variable of an optimizing agent, Gollier 
& Pratt’s (1996) temperance and Martins’ (2004) providence assessing 
background uncertainty. 

On the other hand, von Neumann-Morgenstern agents – expected function 
maximizers –are not the only prototypes simulating individual’s behavior in 
the presence of uncertainty dealt with in the economics literature. Non-
 
† UCP Católica Lisbon School of Business & Economics, Universidade Católica Portuguesa, Cam. 

Palma de Cima, 1649-023 Lisboa, Portugal.  

M 

file:///C:/Users/Bilal/Desktop/Akademik/KSP%20Journals/6-%20JSAS/54/A3%20Mario%20Coccia.docx%23YAZAR
https://orcid.org/0000-0001-9437-3702


Turkish Economic Review 

A.P. Martins, TER, 11(1-2), 2024, p.1-37. 

2 

expected utility theories count recent applications in resolving empirical 
paradoxes (Starmer, 2000). In the finance area, the mean-variance approach – 
see Tobin (1958) and Markowitz (1959) (Allais, 1979 as cited in Starmer, 20001)-
, that encompasses the eclectic treatment as a special case, is probably the 
most well-known, with relevance in asset-pricing formation research (Sharpe, 
1694; Linther, 1965; Black, 1972) among others. Applications in production 
theory have also followed (Karni & Schmeidler, 1991). Its contrast with 
expected utility preferences has been the subject of recent studies in risk and 
insurance theory – Ormiston & Schlee (2001), Lajeri-Chaherli (2002) and 
Eichner & Wagener (2003). 

Naturally, an inquiry into the properties and adequate definition of a risk-
premium under the assumption would stand as useful, and its multivariate 
generalization as fundamental - and became the main goal of this article. 
Historically, it continues the sequel of Duncan’s (1977), Karni’s (1979), 
Kihlstrom, Romer & Williams’ (1981) (also Keeney, 1973) and others’ work, 
searching for an appropriate multivariate risk representation – for von 
Neumann-Morgenstern agents. 

Under multiple variable interaction, matrix representation, with more 
compact outcomes than the underlying summations, products and others, 
becomes useful. Yet, notation and properties of its algebra do not seem to have 
had a consistent use in mathematical applications. A first task was to develop 
theorems applicable to the analysis, mostly on matrix differentiation rules 
involving vectorization and Kronecker products – honouring Dhrymes’ (1978) 
matrix calculus legacy. Among others, a tractable Taylor’s expansion form – 
invariably essential in risk theory approximations - was derived; and third and 
fourth moment matrix representations for the multivariate normal. 

An application of the principles yielded the representation of the expected 
value but also of the variance of a function of uncertain multiple, possibly 
correlated arguments. The development of the latter is important for the 
understanding of the impact of exogenous variability on the behavior of a 
mean-variance entity. Importance of higher-order derivatives and moments of 
the exogenous randomness(es) distribution becomes visible – without reliance 
on higher than second-order expansions, subject explored for the bivariate 
case in Martins (2004), for example.  

Features of optimal decisions become more complex under uncertain 
environments. The subject has been studied in microeconomic consumption 
and production theory; general conclusions can only be derived with a 
multivariate representation which we were set to inspect. We staged two 
scenarios – constant controls decided before the realization of the random 
event; and ex-post decision-making. If ex-ante commitment implies control 
variable stability – with optimal decisions completely sterilizing indirect 
effects of uncertainty on the objective function -, ex-post flexibility offers the 
potential to use the control variables in order to reduce the actual (total) 
“direct” maximand’s fluctuations. 

Ex-post flexibility in the control variables would get the expected-value 
mazimizer back to the exogenous uncertainty background, now referred to a 
deterministic optimal – optimized – indirect problem. If the randomness(es) 
is (are) added to the decision variables, it turns the expected-function 
 
1 -proposed a model in which individuals’ preferences “may also depend on the second moment 

of utility, that is, the variance of utility about the mean”. One can say that some of the former 
theories propose preferences over the mean and variance of a certain random variable. 
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mazimizer into a deterministic optimizer on the expected value – it allows for 
the neutralization of the effect of any risk. That may not be the case for a 
mean-variance agent. Moreover, in some contexts, even if no other defence is 
available, point-wise pure discarding of utility may be a meaningful option 
and, if capable of being sufficiently variance diminishing, have a place in 
optimal planning of the latter. 

The exposition is organized as follows: in section 1, we advance general 
notation and develop expected value and variance equivalences. Section 2, 
digresses over operational definitions of the risk-premium in the multivariate 
case. Section 3 explores the properties of optimal controls under uncertain 
backgrounds. Section 4 generates analogous conclusions for ex-post 
adjustable decision contexts. Section 5 advances general statements on the 
implications of combining the several backgrounds. Some applications to 
production theory are noted in section 6. The exposition ends with some 
concluding remarks. (Theorems of matrix algebra are compiled in Appendix 1, 
Taylor’s expansion in vector form advanced in Appendix 2, multivariate 
normal moment matrices developed in Appendix 3.) 
 

2. Notation: Multivariate Risk Exposure and Moments of 
Multi-Argument Function 

Admit a general (uni-dimensional) function of r attributes, represented by 

the column vector Z, (Z). We adopt Dhrymes (1978) conventions with respect 
to matrix operations – they are stated in Appendix 1.  
Consider a column vector X of dimension r. Using Taylor’s expansion – see 

Duncan (1977) -, (Z + X) can be approximated by: 
 

(Z + X)  =  (Z)  + 
Z




  X  + 

1

2!
 X’ 

2

´Z Z



 
 X + ...     (1)  

 

Z




is the row-vector with r elements containing the first derivatives of 

(Z) with respect to each of the r Zi’s – it is the gradient of (Z).   denotes the 

(symmetric) Hessian matrix of (Z), the matrix of second derivatives. 
Let X denote an r-dimensional multivariate random variable, of mean E[X] 

=  and variance-covariance (symmetric) matrix Cov(X) = E[(X - ) (X - )’] = 
E[X X’] - ’ = V; 

i
 denotes the element of the i-th row of ; 

ij
, the element 

in the i-th row and j-th column of V. d denotes the column vector of 

differentials of the several 
i
’s. Also dvec(V) is a rrx1 column vector containing 

the rxr differentials of the variances and covariances of X; of course, when 
assessing effects of out of the diagonal terms of V, one has to add two of 
dvec(V)’s factoring elements. 

It is easily established that, provided the elements of X are small: 
 

Proposition 1: E[(Z + X)]  (Z) + 
Z




 + 

1

2

'
2

´
vec

Z Z

  
  

   
vec(V +  ’) = 

 = (Z)  + 
Z




    + 

1

2
 tr[

2

´Z Z



 
 (V +  ’)] 
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Proof: Denote 
Z




by G (a row-vector with r elements) and 

2

´Z Z



 
  by H (a 

symmetric square matrix of order r). Taking the expectation of (1.1), only the 

last term, involving E[X’ 
2

´Z Z



 
  X] = E[X’ H X] would not be obvious. X’ H X 

is a scalar, hence equal to its trace. E[X’ H X] = E[tr(X’ H X)]; as tr(A B) = tr(B 
A) as long as operations are conformable, E[tr(X’ H X)] = E[tr(H X X’)] = tr(H 

E[X X’]) = tr[H (V +  ’)]. Using Proposition A.3 of Appendix 1, and noting 
that H symmetric: 
 

E[X’ H X] = vec(H)’ vec(V +  ’) = vec(V +  ’)’ vec(H)    (2) 
 

We can deduce that: 
 

[ ( )]

( )

E Z X

vec V

 


    

1

2
 

'
2

´
vec

Z Z

  
  

   

      (3)      

 
Notice that the effect of an exogenous change in the level of the 

deterministic arguments Z on expected utility is given by (using Proposition 
A.5 in the Appendix 1): 
 

[ ( )]E Z X

Z

 


  =  

Z




 + ’ 

2

´Z Z

 
 
  

 + 
1

2
 

2

( ')
´

tr V
Z Z

Z




 
  

  


 = 

 =  
Z




 + ’

2

´Z Z

 
 
  

 + 
1

2
vec(V+’)’

2

´Z Z

Z

 
  

  


     (4)  

 
However, with the same order approximation we only capture the first two 

terms when assessing a change in : 
 

[ ( )]E Z X



 


  =  

Z




 + ’ 

2

´Z Z

 
 
  

       (5)  

 
Proof: Using the rule of the derivative of the trace of the product rule of 

Proposition A.8 in Appendix 1, letting A = 
2

´Z Z

 
 
  

 , X = ’, B = 1,  = , we 

recover that 

2

'
´

tr
Z Z






  
   

   


  = 2 ’  

2

´Z Z

 
 
  

.  

 
Third derivatives condition (1.4); second ones (1.5). Yet, the two effects 

should coincide under infinite (full) approximations. 
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Also of interest would be the variance of the function. Ignoring higher than 
second-order terms, taking the covariance of the right hand-side of (1.1), we 
conclude - using the fact that if a is a constant and x and y random variables, 
Var(x + y + a) = Var(x) + Var(y) + 2 Cov(x, y): 
 

 Var[(Z + X)]    Var(G X) + 
1

4
 Var(X’ H X) + Cov(G X, X’ H X) 

 
One can show that: 
 

Proposition 2: Var[(Z + X)]    
Z




 V 

'Z




 +  

+
1

4
(

'
2

´
vec

Z Z

  
  

   

E[(XX’)(XX’)]
2

´
vec

Z Z

 
 
  

- {[vec(V + ’)]’

2

´
vec

Z Z

 
 
  

}
2
) + 

+ 
Z




E[X’(XX’)] 

2

´
vec

Z Z

 
 
  

 - 
Z




 [vec(V + ’)]’

2

´
vec

Z Z

 
 
  

 =  

=  Var[(Z + X)]    

'

'
vec

Z Z

     
     

 vec(V)  +  

+
1

4

'
2

´
vec

Z Z

  
  

   
E[(XX’)(XX’)]- vec(V + ’)[vec(V + ’)]’}

2

´
vec

Z Z

 
 
  

 + 

+ 
Z




 {E[X’(XX’)] -  [vec(V + ’)]’} 

2

´
vec

Z Z

 
 
  

     

      
 

Proof: The first term has a trivial correspondence: Var(G X) = G Var(X) G’ 
if G is deterministic. We can use the fact that tr(A B) = tr(B A) and Proposition 
A.3 in Appendix 1 to develop the same first term in the second correspondence. 

The second term can be developed in the following way: 
Var(X’ H X) = E[X’ H X X’ H X] - E[X’ H X]2. Using (1.2), we can recognize 

the squared term. E[X’ H X X’ H X] = E[tr(X’ H X X’ H X)] = E[tr(X X’ H X X’ 
H)]. Using the trace of the product rule of Proposition A.4 of Appendix 1, we 

can derive that E[tr(X X’ H X X’ H)] = E{vec(H)’ [(XX’)(XX’)] vec(H)} = 

vec(H)’ E[(XX’)(XX’)] vec(H). 
As for the third term, Cov(G X, X’ H X) = E{(G X – - E[X’ H X])} 

= E{G X (X’ H X - E[X’ H X])} - - E[X’ H X])} = G E[X X’ H X] – G 
.2). E[G X X’ H X] = E[tr(G X X’ H X)] = 
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E[tr(X X’ H X G)]; applying again the trace of the product rule, E[tr(X X’ H X 

G)] = E{vec(H)’ [(XX’)X] vec(G)} = E{vec(G’)’ [X’(XX’)] vec(H)}. Also, as G 
is a row vector, vec(G’) = vec(G) = G’: 

 

E[G X X’ H X] = vec(H)’ E[(XX’)X] G’ = G E[X’(XX’)] vec(H)   (6) 
 
However - see Proposition E.4 of Appendix 2: 
 

E{(X - )’[(XX’ – E(XX’)]}  E[X’(XX’)] -  [vec(V + ’)]’ 

 
Third centered moments are related to the asymmetry or skewness in the 

distribution of X – so, also that matrix, but in a more distant correspondence. 
It is easily shown that for a null expected value multivariate normal - 

symmetric around zero - that E[X’(XX’)] = 0.  
Also - see Proposition E.7 of Appendix 2: 
 
E{[XX’-E(XX’)][(XX’–E(XX’)]}E[(XX’)(XX’)] -vec(V+’)[vec(V+’)]’ 
 
One can now deduce, using Propositions A.1, A.5 and A.7 of Appendix 1 that: 
 

[ ( )]

( )

Var Z X

vec V

 


    

'

'
vec

Z Z

     
     

 + 

 + 
1

4
 vec[

2

´
vec

Z Z

 
 
  

'
2

´
vec

Z Z

  
  

   
]’ {

[( ') ( ')]

( )

E XX XX

vec V

 


 -  

  - [vec(V + ’)  I
rr

] - [I
rr

  vec(V + ’)]} + 

 + vec[

2

´
vec

Z Z

 
 
   Z




]’ {

[ ( ')]

( )

E X XX

vec V

 


 - (  I

rr
)}   (7) 

 
For the zero mean multivariate normal – see Proposition G.4 in Appendix 

3 - the last term disappears and we are left with: 
 

[ ( )]

( )

Var Z X

vec V

 


    

'

'
vec

Z Z

     
     

 + 

 + 
1

4
 vec[

2

´
vec

Z Z

 
 
  

'
2

´
vec

Z Z

  
  

   
]’ {

[( ') ( ')]

( )

E XX XX

vec V

 


 -  

 - [vec(V)  I
rr

] - [I
rr

  vec(V)]}      (8)  

 

[( ') ( ')]

( )

E XX XX

vec V

 


can be computed from Proposition G.5 in Appendix 3.  

Sensitivity to Z implies the development of higher order differentiation (using 
Proposition A.6 of Appendix 1): 
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[ ( )]Var Z X

Z

 


  =  2 

Z




 V 

2

´Z Z



 
 + 

 + 
Z




 {E[X’(XX’)] -  [vec(V + ’)]’} 

2

´
vec

Z Z

Z

  
   

   


 +  

 + 

'
2

´
vec

Z Z

  
  

   

 {E[X’(XX’)] -  [vec(V + ’)]’}’ 
2

´Z Z



 
 +  

+
1

2
 

'
2

´
vec

Z Z

  
  

   

{E[(XX’)(XX’)]- vec(V + ’)[vec(V + ’)]’}

2

´
vec

Z Z

Z

  
   

   


        (9) 

 

2. Multivariate Risk-Premium 
2.1. von-Neumann-Morgenstern Multivariate Risk-Premium: Definitions 

Consider Proposition 1. Admit that (Z) is positively related to any of its 
arguments. It easily follows that we can define the column vector m such that: 
 

(Z - m)  =  E[(Z + X)]        (2.1) 

 
Let E[X] = 0. Then m stands for a multivariate risk premium defined over 

the quantities of all the arguments of (.). Considering the Taylor expansion 

of (Z - m) to the first order only: 
 

(Z - m)    (Z) - 
Z




 m       (2.2) 

 
Replacing in (2.1), we deduce that: 

 

Z




 m    [E(Z + X)] - E[(Z + X)]       (2.3)  

 

 
Z




 m – the sum of the elements of vector m weighted by their marginal 

contribution to the function (.) – is a measure of the difference between the 
function evaluated at the expected value of the argument and the expected 
value of the function. 

Replacing Proposition 1, we infer that 
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Z




  m  = - 

1

2
 

'
2

´
vec

Z Z

  
  

   

 vec(V)      (2.4) 

 
As it stands, several m’s are compatible with the equation. According to the 

settings, we can re-define m in one of the arguments of Z – say, a risk-less asset 
-, i.e., let m = [ 0  0 …  mi  0 … 0 ]’. Then: 

 
Proposition 3: The premium to general multivariate risks 
1. can be defined in the metric of a particular asset as: 

 

m
i
  =  - 

1

2
 

1

iZ




 
 
 

 

'
2

´
vec

Z Z

  
  

   

 vec(V)      (2.5)   

 
2. reacts to variances and covariances according to: 

 

i

jk

m






 = - 

2

j k

i

Z Z

Z







 





   if j  k;            i

jj

m






 = - 

1

2
 

2

2

j

i

Z

Z













     (2.6)        

 
We recognize in (2.6) the roles of the Arrow-Pratt measure of absolute risk 

aversion – “absolute concavity” - of (Z), -

2

2

j

i

Z

Z













 , and of - 

2

j k

i

Z Z

Z







 





 - 

measuring “absolute substitutability” between Z j and Zk in function (Z), given 

that a high (positive) 
2

j kZ Z



 
  suggests complementarity between the two 

arguments, inspected by Duncan (1977), Karni (1979) and Martins (2004) -, 
determining the impact of the effect of changes in the second moments of the 
distribution of X on the size of the risk-premium. 

Alternatively, we could re-define the risk premium as the scalar v such that 
m = v [1 1 … 1]’ = v L, where L denotes the column vector [1 1 … 1]’ – it implies a 
decrease v in the certain consumption of all goods simultaneously that would 
leave the consumer indifferent to the actual randomness he faces. 
 

v  =  - 
1

2
 

1

L
Z




 
 
 

 

'
2

´
vec

Z Z

  
  

   
 vec(V)      (2.7) 

 
Then: 
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jk

v






 = - 

2

j kZ Z

L
Z







 





   if j  k;  
jj

v






 = - 

1

2
 

2

2

jZ

L
Z













     (2.8)        

 
An alternative view of risk aversion can be inferred if, following the 

decomposition of Proposition 1, if we look at the trade-off between elements 
– fixed – expected utility level. 

Considering (1.3) and (1.5), we can write: 
 

 0  =  
Z




  d  + ’ 

2

´Z Z

 
 
  

 d  +  
1

2
 

'
2

´
vec

Z Z

  
  

   

 dvec(V)  

that is: 
 

[
Z




 + ’ 

2

´Z Z

 
 
  

] d  =  -  
1

2
 

'
2

´
vec

Z Z

  
  

   

 dvec(V)    (2.9) 

 
With a second-order approximation, if we only consider the effect of the 

change in one i - say, the/a risk-less asset -, it will depend on the means of 
the other X’s. It is immediate to conclude that: 

 
Proposition 4: The sensitivity of an agent towards uncertainty can be 

ascertained by the trade-off measuring how much he must be given in 
expected value of a given commodity to accept an increase in the moments of 
the random variables distribution,  

1. defined as: 
 

d
i
 = - 

1

2
 

1

'
'i iZ Z Z

 




  
 

   
 

'
2

´
vec

Z Z

  
  

   
 dvec(V)    (2.10)  

 
2. reacting to particular moments according to: 
 

i

jk








 = - 

2

2

'
'

j k

i i

Z Z

Z Z Z



 




 

 


  

   if j  k;  
i

jj








 = - 

1

2
 

2

2

2

'
'

j

i i

Z

Z Z Z



 






 


  

  (2.11)  

 
The denominator of (2.11) appears more complex than in (2.6), but the role 

of the numerator remains unaltered. Moreover, if we evaluate the trade-off 

around  = 0, the two expressions coincide.  
Of course, more complex approximations – using expansion to higher order 

as in Appendix 2 – would generate more refined definitions. Then attention 
should be given to third and fourth moments, as performed for the bivariate 
case in Martins (2004), for example. Then, the equivalence of the two 

definitions evaluated at  = 0 may not hold. 
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A final contrast with the premium to a risk j when subject to background 
noise can be made. Using only Taylor’s expansion, such premium to a risk, say, 
Xj added to Zj, denoted by nj, would be such that: 
 

E[(Z
1
 + X

1
, Z

2
 + X

2
, ..., Z

j
 – n

j
, ..., Z

r
 + X

r
)]  =  E[(Z + X)]    (2.12)  

 
Denote by Z-j the (r-1)x1 vector containing all other elements of Z except Zj; 

Vj the (r-1)x1 vector containing the j-th column of V to the exception of line j, 

i.e., of 
jj
 – V

j
’ = [ 

1j
 

2j
 … 

j-1,j
 

j+1,j
 … 

rj
 ]’; and V-j the covariance matrix 

of X-j, the vector containing all the elements of X but Xj. By analogy with (2.3), 
we infer now that: 
 

jZ




 n

j
    E[(Z

-j
 + X

-j
, E(Z

j
 + X

j
)]  - E[(Z + X)]     (2.13) 

 

jZ




nj, the partial premium nj weighted by its marginal contribution to  

(.), measures the difference between the expected value of the function over 
the r-1 arguments evaluated at the expected value of Z j + Xj and the (general) 
expected value of the function. 

Expanding and decomposing both sides of (2.12) - allowing matrix partition 

for the right hand-side -, as the terms 
1

2
 

'
2

´j j

vec
Z Z



 

  
       

 vec(V
-j
) cut, we 

would arrive at: 
 

n
j
  =  - 

1

2
 

1

jZ




 
   

 (
2

2

jZ




 

jj
 + 2 

2

j jZ Z







 
 V

j
)      (2.14)  

 
Relying on Taylor’s expansion to a second-order approximation only, due 

to its polynomial properties, nj responds only to the r jk’s, k=1,2,…,r, but in 
the same fashion as the global multivariate premium defined in the metric of 
Zj, mj, would2, i.e.: 
 

j

jk

n






 = 

j

jk

m






 for k = 1, 2, …, r    ;        but 

j

lk

n






 = 0 for any l, k  j   (2.15) 

 
We would have that: 
 

m
j
  =  

1

jZ




 
   

 {
1

r

i

i i

n
Z








  + 

1

2
 

'
2

´
d

vec
Z Z

    
   
      

 vec(V
d
)}   (2.16) 

 
 
2  That may not be hold if we use higher-order Taylor’s expansion approximations and (or) 

higher than second-order moment matrices (moments) of the distribution of X depend on 

(the elements of) V. This would be the case for a multivariate normal, for example – see 
Martins (2004). 
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where Vd and 
2

´
d

Z Z

 
 
  

stand for V and 
2

´Z Z



 
 respectively with the 

diagonal elements replaced by 0´s.  
The expression suggests that the maximizer will more likely insure the 

whole joint risks rather than one at a time – he is more negatively affected by 
the whole, in terms of expected value, than by the sum of the partial risks (he 
is made better-off by discarding the whole risks simultaneously rather than 

each of them unilaterally) and m
j

jZ




 > 

1

r

i

i i

n
Z








  - for: 

- positively correlated risks around arguments that are complements, i.e., 

for which  
2

k lZ Z



 
 > 0. 

- negatively correlated risks around arguments that are substitutes, i.e., for 

which  
2

k lZ Z



 
 < 0. 

Identical conclusions would be driven from setting in (2.9) all elements of 

d but dj, and in dvec(V) all but those elements in dVj to 0 – and evaluating 

the expression at  = 0.  
In this research, we concentrate on the role of a global risk-premium. 

 

2.2. Mean-Variance Compatible Risk-Premium 
Under mean-variance approaches, agents respond to the expected value of 

a function but also to its variance. Potentially, they maximize, say, U{E[(Z + 

X)], Var[(Z + X)]}. We will denote the first partial derivative of U(., .) with 
respect to the first argument by U1(., .), to the second by U2(., .) and the second 
partial derivatives in accordance. 

Consider a standard consumer and let Z be univariate, representing 
income, with X having null mean. A von Neumann-Morgenstern expected 
utility function expanded to the second order would imply: 
 

E[(Z + X)]  =  (Z)  +  
1

2
 

2

2Z




 Var(X)      (2.17)  

 
If the consumer maximizes expected utility, he cares about E[Z + X] = Z – 

positively, provided 
Z




  > 0 -, and about the Var(Z + X) = Var(X). If he is risk-

averse, 
2

2Z




  < 0 and he obviously reacts negatively to the latter. Hence, a 

truly mean-variance behavior of a von Neumann Morgenstern individual 
towards (Z + X) is suggested by the right hand-side of (2.17). 

One can say that mean-variance approaches generalize the reasoning made 

towards (Z + X) to the function  (Z + X) itself, and (but) frees any connection 
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between the impact of the mean and of the variance3: admit optimization is 

oriented by a function of U{E[ (Z + X)], Var[(Z + X)]}, potentially 
embedding more or less risk aversion than just E[ (Z + X)] accommodates – 

or than an hypothetical representation E{G[ (Z + X)]}, with G(.) being a 
particular function 4 , would (which would still be a von Neumann-
Morgenstern case). It is useful for production theory where a profit function 
(Z + X) of several arguments and measured in money metrics is empirically 
meaningful, but utility derived from the several consumers/investors is not. A 
“direct” risk-premium g, would obey: 
 

U{E[(Z + X)] - g, 0}  =  U{E[(Z + X)], Var[(Z + X)]}    (2.18)  
 

Expanding the left hand-side in the first argument around E[(Z + X)] to 
the first-order: 
 

 U{E[(Z + X)] - g, 0} = U{E[(Z + X)], 0} - U
1
{E[(Z + X)], 0} g 

 
In line with (2.3) and (2.13) we could write: 

 

U
1
{E[(Z + X)], 0} g = U{E[(Z + X)], 0} - U{E[(Z + X)], Var[(Z + X)]} (2.19) 

 
g when weighted by the marginal utility with respect to the first argument 

affers the difference betweem the utility function evaluated at zero variance 
and at its actual value. 

Expanding also the right hand-side of (2.18) in the second argument around 

0, admitting Var[(Z + X)] to be small, we derive: 
 

g   - 2

1

{ [ ( )],0}

{ [ ( )],0}

U E Z X

U E Z X








 Var[(Z + X)]   

or:  g  - 

2

2 22

1

1
{ [ ( )],0} [ ( )] { [ ( )],0}{ [ ( )]}

2

{ [ ( )],0}

U E Z X Var Z X U E Z X Var Z X

U E Z X

   



    



          (2.20) 
  
 

Interestingly, if we only take first-order approximations, g is dependent of 

E[(Z + X)], and, at a given value of it, proportional to Var[(Z + X)]. If 

ultimately, the ramdomness X is determining the variance of (Z + X), 
 

3 Under (2.17), if 
Z




 is the impact of an unitary increase of the mean, of the variance must be

1

2
 

2

2Z




. 

4 Even if this presided to Tobin (1958)’s derivation - relying on a probability distribution 
dependent on the mean and the variance of the argument of the function the expected value 

of which was maximized. 
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provided 2

1

{ [ ( )],0}

{ [ ( )],0}

U E Z X

U E Z X








  is invariant to E[(Z + X)], the determinants 

of Var[(Z + X)] condition the risk-premium in a similar pattern.  

The expression also suggests why - 2

1

{ [ ( )], [ ( )]}

{ [ ( )], [ ( )]}

U E Z X Var Z X

U E Z X Var Z X

 

 

 

 
, 

(minus) the marginal rate of substitution between the second and first 
arguments of U(.,.) has been identified – see Ormiston & Schlee (2001), Lajeri-
Chaherli (2002), Eichner & Wagener (2003)5   - as the analog to the absolute 
risk-aversion Arrow-Pratt measure 6  . Under the current scenario, such 
definition becomes insufficient: 

Even if 2

1

{ [ ( )],0}

{ [ ( )],0}

U E Z X

U E Z X








 was constant, g cannot be assumed 

proportional to the risk-premium of a von Neumann-Morgenstern agent that 
reacts to higher order moments – say, uses Taylor expansion to the 4-th order 
-, once the functional relations would be much changed. That is, g should 
compare with  
 

(Z) - E[(Z + X)]    
Z




 m   - 

1

2
 

'
2

´
vec

Z Z

  
  

   
 vec(V) 

 
where m denotes the (a) EU agent premium vector of (2.4). Admitting only 

a first order importance - and independence of 2

1

{ [ ( )],0}

{ [ ( )],0}

U E Z X

U E Z X








 from 

E[(Z + X)] -, changes in V affect the mean-variance utility at the rate of the 

square of first derivatives of (Z + X) – as we can infer from (1.7) and (1.8) -, 
whereas for the von Neumann-Morgenstern agent, the first effects are 
weighted by second derivatives of (Z + X).  

To compare both risk-premia, redefine it in the new utility function in the 
metric of Z as the rx1 vector p: 
 

U[(Z – p), 0]  =  U{E[(Z + X)], Var[(Z + X)]}  (2.21) 
 

The current definition would also incorporate the fact that a null variance 

of E[(Z + X)] – present in the left hand-side - may only be achieved through 
a constant X = 0. Developing the left hand-side to the first order we conclude: 
 

U
1
{[E(Z+X)], 0} 

Z




p = U{[E(Z+X)], 0} - U{E[(Z+X)], Var[(Z + X)]}  

 
5 Only Lajeri-Chaherli constitutes the variance as second argument of the mean-variance utility 

function, the other authors using the standard-deviation instead. This latter approach 

becomes more tractable when analyzing preferences over portfolio composites, once some 
form of invariance to proportional changes is directly preserved with it. For our purposes, the 
former is more convenient. 

6 In fact, for a “direct mean-variance” – with the variance by second argument - over a univariate 

random variable, its size would be comparable – see (2.11) - with that of 
1

2
 the Arrow-Pratt 

absolute measure of the alternative univariate utility function of the classical expected utility 
maximizer 
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(2.22) 
 
Developing also the righ hand-side to the first order: 
 

U[(Z),0] - U
1
[(Z), 0] 

Z




p = U{E[(Z+X)],0} + U

2
{E[(Z+X)], 0} Var[(Z+X)] = 

 =  U[(Z),0] + U
1
[(Z),0] {E[(Z+X)] - (Z)} +  

 + (U
2
[(Z),0] + U

21
[(Z),0] {E[(Z+X)] - (Z)}) Var[(Z+X)]7 

 

Noting that (Z) - E[(Z+X)]    
Z




 m: 

 

Z




p  =  

Z




 m + (- 2

1

[ ( ),0]

[ ( ),0]

U Z

U Z




 + 21

1

[ ( ),0]

[ ( ),0]

U Z

U Z




 

Z




 m) Var[(Z+X)] (2.23)  

 

Beyond the risk aversion embedded in the concavity of (Z), there will be 
now the “direct” effect captured in the second argument of the MV utility 
function U(.,.). Then, considering a particular asset to define the premium, 
and p = [ 0  0 …  pi  0 … 0 ]’, we conclude: 

 
Proposition 5: 1. The risk-premium of a “mean-variance” agent will relate to 

a von Neumann-Morgenstern’s according to:  
 

p
i
 = m

i
 +{-

1

iZ




 
 
 

2

1

[ ( ),0]

[ ( ),0]

U Z

U Z




+ 21

1

[ ( ),0]

[ ( ),0]

U Z

U Z




m

i
}Var[(Z+X)]    (2.24)  

 
2. The trade-off with expected value of a relative commodity could be 

expressed as di, relating to that of the expected function maximizer, di, as:  
 

d
i
=d

i
+

1

'
'i iZ Z Z

 




  
 

   
{- 2

1

[ ( ),0]

[ ( ),0]

U Z

U Z




+ 21

1

[ ( ),0]

[ ( ),0]

U Z

U Z



 iZ





d
i
}dVar[(Z+X)]         (2.25)  

 
There will be an added term to compensate relative to the von Neumann-

Morgenstern entity. Being U21[(Z),0] negligible, such term is positive 

provided  2

1

[ ( ),0]

[ ( ),0]

U Z

U Z




 < 0, and at given Z or for a constant, influenced in an 

approximately proportional fashion by Var[(Z+X)]. 

Of course, Var[(Z+X)] depends also on the moments of the distribution 
of X, including second moments as noted in Proposition 2. Ultimately, risk-
aversion is dictated by how the elements of V influence pi after such 
correspondence – and that of mi through (2.5) - is internalized (replaced in 
 
7 Of course, a direct – and more complete - second-order Taylor expansion of the right hand-

side would add terms in the square of the variance and in square the of {E[(Z+X)] - (Z)}. 
We are assuming that its size is negligible relative to the other terms. 
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(2.24)), as well as any impact of V in higher (third or fourth) moments of the 
particular distribution of X. 

Some clarifying words about the mean-value formulation above – and that 
will be studied in this research – should be added: 

Firstly, we remind (and caution) the reader that the utility function 

U{E[(Z + X)], Var[(Z + X)]} is a mean-variance utility function towards (Z 

+ X). By comparing it with E[(Z + X)], we are in fact contrasting the 
corresponding agent with a risk-neutral von Neumann- Morgenstern entity 
towards that same argument – or, in general, of form E[(Z + X)]. 

Secondly, hypothetically, a generalized multivariate “mean-variance” unit 

could be forwarded as a maximizer of U[E(Z + X), Cov(Z + X)] = U(Z + , V), 

where we conform with previous notation – E[X] = , Cov(X) = V. Inspection 
of its properties will be pursued elsewhere. 

Finally, and as a theoretical contribution to the modeling of individual 
behaviour towards risk – multivariate or not -, one studies the formulation 

U{E[(Z + X)], Var[(Z + X)]}, a multivariate “mean-variance utility” utility 

function, an alternative to the standard expected utility - E[(Z + X)] – 
maximizer, being (Z) the equivalent function maximized in the absence of 
uncertainty. Such behavioral hypothesis was used before in economic 
modelling – the use of higher moments of utility was previously proposed by 
Allais (1979) and Hagen (1979), cited in Starmer (2000): in this research, some 
of its consequences are inspected. 
 

3. Optimal Decisions under Uncertain Background 
3.1. The Multivariate Conditions under Ex-Ante Commitment 

Under certain contexts, the vector Z may be controllable. An expected value 
maximizing entity will choose Z such that (1.4) is set to zero (we admit E[X] = 
0)8 : 
 

[ ( )]E Z X

Z

 


 =  

Z




 + 

1

2
 

2

´
tr V

Z Z

Z

 
  

  


  = 0 

or 
Z




+ 

1

2
vec(V)’ 

2

´Z Z

Z

 
  

  


 = 0 ; 

'Z




 + 

1

2

2

´

'

Z Z

Z

 
  

  


 vec(V) = 0 (3.1) 

 
The mean-variance agent chooses Z such that: 
 

U
1
{E[(Z + X)], Var[(Z + X)]} 

[ ( )]E Z X

Z

 


  +  

+  U
2
{E[(Z + X)], Var[(Z + X)]} 

[ ( )]Var Z X

Z

 


  = 0   (3.2) 

 
8 We might have as well considered a departure from the expansion of the functions in the 

vector 
( )Z X

Z

 


 around Z, take its expected value and perform E[

( )Z X

Z

 


] = 0, 

deriving conclusions henceforth. It appeared as a less tractable format. 
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The marginal rate of substitution between the two arguments of U(.,.) is 

equated to the symmetric of the ratio of the elements of 
[ ( )]E Z X

Z

 


 by the 

analogous ones of  . That is, the Z’s are leveled in such a way that for any i: 
 

[ ( )]

[ ( )]
i

i

E Z X

Z

Var Z X

Z





 



 



  =  - 2

1

{ [ ( )], [ ( )]}

{ [ ( )], [ ( )]}

U E Z X Var Z X

U E Z X Var Z X

 

 

 

 
    (3.3)  

 

Admit that Z is univariate. If U2 < 0, as long as 
[ ( )]Var Z X

Z

 


  > 0, U(., 

.) is already decreasing with the argument, Z, at the point chosen by the 

expected function maximizer – at  
[ ( )]E Z X

Z

 


 = 0, (3.2) is negative. Then, 

the mean variance agent chooses a smaller Z. 
 

Proposition 6: The “mean-variance” agent (with U2 < 0) is expected to 
choose:  

1. Lower levels of the deterministic controls, Z, if (for which) 
[ ( )]Var Z X

Z

 


  > 0 

2. Higher levels of the deterministic controls, Z, if (for which) 
[ ( )]Var Z X

Z

 


  < 0 

than the von Neumann-Morgenstern one. 
 

From the decomposition (1.9) and for the univariate case, if the effect of the 
first term in the right hand-side of (1.9) dominates, we conclude for the second 

case provided that 
Z




 > 0 and  

2

'Z Z



 
 < 0 – i.e.,  

[ ( )]Var Z X

Z

 


 < 0. 

 

Take a univariate distribution. If increases with an exogenous parameter , 
the optimal Z of an expected utility maximizer (second-order conditions 

ensure a negative second derivative of E[(Z + X)] with respect to Z) increases 
with .  

For example, consider a change in the covariance matrix elements. The 
change in the optimal decisions will conform with (3.1) and obey: 
 

{2

2

´Z Z



 
 + [vec(V)’ I

r
] 

2

´

'

Z Z

Z

Z

  
  

   
 
 
  


} dZ + 

2

´

'

Z Z

Z

 
  

  


 dvec(V) = 0  
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or dZ = - {2
2

´Z Z



 
+ [vec(V)’ I

r
] 

2

´

'

Z Z

Z

Z

  
  

   
 
 
  


}

-1
 

2

´

'

Z Z

Z

 
  

  


 dvec(V) 

           
(3.4) 

 

The sign effect of the change in a single element of vec(V), dij or djj, on 
Z, is given by (using Proposition A.5 of Appendix 1): 
 

dZ = - 2 {2

2

´Z Z



 
 + [vec(V)’ I

r
] 

2

´

'

Z Z

Z

Z

  
  

   
 
 
  


}

-1
 

2

'

i jZ Z

Z

 
     


 d

ij
   if i  j;  

dZ =  - {2 

2

´Z Z



 
 + [vec(V)’ I

r
] 

2

´

'

Z Z

Z

Z

  
  

   
 
 
  


}

-1
 

2

2

'

jjZ

Z

 
    


 d

jj
  (3.5)  

 
That is, the effect on the optimal factor k, dZk, is determined by the 

elements of the column vector 

2

'

i jZ Z

Z

 
     


  or 

2

2

'

jjZ

Z

 
    


 , weighted by the 

elements of the k-th row of A = {2 + [vec(V)’ Ir] 

2

´

'

Z Z

Z

Z

  
  

   
 
 
  


 }-1: 

 

dZ
k
 = - 2 



r

l

kla
1

 

3

i j lZ Z Z



  
 d

ij
    if i  j ;  dZ

k
 = - 



r

l

kla
1

 

3

2

jj lZ Z



 
 d

jj
  (3.6)  

This is consistent with Kimball (1990) assessment of the importance of the 
measure of absolute prudence, weighting third-order derivatives and 
conditioning the impact of uncertainty on the control variables themselves. 
Notice also that A (or its inverse) must be negative-definite for (3.1) to 
guarantee a maximum.  

For the mean variance entity, a more complicated requirement is imposed. 

If U2 < 0, if 
[ ( )]E Z X

Z

 


  increases (decreases) with  and 

[ ( )]Var Z X

Z

 


  

decreases (increases) with , Z will likely increase (decrease) with  - provided 
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the effects weighted by the second derivatives of U are small). If 

[ ( )]E Z X

Z

 


  and 

[ ( )]Var Z X

Z

 


  react in the same way to , the sign 

effect may be positive or negative, depending on the size of U1 and U2 that 
weight each of the two cross derivatives (and of second derivatives). 

Due to the requirement 
[ ( )]E Z X

Z

 


 = 0, the indirect impact of 

uncertainty, i.e., of vec(V) on the maximal expected utility becomes zero and 
the total effect simple to derive – it coincides with (1.3), measured at the 
optimal controls: in any of the two cases: 

Proposition 7: The effect of uncertainty on the maximand of an entity with 
(ex-ante) control over exogenous variables is:  

1. indistinguishable from that of an exogenous effect of a change in the 
distribution of X on the relevant maximand. 

2. assessable in a symmetric way by the numerator of the conventional risk-
premium definition, by the premium itself if a particular metric is called for 
its evaluation 
 

3.2. Mean-Variance Opportunity Frontier 
A meaningful intermediate decision problem of the mean-variance agent 

would determine vector Z that minimizes Var[(Z + X)] subject to a certain 
E[(Z + X)] is achieved. Or vice-versa. That is, solve: 
 

Z
Min   Var[(Z + X)]   

s.t.:         E[(Z + X)]            (3.7)  

 
or equivalently in lagrangean form 
 

,Z
Min


  L(Z, )  =  Var[(Z + X)]  +   {  -  E[(Z + X)]}    (3.8) 

 

where  denotes the multiplier. F.O.C. imply: 
 

L

Z




  =  

[ ( )]Var Z X

Z

 


  -   

[ ( )]E Z X

Z

 


  =  0 (a (1 x n) vector)   (3.9) 

L






  =    -  E[(Z + X)]  =  0  (a scalar)      (3.10) 

 

Admit the approximation 
[ ( )]E Z X

Z

 


 Z   u E[(Z + X)], where u 

denotes a constant (for linear functions (Z), it is 1; for concave functions, it 
may be represented by a value smaller than 1) – a measure of the elasticity of 
the expected value with respect to the control variables (if all Z i’s increase by 

x%, E[(Z + X)] would rise – proportionately - u x%) – or the returns to scale 
of E[(Z + X)] with respect to Z. Then, in the optimal solution: 
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*  =  
1

u
 

[ ( )]Var Z X

Z

 


 Z  

Replacing in (3.9),  

[ ( )]Var Z X

Z

 


 = 

1

u
 

[ ( )]Var Z X

Z

 


 Z 

[ ( )]E Z X

Z

 


. Then:   (3.11) 

 

[ ( )]Var Z X

Z

 


 { Z 

[ ( )]E Z X

Z

 


  -  u  I

r
 } = 0     (3.12) 

 

Z is set in such a way that (u ) is an eigenvalue of the left hand-side matrix; 
as the latter, being the product of a vector by its transpose, has rank 1, Z will 

be such that (u ) will be the unique non-zero eigenvalue of Z  
[ ( )]E Z X

Z

 


 

and 
[ ( )]Var Z X

Z

 


  to the corresponding “left” eigenvector – equal to the 

the transposed eigenvector of the transposed matrix,
[ ( )]

'

E Z X

Z

 


  Z’. For a 

zero mean variable X, using (1.4): 
 

Z
[ ( )]E Z X

Z

 


= Z [

Z




+

1

2

2

´
tr V

Z Z

Z

 
  

  


]=Z[

Z




 +

1

2
vec(V)’

2

´Z Z

Z

 
  

  


]           

(3.13) 
 

[ ( )]Var Z X

Z

 


is given by (1.9). Transposing (3.12), denoting {Z

[ ( )]E Z X

Z

 


   -  u  I

r
}’ = {

[ ( )]

'

E Z X

Z

 


 Z’ - u  I

r
} by A and 

[ ( )]

'

Var Z X

Z

 


  by W, (3.13) has the form Y = A W = 0. Using Proposition 

A.5 of Appendix 1, we now require for any change in Z and vec(V) and/or 

  
 

Y






  =  (W’  I

r
) 

A






 + A 

W






 = 0       (3.14) 

 
The properties of the new solution turned out difficult to disentangle. An 

increase in  only will imply: 
 

dvec(A’) = dvec{Z
Z




 + 

1

2
 Z vec(V)’ 

2

´Z Z

Z

 
  

  


}/dZ  dZ  -  u vec(I

r
) d
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A change in elements of V can be inspected through the implicit change in 

vec(V) at a fixed . Developing the vector form of the left hand-side with 
Proposition A.1 of Appendix 1: 

Using Proposition A.1.1, A.5 and D.2.1 in the Appendix 1: 
 

[ ( )]vec Z
Z

Z







 = 

[( ) ]
'

rI Z
Z

Z


 




 = (

'Z




  I

r
) + (I

r
  Z) 

2

´Z Z

 
 
  

 

 
Using Proposition A.2 of Appendix 1 – vector of the product rule: 
 

vec[ Z vec(V)’ 

2

´Z Z

Z

 
  

  


]  =  {I

r
  [Z vec(V)’]} vec[

2

´Z Z

Z

 
  

  


] 

 
Through Proposition A.1, A.5 and D.2.1 in the Appendix 1: 
 

dvec{Zvec(V)’

2

´Z Z

Z

 
  

  


}/dZ = {vec[

2

´Z Z

Z

 
  

  


]’  I

rr
} [vec(I

r
)  vec(V)  I

r
] + 

+ {I
r
  [Z vec(V)’]} 

2

´Z Z

Z

Z

  
  

   
 
 
  


 

 
For V, an intermediate result is: 
 

dvec{Z vec(V)’

2

´Z Z

Z

 
  

  


}/dvec(V)  =  {vec[

2

´

'

Z Z

Z

 
  

  


]’ [vec(I

r
)  I

rr
]}  Z 

 
We can confront this expression with that of the von Neumann-

Morgenstern agent, implicit in (3.4). It has obvious similarities, but it is 
weighed by Z. 
 

4. The Value of Ex-post Flexibility 
4.1. The von Neumann Morgenstern Entity 

Suppose the expected function maximizing agent can react – contingent 
on, point-wise - to X. Then, it sets Z such that: 

 
( )Z X

Z

 


 =   0         (4.1) 

 
Then it will choose Z as a function of X such that: 
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Z = Z(X) = Y – X        (4.2) 
 
where Y is the constant for which: 
 

( )Y

Z




 =   0          (4.3) 

 
It will always be the case, no matter what value X takes, that:  
 

(Z + X)  =  (Y)         (4.4) 
 
If E[X] =  = 0: 
 

E[Z] = Y          ;       Var[(Z + X)]  =  0     (4.5) 
 

Obviously – see Martins (2004a), if the risks surround the decision 
variables: 

Proposition 8: The flexible von Neumann-Morgenstern agent will:  
1. balance any randomness X by a corresponding compensation in Z, 

rendering the objective function completely stable. 
2. exhibit an expected policy E[Z] = Y higher (lower) than the ex-ante 

committed agent iff dZ / dvec(V) < (>) 0 for the latter. 
 

4.2. The Mean-Variance Agent 
Consider a mean-variance unit. On the one hand, even if it cannot control 

Z, provided it can react after observing X, we can admit that it has the ability 

to throw away a “chunk”, y, of (Z + X). Such ability is never used by an 
expected value maximizer, of course. But will by the current entity. It has now 
a series of decisions y = y(X), a random variable the probability distribution of 
which will be in line with that of X. 

Admit that X  f(X), a < X < b. The entity will choose y’s in such a way that 
it: 
 

y
Max   U{E[(Z + X) - y], Var[(Z + X) - y]}  = 

=  U(E[(Z + X) - y], E{[(Z + X) - y]
2
} - E[(Z + X) - y]

2
)   

  = U( 
b

a

[(Z + X) – y] f(X) dX, 
b

a

[(Z + X) - y]
2
 f(X) dX – { 

b

a

[(Z + X) - y] 

f(X) dX}
2
) 

          (4.6) 


b

a

denotes r integral signs limited by the elements of vectors a and b, and 

dX stands for the product of the r differentials of the X’s. A first thing to notice 
is the oddity of the problem: the controls are a continuum of values. But one 
can find variational problems in the theory of risk – see Karni (1979) assessing 
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risk-sharing across states of nature 9 . The most unfamiliar feature is the 
dependency of the objective functional on expectations of functions of the 
control itself. 

It is easily visualized through the development of the integrals that the 
optimal y’s will be such that: 
 

- U
1
{E[(Z+X) – y], Var[(Z+X) - y]} f(X) - U

2
{E[(Z+X) - y], Var[(Z+X) - y]} 

{2 [(Z + X) - y] f(X)  -  2 E[(Z + X) - y] f(X)} = 0     (4.7) 
 
y – or rather y(X), once they are conditional on X - will react to X according 
to: 
 

y – E[y] = (Z + X) - E[(Z + X)] + 
1

2

1

2

{ [ ( ) ], [ ( ) ]}

{ [ ( ) ], [ ( ) ]}

U E Z X y Var Z X y

U E Z X y Var Z X y

 

 

   

   
 (4.8)  

 
Then, taking expectations we conclude that the y’s will be set in such a way 

to guarantee: 
 

1

2

{ [ ( ) ], [ ( ) ]}

{ [ ( ) ], [ ( ) ]}

U E Z X y Var Z X y

U E Z X y Var Z X y

 

 

   

   
  = 0     (4.9) 

 
or 
 

U
1
{E[(Z+X)] – E[y], Var[(Z+X) - y]} = 0      (4.10) 

 

and, because 1

2

{ [ ( ) ], [ ( ) ]}

{ [ ( ) ], [ ( ) ]}

U E Z X y Var Z X y

U E Z X y Var Z X y

 

 

   

   
  is indeed constant, 

we can conclude from – squaring and taking expectations… - (4.8) that: 
 

Var(y) = Var[(Z + X)] = Cov[y, (Z + X)]      (4.11) 
 

insuring perfect correlation between y and (Z + X) - as expected - and: 
 

Var[(Z+X) - y] = 0         (4.12) 
 
E[y] will be such that: 
 

U
1
{E[(Z+X)] – E[y], 0} = 0        (4.13) 

 
implying: 
 

U
1
{E[(Z+X)], 0} - U

11
{E[(Z+X)], 0} E[y] + 

1

2
 U

111
{E[(Z+X)], 0} E[y]

2
 +... = 0 

 
 
9 Our argument is different from his, of course: we are assessing throwing away utility – not the 

argument of the function - after the random event occurs. As noted, the von-Neumann 

Morgenstern entity – that Karni overviews - would not accept to do it. 
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An approximation to the first order will require that optimally: 
 

E[y]  =  1

11

{ [ ( )],0}

{ [ ( )],0}

U E Z X

U E Z X








       (4.14)  

As long as U(.,.) is convex in the first argument, E[y] > 0. (But then we might 

have a minimum with the policy – for a maximum, U12{E[(Z+X) – y], 
Var[(Z+X) - y]} must be sufficiently negative.) 

We did not complicate the problem considering | y | subtracted from the 
function, or impose the restriction y > 0, using Khun-Tucker conditions - nor 
requiring E[y] > 0. Nevertheless, a negative y with E[y] > 0 may be accountingly 
meaningful: if the firm could interchange revenue allocation between periods, 
it would understate profits in good times, and overstate in bad times, 
transferring results in accordance to (4.8) - which implies that an optimal 
policy will render “net” utility, (Z + X) – y, constant: 
 

E[(Z + X)] – E[y] = (Z + X) – y       (4.15)  
 

The agent will be willing to pay (loose) as much as g, the direct risk-

premium of (2.20), for the possibility. Ideally, it will loose E[y] of expected (Z 
+ X) - of E[(Z + X)] - for it. An expected value-maximizing entity would have 
no interest in engaging in such practices. 

Proposition 9: A mean-variance agent that can react after the realization of 
the random event (even if not through Z, the exogenous deterministic 
variable):  

1. may find it utility-yielding to “throw away” profits and even expected 
profits. 

2. will choose the optimal dissipation to be increasing in the state of nature 

– in the observed (Z + X). 
3. may find desirable to accommodate through the policy all the 

randomness of (Z + X). 
Consider that Z can also be chosen by the agent. Then, it will solve a joint 

infinite series of conditional decisions in y and Z such that: 
 

,Z y
Max   U{E[(Z + X) - y], Var[(Z + X) - y]} 

 
The F.O.C. with respect to y still hold. That will imply that the entity will 

use y to cushion all variability in “net” profits. If it does, it chooses Z such that: 
 

Z
Max   U{E[(Z + X) - y], 0}        (4.16)  

 
setting Z’s such that: 
 

( )Z X

Z

 


  =  0         (4.17) 

 
that is, it will mimic the behavior of a von Neumann-Morgenstern utility 
maximizer towards Z. 
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Consider that Z can be chosen by the agent but policy y is not meaningful: 
 

Z
Max   U{E[(Z + X)], Var[(Z + X)]} = 

=  U(E[(Z + X)], E{[(Z + X)]
2
} - E[(Z + X)]

2
) 

= U{ 
b

a

(Z + X) f(X) dX, 
b

a

(Z + X)
2
 f(X) dX – [ 

b

a

[(Z + X) f(X) dX]
2
} 

 
It is easily visualized that the optimal Z’s will obey: 

 

[U
1
{E[(Z+X)], Var[(Z+X)]} + U

2
{E[(Z+X)], Var[(Z+X)]} 

{2 (Z + X)  -  2 E[(Z + X)]}] 
( )Z X

Z

 


 f(X) = 0    (4.18) 

 
Then Z will be set in such a way that either 

 

( )Z X

Z

 


 = 0         (4.19) 

 

and Z is always equal to Y – X, where Y is the value for which 
( )Y

Z




  = 0 

– and the variance of (Z + X) is completely eliminated. 
Or: 
 

(Z + X) = E[(Z + X)] - 
1

2

1

2

{ [ ( )], [ ( )]}

{ [ ( )], [ ( )]}

U E Z X Var Z X

U E Z X Var Z X

 

 

 

 
   (4.20)  

 
Again, the optimal Z’s would make Z + X constant. Yet, taking expectations 

we conclude that for this solution to hold all over the domain, the Z’s would 
be set in such a way to guarantee: 
 

1

2

{ [ ( )], [ ( )]}

{ [ ( )], [ ( )]}

U E Z X Var Z X

U E Z X Var Z X

 

 

 

 
  = 0      (4.21) 

 
That will also require – replacing it in (4.20) - that Z will be such that: 

 

(Z + X) = E[(Z + X)]        (4.22) 
 
and, as 
 

U
1
{E[(Z+X)], Var[(Z+X)]} = U

1
{E[(Z+X)], 0} = 0     (4.23) 

 
we enter structure (4.16) again. 
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We conclude that the transfer is, in any case, completely accomplished if 
ex-post adjustability of the control variable to which the risk is added is 
available. Then, adjustability through y becomes redundant. 

Proposition 10: A mean-variance agent that can react after the realization 
of the random and choose Z, the variable to which it is added to: 

1. achieves the same solution as the expected-value maximizer. 
2. Proposition 8 applies, comparisons valid with the von Neumann-

Morgenstern ex-ante committed agent. 
3. dispenses with other smoothing tools. 

 

5. Mixed Environments: A Final Comment. 
To reproduce particular environments, we may want to combine the three 

types of situations – that is, in Z = (Z1, Z2, Z3), there will be variables Z1, which 
the agent can but endure, others, Z2, that he can decide before the realization 
of the added risk, and others, Z3, that he can adjust after the randomness is 
observed. 
The von Neumann-Morgenstern individual will: 
 

2 3,Z Z
Max         E[(Z + X)]  =  

1

1

b

a


2

2

b

a


3

3

b

a

(Z + X) f(X) dX    (5.1) 

 
F.O.C are of two types: a unique one with respect to Z2: 
 


1

1

b

a


2

2

b

a


3

3

b

a

 
2

( )Z X

Z

 


 f(X) dX = 0       (5.2) 

 
Infinite ones for Z3: 
 


1

1

b

a


2

2

b

a

 
3

( )Z X

Z

 


 f(X) dX

1
 dX

2
 = 0      (5.3) 

 
From (5.3), a continuum of conditional optimal of policies are derived for 

Z3, function of X3, of the common Z2, and of the parameters of the joint 
distribution of X = (X1, X2, X3). It can then be replaced in (5.2) to solve for Z2. 
If the distribution of the vector X3 is independent of that of the vector (X1, X2) 
- i.e., if we can write f(X) = f(X1, X2, X3) = f12(X1, X2) f3(X3), where f12(X1, X2) 
and f3(X3) denote the marginal probability distributions -, (Z3 + X3) is a 
constant vector in the optimal policies and the randomness in that sum is 
always neutralized. Yet, that constant level will not be the one for which 

( )Z X

Z

 


  = 0, unless 

3

( )Z X

Z

 


  is invariant to (does not depend on) (Z1 

+ X1, Z2 + X2)…  
Notice that if f(X) = f(X1, X2, X3) = f12(X1, X2) f3(X3), we can use the 

expansion of Proposition 1 applied only to (Z1, Z2), take the derivative with 
respect to Z3 and equate it to zero to approximate (5.3), but not otherwise. 

For a mean-variance agent: 
 



Turkish Economic Review 

A.P. Martins, TER, 11(1-2), 2024, p.1-37. 

26 

2 3,Z Z
Max   U{E[(Z + X)], Var[(Z + X)]} =  

=  U(E[(Z + X)], E{[(Z + X)]
2
} - E[(Z + X)]

2
)   

= U{ 
1

1

b

a


2

2

b

a


3

3

b

a

(Z + X) f(X) dX, 
1

1

b

a


2

2

b

a


3

3

b

a

(Z + X)
2
f(X)dX – [ 

1

1

b

a


2

2

b

a


3

3

b

a

[(Z + 

X)f(X) dX]
2
}          (5.4) 

 
It is easily visualized that the optimal Z’s will obey: 

 


1

1

b

a


2

2

b

a


3

3

b

a

[U
1
{E[(Z+X)], Var[(Z+X)]} + U

2
{E[(Z+X)], Var[(Z+X)]} 

{2 (Z + X)  -  2 E[(Z + X)]}] 
2

( )Z X

Z

 


 f(X) dX = 0   (5.5) 

 


1

1

b

a


2

2

b

a

 [U
1
{E[(Z+X)], Var[(Z+X)]} + U

2
{E[(Z+X)], Var[(Z+X)]} 

 {2 (Z + X)  -  2 E[(Z + X)]}] 
3

( )Z X

Z

 


 f(X) dX

1
 dX

2
 = 0   (5.6) 

 
Expressions become more complicated, but constancy of (Z3 + X3) in case 

of statistical independence is preserved. It will, however, differ from that of a 
expected value maximizer. And that will still be true if no ex-ante control is 
available as long as some additive uncertainty surrounds out-of-decision range 
variables. 
 

6. Production Theory Applications 
We admit a firm that produces output, q, sold at price P and employing r 

inputs, of quantities Li , i=1,2,…,r, represented by a column vector L, at unit 
(column-vector) cost w, of element wi. Its technology is represented by a 
production function q = F(L), continuous, increasing, quasi-concave and 
differentiable to several orders in L.  

Under certainty, it has a deterministic cost function C(q, w) continuous, 
increasing, concave and differentiable to several orders in q, a profit function 

(P, w), both enjoying the usual properties (Varian, 1992) and compatible with 
technology F(L).  

Uncertainty has been apposed to the firm’s problem in several contexts (Oi, 
1961; Sandmo, 1971; Feldstein, 1971; Rothemberg & Smith, 1971; Batra & Ullah, 
1974) -Aiginger (1987) surveys several scenarios, and a recent univariate 
inquiry can be found in Martins (2007). 
 

6.1. Price Uncertainty under Ex-post Flexibility 
The firm acts towards prices optimizing the profits after observing the 

randomness. Obviously, the expected value maximizing firm will react to X 
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according to (P + X1, w + Xr) that takes the role of (Z + X) and the 
conclusions of section 2 apply. (P + X1, w + Xr) is convex in (P, w) and general 
risk-loving behaviour towards the randomness – negative risk-premium – is 
expected. As for the particular problem, the convexity of the objective function 
is related to the magnitudes of the slopes of 

- supply, once 
( , )P w

P




  = qS(P, w) 

- input derived demands, once - 
( , )P w

w




 = LD(P, w)  

they will determine the size order of the impact of uncertainty on the 
maximand. Of course, the size of the impact of uncertainty on the expected 
supply and demand themselves is determined by their own concavity in the 
corresponding arguments – being negative when the functions are concave, 
positive when convex. 

Notice, however, that the mean-variance firm – staying on the market long 
enough to experience the fluctuations of the profits - may not find it optimal 

to react according to (P + X1, w + Xr). The firm may trade expected profits by 
less volatile income. Then, it may enter into the scenario of section 4.2.: we 
conclude that a mean-variance entity with ex-post flexibility may find it 
optimal to engage in charitable contributions in good states. If the variability 
comes from the input prices, in which case it is likely that Uw < 0, and we 
consider a vector Y subtracted to X, it would be more likely that second order 
conditions will be satisfied with such a policy; then firms would be willing to 
pay higher employee compensations in good times, for example. 
 

6.2. Quantity Uncertainty under Ex-ante Commitment 
Under ex-ante commitment with respect to the control variables, the firms 

are in the environment of section 3 and (Z) becomes P F(L) – w L. Uncertainty 
added to the control variables has the size of the effect on the maximand 
determined by that of the simple addition of the randomness, evaluated at the 
optimal control. It is determined by the concavity of the production function 
itself. 

The firm equates the value of expected marginal product – the expected 
inverse factor demands - to factor prices: 
 

P  
[ ( )]E F L X

L

 


  =  P  E[

( )F L X

L

 


]  =  w      (6.1) 

 

Then L will move in the same way as 
[ ( )]E F L X

L

 


  reacts to uncertainty. 

The more concave (less convex) the inverse demands – and potentially also 

demands, once they are negatively sloped - are10  , the more 
[ ( )]E F L X

L

 


  

decreases with uncertainty at a given level L. To compensate a rise in 
uncertainty – being inverse demands negatively sloped -, if the marginal 
product function is concave (convex), a lower (higher) level of the input will 
be sought. 
 
10 See Carroll & Kimball (1996) for an assessment of the role of the concavity of the inter-

temporal consumption function under uncertainty. 
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Analogous lines would allow the interpretation of the effect of uncertainty 
in X affecting the cost function C(q + X). Then: 

- the impact on expected profits of a rise in uncertainty in q will be more 
negative the more convex is the cost function – the higher the slope of the 
marginal cost function, the lower the slope of output supply qS(P), its inverse 
function. 

- as the firm sets: 
 

P  =  
[ ( )]E C q X

q

 


  =  E[

( )C q X

q

 


]      (6.2) 

 
The more concave (less convex) is the marginal cost function – the more 

convex is the supply, its inverse function, once it is positively sloped -, the 
higher will be the increase in q required to balance an increase in uncertainty. 
If marginal cost is convex (concave), the optimal q decreases (increases) with 
uncertainty. 
 

7. Conclusion 
Matrix representation of risk-premium and corresponding first differentials 

with respect to exogenous parameters of multivariate random variables was 
presented. They are useful to generate theoretical conclusions of several 
economic applications, but also to simulate empirically the effect of risk 
exposure in any environment, once functional forms are specified. More 
distantly, the principles used and developed in the text may reveal themselves 
useful for algorithms requiring numerical differentiation - potentially, with 
application in initial-value generation in non-linear optimization. 

We concluded about the importance and role of third and higher order 
derivatives in the analysis of risk-aversion and decision-making under 
uncertain backgrounds. General features of both issues’ crucial vectors diverge 
for an expected-value maximizer and a mean-variance one. In general, higher 
moments and derivatives (differentiation) are recommended for the latter to 
achieve the same order approximation of the results. Reliance on Taylor’s 
expansion – common in the risk literature – also originated a straight-forward 
connection between the multivariate measure of the aversion in the attitude 
to multivariate risks and the (partial) aversion to each of the elementary risks 
subject to background uncertainty. 

In general, and as intuitively expected, a mean-variance (“utility”) entity 
potentially exhibits a “compound-premium”, weighing the expected value but 
also the variance impact of an exogenous noise. Interestingly, if given the 
possibility of transferring utility across states of nature, a rational mean-
variance agent with a sufficiently convex utility in the expected value 
argument, will approach the von Neumann-Morgenstern attitude. 

Subject to uncertainty, whenever possible – with ex-post adjustment of 
control variables or by other means –, both types of agents will try to reach the 
maximum value of the function of the expected value of the (random or not) 
arguments. With enforcing contracts with respect to the controls, the 
expected optimal maximand reacts to uncertainty as the expected function 
would in the absence of optimization – but at the optimal level of the control 
variables.  
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With ex-post flexibility with respect to decision variables to which the risk 
is added, uncertainty is completely countervailed – and the optimized 
function completely stabilized. 

Production applications under some of the relevant environments – as 
consumption could have also been – were briefly overviewed. The 
conditioning effect of concavity, slopes of supply and factor demand were 
appropriately related to the response to uncertainty by a competitive firm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Turkish Economic Review 

A.P. Martins, TER, 11(1-2), 2024, p.1-37. 

30 

Appendix 
Appendix 1.  
. We use: 

 

Convention 1. Let A be an m x n matrix the elements of which depend on the r element column 

vector . Then 
A






 (a Jacobian matrix) is a mn x r matrix that has in the i-th row and j-th column 

element the derivative of i-th element of the vector vec(A) – created juxtaposing consecutively the n 

columns of A in a single “column” - with respect to the j-th element of vector : 

 
A






  =  

( )vec A






  

 

Convention 2. We will write  
´

A






 = 

'
A



 
 
 

. 

 

Convention 3. We will denote by    

2

´

A

 



 
 = 

'
A





  
   

   


 = 

'
A

vec




  
   

   


. 

 

For example, if m = n = 1, 
A






 = [

1

A





 2

A






 … 

r

A






] and 

2

´

A

 



 
 is the Hessian matrix 

of the function A, matrix with typical element [

2

i j

A

 



 
]. Being A a scalar, 

2

´

A

 



 
 = 

2

´

A

 



 

; 

2

´ j

A

 



 
 = [

2

1 j

A

 



 
 

2

2 j

A

 



 
 … 

2

r j

A

 



 
]’. 

 
We refer below useful propositions on matrix algebra used in the text. I

j
 denotes an identity j x j 

matrix. 

. Quoting from Dhrymes (1978), often used results: 

 
Proposition A.1. (Dhrymes, 1978, Proposition 86, p. 519). Let A be m x n and B n x s. Then: 

1.  vec(A B)  =  (I
s
  A) vec(B) = (B’  I

m
) vec(A) 

(Hence:) 2.  vec(A)  =  (I
n
  A) vec(I

n
) = (A’  I

m
) vec(I

m
) 

 

Proposition A.2. (Dhrymes, 1978, Corollary 22, p. 519).  

 vec(A
1

 A
2
 A

3
)  =  [I  (A

1
A

2
)] vec(A

3
) 

 

Proposition A.3. (Dhrymes, 1978, Proposition 88, p. 521). 
 tr(A B)  =  vec(A’)’ vec(B) = vec(B’)’ vec(A) 

 

Proposition A.4. (Dhrymes, 1978, Remark 45, p. 522). 

   tr(A
1
 A

2
 A

3
 A

4
)  =  vec(A

2
’)’ (A

1
’A

3
) vec(A

4
) = vec(A

4
’)’ (A

3
’A

1
) vec(A

2
) 

 

Proposition A.5. (Dhrymes, 1978, Proposition 93, p. 525). Let Y = A X, where Y is m x 1, A is m 

x n, X is n x 1, with both A and X dependent on the vector , r x 1.  

 
Y






  =  (X’  I

m
) 

A






 + A 

X






  

 

Proposition A.6. (Dhrymes, 1978, Proposition 96, p. 527) Let Z be mx1, A mxn and X nx1, A is 

independent of the rx1 vector . Then 
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( ' )Z AX






  =  X’ A’ 

Z






 + Z’ A 

X






       and 

2 ( ' )

'

Z AX

 



 
 = 

'
Z



 
 
 

A
X






 + 

'
X



 
 
 

A’
Z






 + (X’ A’  I

r
)

2

'

Z

 



 
 + (Z’ A  I

r
)

2

'

X

 



 


 

Proposition A.7. (Dhrymes, 1978, Proposition 100, p. 532) Let A be mxn, X nxq, B qxr and Z rxm. 

If X and Z are functions of the rx1 vector . Then 

 
( )tr AXBZ






  =  vec(A’ Z’ B’)’ 

( )vec X






 + vec(B’ X’ A’)’ 

( )vec Z








 

Proposition A.8. (Dhrymes, 1978, Proposition 101, p. 532) Let A and B are square matrices m x 

m and q x q respectively, and only X – which is qxm - depends on the rx1 vector . Then 

 
( ' )tr AX BX






  =  vec(X)’ [(A’  B) + (A  B’)] 

( )vec X








 
. Others: 

 

Proposition B.1. Being A an (mxn) matrix (see the result in Hamilton, 1994, p. 733): 

1. I
r
  (I

s
  A)  =  I

rs
  A  

2. (A  I
r
)  I

s
  =  A  I

rs
  

Proof: Use the fact that, for any matrices A, B and C,  A  B  C  =  A  (B  C).   

 

Proposition B.2. Being X an nx1 column vector and Z an rx1 one: 

1. X  Z’  =  X Z’   

2. X’  Z  =  (X Z’)’  =  Z X’  =  Z  X’ 

3. X  Z’  =  Z’  X    

4. X  X’  =  X’  X  =  X X’  

5. vec(X  Z’)  =  (Z  I
n
) X  =  (I

r
  X) Z  = Z  X   (Proof: Use A.1.1.) 

 

Proposition B.3. Being X a column vector:        (Proofs: Use B.2.4. ) 

1. (XX’)  X  =  X  (XX’)      

2. [X  (XX’)]’  =  X’  (XX’)  =  (XX’)  X’     

 

Proposition B.4. Being X a column vector:         (Proofs: Use B.2.4. and B.2.5.) 

1. X  X  =  vec(XX’)         

2. X  X  X  =  vec[(XX’)  X]  =  vec[X’  (XX’)]  

3. X  X  X  X  =  vec[(XX’)  (XX’)]  

 
Proposition C.1. Let X be an nx1 vector and A a pxs matrix. Then,  

1. vec(A  X)  =  vec(A)  X  

2. vec(X  A)  =  vec(A  X’)  =  [(I
s
  X)  A] vec(I

s
) = (X’  A’  I

np
) vec(I

np
)  

3. vec(I
s
  X)  =  vec(I

s
)  X  

4. vec(X  I
s
)  =  vec(I

s
  X’)  =  [(I

s
  X)  I

s
] vec(I

s
)  =  (X’  I

sns
) vec(I

ns
)   

(Proofs: Use A.1.2.) 

 

Proposition C.2. Let A be an mxn matrix and B an rxs one - (A  B) is mr x ns. Then, vec(A  

B) = 

1. [I
ns

  (A  I
r
)] vec(I

n
  B) 

2. [(I
n

  B’)  I
mr

] vec(A  I
r
) 

3. [I
ns

  (I
m

  B)] vec(A  I
s
)  =  (I

nsm
  B) vec(A  I

s
) 

4. [(A’  I
s
)  I

mr
] vec(I

m
  B)  =  (A’  I

smr
) vec(I

m
  B) 
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Proof: Use the fact that (A  B) = (A  I
r
) (I

n
  B) = (I

m
  B) (A  I

s
) and Proposition A.1.1. 

 

Proposition D.1. Let a be a scalar and B an (mxn) matrix, both functions of the elements of an 

(rx1) vector . Then: 

 
 aB






  =  

 vec aB






  =  vec(B) 

a






 + a 

B






 

 

Proposition D.2. Being X an (nx1) vector dependent on a (rx1) vector  and A a pxs matrix 

independent of : 

1. 
 A X



 


  =  

 vec A X



 


  =  vec(A)  

X






      (Proof: Obvious from 

C.1.1.) 

2. 
 X A



 


  =  

 vec X A



 


  =  {[vec(

X






)]’  A’  I

np
} [I

r
  vec(I

np
)]   

3. 
 sX I



 


  =  

 svec X I



 


  =  {[vec(

X






)]’  I

sns
} [I

r
  vec(I

ns
)]   

4. 
  



 


  =  I

r
    +    I

r
   

 

 

Appendix 2.  

 

. Taylor’s expansion to the fourth order of any function (Z) around neighbourhood X of a given 

level Z generates (see an approximation to the third order in sum notation in Hamilton 1994, p. 738):  

 

(A.1)  (Z + X)  =  (Z)  + 
Z




  X  + 

1

2!
 

'
2

´
vec

Z Z

  
  

   
 (X  X) +  

 

 +  
1

3!
 

'
2

´Z Z
vec

Z

   
   

     
  
     

 (X  X  X)  + 

 +  
1

4!
 

'
2

´Z Z

Z

vec
Z

    
    

     
   
   

    
    
  
  
  
  
  

 (X  X  X  X)  +  ...  =  

 

 =  (Z)  + 
Z




  X  + 

1

2!
 X’ 

2

´Z Z



 
 X +  
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+ 
1

3!
 vec(XX’)’ 

2

´Z Z

Z

 
  

  


 X  + 

1

4!
 vec[(XX’)  X]’ 

2

´Z Z

Z

Z

  
  

   
 
 
  


 X  +  ...   

 

Proposition E. Let X be an rx1 random vector for which E[X] =  and Cov(X) = E[(X - ) (X - 

’] = V. Then: 

1. E[XX’] = V + ’ 

2. E{[(X - ) (X - ’]  (X - )} = E{(X X’- X’ – X’ + ’)  (X - )} = 

 = E{[(X - ) (X - ’]  X} – (V  ) = 

 = E[(X X’- X’ – X’ + ’)  X] – (V  ) = 

 = E[(X X’- X’ – X’)  X] – [(V - ’)  ] = 

 = E[(X X)’  X] - E[(X’)  X] - E[(X’)  X] – [(V - ’)  ]  

 = E[(X X)’  X] - [’  vec(V+’)] – (  V)  – (V  )  

 = E[(X X)’  X] - [vec(V+’)  ’] – (  V)  – (V  )  

 = E[(X X)’  X] - vec(V+’) ’ – (  V)  – (V  )  

3. E{[XX’ – E(XX’)]  (X -)} = E[(XX’)  (X -)] = E[(XX’)  X] – [(V + ’) ] 

4. E{(X -)  [XX’ - E(XX’)]} = E[(X -)  (XX’)] = E[X  (XX’)] – [ (V + ’)] 

5. E{[XX’ – E(XX’)](X-)’} = E[(XX’)(X-)’] = E[(XX’)  X’] – [(V + ’) ’] 

6. E{(X-)’ [XX’ - E(XX’)]} = E[(X-)’ (XX’)] = E[X’  (XX’)] – [’ (V + ’)] 

7. E{[XX’ – E(XX’)]  [XX’ – E(XX’)]} = E{(XX’)  [XX’ – E(XX’)]} =  

 =  E[(XX’)  (XX’)] – [(V + ’)  (V + ’)] 

8. E{[(X - ) (X - ’]  (X - ) (X - ’} = E{(X X’- X’ – X’ + ’)  (X - ) (X - ’} = 

E{(X X’- X’ – X’)  (X - ) (X - ’} + (’)  V  

= E{[(X (X - ’]  (X - ) (X - ’} -  E{(X - )’  [(X - ) (X - ’]} =  

= E{(X X’)  [(X - ) (X - ’}- E[(X ’)  [(X - ) (X - ’]} -  E{(X - )’  [(X -) (X - 

’]} = E[(X X’)  (X X’)] - E[(X X’)(X’)] - E[(XX’)  (X’)] + [(V+’)(’)] – 

- E[(X ’)  (XX’] + E[(X ’)  (X’)] + E[(X ’)  (X’)] - [( ’)  (’)] - 

-  E{(X - )  [(X - ) (X - ’]}’ = 

= E[(X X’)  (X X’)] - E[(X X’)  X’]   - E[(XX’)  X]  ’ + [V  (’)] – 

- ’  E[X  (XX’] + ’  (V+’)   + ’  vec(V+’)  ’ - 

-  { E[(X X)’  X] - [’  vec(V+’)] - (  V)  – (V  ) }’ = 

= E[(X X’)  (X X’)] - E[(X X’)  X’]   - E[(XX’)  X]  ’ + [V  (’)] – 

- ’  E[X  (XX’] + ’  (V+’)   + ’  vec(V+’)  ’ - 

-  { E[(X X)’  X’] - [  vec(V+’)’] - (’  V)  – (V  ’) } = 

= E[(X X’)  (X X’)] - E[(X X’)  X’]   - E[(XX’)  X]  ’ + [V  (’)] – 

- ’  E[X  (XX’] + ’  (V+’)   + ’  vec(V+’)  ’ - 

-  { E[(X X)’  X’] - [vec(V+’)’  ]- (’  V)  – (V  ’) } 

 
 

Appendix 3.  

 

. Consider that X is a nx1 vector with multivariate normal distribution with E[X] =  and Cov(X) 
= V. As is well known, denoting t by the (nx1) vector of arguments, its moment generating function is: 

 M(t)  =  exp(’ t + 
'

2

t V t
) 

Proposition F. Then: 

1. 
( )

'

M t

t




 = exp(’ t + 

'

2

t V t
) ( + V t) 

2. 

2 ( )

'

M t

t t



 
 = exp(’ t + 

'

2

t V t
) [( + V t) ( + V t)’ + V] 

3. 

2 ( )

'

M t

t t

t

 
  

  


 = exp(’ t + 

'

2

t V t
) ({[I

n
  ( + V t)] ( + V t) + vec(V)} ( + V t)’ + 

 + [( + V t)’  I
nn

] [vec(I
n

)  V] + [I
n
  ( + V t)] V ) = 
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 =  exp(’ t + 
'

2

t V t
) ({[( + V t)  ( + V t)] + vec(V)} ( + V t)’ + 

 + [( + V t)  V] + [V  ( + V t)]) 

 =  exp(’ t + 
'

2

t V t
) ({vec[( + V t)( + V t)’] + vec(V)} ( + V t)’ + 

 + [( + V t)  V] + [V  ( + V t)]) 

Proof: vec(

2 ( )

'

M t

t t



 
) = exp(’ t + 

'

2

t V t
) {[I

n
  ( + V t)] ( + V t) + vec(V)}. Then, apply 

rule of differentiation of Propositions A.5 and D.2.1. and use B.2.5. 

Note that [( + V t)’  I
nn

] [vec(I
n
)  V] = {[( + V t)’  I

n
] vec(I

n
)}  V = ( + V t)  V. (Use 

A.1.2.) 

 

4. 

2 ( )

'

'

M t

t t

t

t

  
  

     
 

  


 =  exp(’t +

'

2

t V t
) { {( +Vt)  vec[( +Vt)( +Vt)’ + V]} + 

 + vec[( + V t)  V] + vec[V  ( + V t)]} ( +Vt)’ + 

 + exp(’t +
'

2

t V t
) ( {V  vec[( +Vt)( +Vt)’ + V]} + 

 + [( +Vt)’  I
nnn

] {vec(I
n
)  

[( ) ( ) ']vec Vt Vt

t

    


} + 

 + (V  I
nn

) 
[( ) ]nvec Vt I

t

 


  + [vec(V)  V] ) = 

= exp(’t +
'

2

t V t
) { {( +Vt)  vec[( +Vt)( +Vt)’ + V]} + 

 + vec[( + V t)  V] + vec[V  ( + V t)]} ( +Vt)’ + 

 + exp(’t +
'

2

t V t
) ( {V  vec[( +Vt)( +Vt)’ + V]} + 

 + [( +Vt)’  I
nnn

] [vec(I
n
)  {[V  ( +Vt)] + [( +Vt)’  I

nn
] [vec(I

n
)V]} ] + 

 + (I
nn

  V) [vec(V)’  I
nnn

] [I
n
  vec(I

nn
)]  + [vec(V)  V] )  

 

Proof: vec(

2 ( )

'

M t

t t

t

 
  

  


) = exp(’ t +

'

2

t V t
) {{I

n
  vec[( +Vt)( +Vt)’ + V]}( +Vt) + 

 + vec[( + V t)  V] + vec[V  ( + V t)]} = 

=  exp(’ t +
'

2

t V t
) {[( +Vt)’  I

nn
] vec[( + Vt)( +Vt)’ + V]  +  

 + vec[( + V t)  V] + vec[V  ( + V t)]} = 

= exp(’ t +
'

2

t V t
) { {( +Vt)  vec[( +Vt)( +Vt)’ + V]} + 

 + vec[( + V t)  V] + vec[V  ( + V t)]}  

 

Using Proposition C.2 and A.5. 
 

Proposition G. We will have that: 

1. M(0) = 1.  

2. 
(0)

'

M

t




 = E[X] = .  
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3. 

2 (0)

'

M

t t



 
 = E[X X’] = ’ + V.  

4. 

2 (0)

'

M

t t

t

 
  

  


  =  E[vec(X X’)  X’]  = E[(X X’)  X]  =  E[X  (X X’)]  =   

 =  [(I
n
  )  + vec(V)] ’ + (’  I

nn
) [vec(I

n
)  V] + (I

n
  ) V  = 

 =  [(  ) + vec(V)] ’ + [(’  I
n
)  I

n
] [vec(I

n
)  V] + (V  )  = 

 =  [(  ) + vec(V)] ’ + (  V) + (V  )  =  

 =  vec(’ + V) ’ + (  V) + (V  ) 

If  = 0, E[(X X’)  X] = 0. Hence, for the multivariate normal, E{[(X-)(X-’]  (X-)} = 0 
always. 

5. 

2 (0)

'

'

M

t t

t

t

  
  

     
 

  


 = E{vec[(X X’)  X]  X’} =  

 {[  vec(’ + V)] + vec(  V) + vec(V  )}  + 

 + [V  vec(’ + V)] + 

 + (’  I
nnn

) [vec(I
n
)  {(V  ) + (’  I

nn
) [vec(I

n
)  V]}] + 

 + (I
nn

  V) [vec(V)’  I
nnn

] [I
n
  vec(I

nn
)]  + [vec(V)  V]   

 

If  = 0, E{vec[(XX’)  X]  X’} = [Vvec(V)] + (I
nn
V) 

[( ) ]nvec Vt I

t

 


(at t=0) + 

[vec(V)V] = [Vvec(V)] + (I
nn

  V) [vec(V)’  I
nnn

] [I
n
  vec(I

nn
)]  + [vec(V)  V]   

 

. It is easy to use the expressions to show that for a null means normal: E[X
1
 X

2
 X

3
] = 0; E[X

1
 X

2
 

X
3
 X

4
] = 

12
 

34
 + 

13
 

24
 + 

23
 

14
 – see, for example, Dhrymes, 1978, p. 371 -, where 

ij
 is the 

element of the i-th row j-th column of the symmetric matrix V. 
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