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Abstract. Purchasing Power Parity (PPP) relates the prices of two countries by their 
exchange rates. Several economists use PPP to measure inflation in the absence of official 
and accu- rate government reports. In the case of Iran, the government’s official inflation 
figures are significantly lower than what one would expect given their economic troubles; 
therefore, we apply PPP to measure inflation in Iran. Because of its volatility in the short-
run, PPP is often used as a long-run economic indicator. The main cause for this is that PPP 
is a leading indicator, creating short-term inaccuracies. However, using machine learning 
algorithms, we forecast both the time until there is zero PPP lag (i.e. the official and implied 
inflation rates are equal) and the difference between the official and implied inflation rate 
(allowing us to predict official inflation rates) for Iran with minimal volatility. This allows us 
to use PPP accurately over both the short- and long-run.  
Keywords: Purchasing Power Parity (PPP); Iranian inflation; Machine learning; Support 
vector machine; Random forest; k -nearest neighbors; Neural network  
JEL. D30; D63; E21. 

 

1. Introduction  
urchasing Power Parity (PPP) has been a popular method for measuring 
inflation in countries where official reports of inflation data either 
stopped or are inaccurate given the country’s economic environment. 

For example, PPP was used to measure Zimbabwe’s hy- perinflation once 
Zimbabwe’s government ended the reporting of official inflation data (Hanke 
& Kwok, 2009). 

Because PPP uses exchange rate data - which is available daily - to predict 
inflation, it serves as a leading indicator for official inflation. Realizing the 
short-term volatility of exchange rates, many economists reject PPP as an 
acceptable short-run indicator. This volatility creates a rift between the PPP 
implied inflation rate and the official inflation rate. According to Rogoff 
(1996), the difference between the PPP implied inflation rate and the official 
inflation rate decrease only 15 percent per year (Kenneth, 1996). 

This slow mean reversion rate undermines the use of PPP in predicting 
inflation, espe- cially over short periods of time (such as in the case of Iran). 
However, by using machine learning (ML) algorithms, we can predict this PPP 
lag time and the deviation of PPP from official inflation rates. 

Recently, machine learning has become significantly more popular, 
especially in the field of economics. Most econometric analysis and empirical 
economic analysis involves specifiying a model, evaluating confidence 
intervals for estimated parameters, and applying that model (Athey, 2018). It 
is important to note that ML models do not serve the same purpose of 
parameter esti- mation; while ML models can return regression coefficients, 
the results are rarely consistent. However, using ML in economics offers 
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several advantages to this traditional approach, in- cluding uncovering 
patterns, fitting complex data in flexible functions, and finding functions that 
perform accurately out-of-sample. These are some of the main purposes of 
creating supervised ML algorithms (Mullainathan & Spiess, 2017). 
 

2. The PPP Equation 
Before continuing our discussion of PPP, it is important to understand the 

calculation of PPP. For our calculations, let: 
• PI = the Iran price level in Iranian rial (IRR) 
• PUS = the United States price level in U.S. dollars (USD) 
• EIRR/USD = the exchange rate of IRR:USD (IRR per unit of USD)  

PPP, in a static sense, states that: 
 

 
PPP in a dynamic sense - which looks at the changes in price levels - states 

that: 

 
In countries which we suspect have high inflation, such as Iran, ∆PUS can 

be assumed to be 0, given that it is insignificant compared to ∆PI. Therefore: 
 

 
The final PPP equation relates Iran’s inflation to the IRR’s exchange rate to 

the USD. Given the volatility of these exchange rates, many economists ignore 
PPP as an accurate measure of inflation in the short-run; many accept that 
PPP deviations have a 3- to 5- year half-life (Rogoff, 1996). 

 

3. PPP Deviations in Iran 
Our PPP data for Iran (beginning on 1/19/2012) took over a year and a half 

to reach equilibrium with the official inflation rate (i.e. official inflation rate - 
PPP implied inflation rate = 0). Following this point of inflection, the PPP 
implied inflation rate stayed relatively close to the official inflation rate. 
Recently, however, the deviation has grown significantly (see Figure 1). 

 

 
Figure 1. Inflation rate 
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On average over all our available data, the PPP implied inflation rate is 
10.786% higher than the official inflation rate. This indicates the short-run 
inaccuracies of PPP implied inflation rates. 

Before creating models to limit this variance, we must first examine the 
relationships between the factors of PPP inflation and the PPP deviation. We 
test how the following factors correlate to the difference between the official 
and implied inflation rate (DoI) and the months to equilibrium (MtE; months 
until the two rates are the same): 

 
 

3.1. Difference between Official and Implied Inflation Rate (DoI) 
Figure 2 shows the correlations between the black market premium and official 

exchange rate to the DoI. 
 

  
Figure 2. (a) corr (Black market premium, DoI). (b) corr (Official exchange rate, DoI). 

 
Both regressions are statistically significant (p-value < 0.05). However, both 

show a weak correlation coefficient (r-value) and coefficient of determination 
(R2). The models’ R2 values of 0.595 and 0.224, respectively, show the models are 
very weak. 

 

3.2. Months to Equilibrium (MtE) 
Figure 3 below shows the correlations between the black market premium 

and official exchange rate to the MtE. 
 

  
Figure 3. (a) corr (Black market premium, MtE). (b) corr (Official exchange rate, MtE). 
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Both these regressions are weak - again. Despite their statistical significance, 
the r-value and R2 are too low to be able to make low-variance predictions 
about PPP lag using these linear regressions. The same goes for the DoI 
regressions. 

 

4. Machine Learning Practices 
Like most ML algorithm creators, we split the data into two components: 

1. The training set. This is what the models use to ”learn” the coefficients 
of the model 

2. The test set. This is a set of known data for which the model predicts 
data. The predicted data is compared to the observed data to measure the 
model’s accuracy. 

Although ML algorithms have proven to be very powerful in fitting data, in 
many cases, they overfit the data to the specific training data. Overfitting 
creates a very high variance for the models when they are applied to data 
outside of the give training set (i.e. when applied to the most recent data 
outside the training set to predict PPP lag). 

To examine the possibility of overfitting, we employ k -fold cross-validation 
(with k = 3). Cross-validation tests the model on difference splits of the 
dataset. In k -fold cross- validation, the original sample is randomly divided 
into k equal samples. This allows us to test the model’s performance on a 
different test set to ensure that its accuracy holds when applied to different 
datasets of the same type. 

 

5. Support Vector Machines (SVMs) 
The support vector machine was first invented by Vapnik & Lerner (1963). 

It seeks to find supporting vectors that create the maximum distance between 
groups, or maximize margin (defined as the distance between supporting 
hyperplanes). 

Because SVMs create separations that are less influenced by large outliers, 
they can often be more accurate than other regressions. Furthermore, SVMs can 
be made with both a linear kernel and a radial basis function kernel. This non-
linear regression is called the kernel trick, which allows us to map inputs into 
features of higher dimensions, allowing for further optimization of the model. 

 

6. Random Forests (RFs) 
Random Forests (RFs) were first introduced by Tin Kam Ho (1995). Random 

Forests create several decision trees from the training set, and output the 
mean prediction of the trees. The primary advantage of a random forest over a 
normal decision tree is that random forests reduce overfitting, thereby 
increasing their accuracy. 

 

7. k -Nearest Neighbors (k -NNs) 
k -Nearest Neighbors were invented by Evelyn Fix and J.L. Hodges in an 

unpublished military report in 1951 (Fix & Hodges, 1989). The model predicts a 
value for an input based on the average its k nearest neighbors. 

One advantage of the k -Nearest Neighbors regressor is that it is a simple 
lazy-learner algorithm, meaning that the function is calculated locally and 
values are predicted only once test data is put in (as opposed to eager learners, 
who learn from the training data). Furthermore, because it predicts values 
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based on data similar to the input, it works very well on both noisy and simple 
data. 

 

8. Deep Neural Networks (DNNs) 
Artificial neural networks were first introduced by Warren McCulloch & 

Walter Pitts (1943). Artificial neural networks are based around computing values 
similar to an animal brain; they create several connected nodes called artificial 
neurons, which can process and send signals. These connections are called 
”edges.” Both the neurons and the edges have set weights that change as the 
network learns. 

This layer of neurons is called the ”hidden layer.” A DNN has multiple 
hidden layers. Because they have the structure of a brain instead of a defined 
structure (i.e. linear), neural networks are robust in approximating functions 
regardless of their structure. 

 

9. Hyperparameter Search Space 
We created our models using scikit-learn in Python.11 To optimize the 

accuracy of the models, we tested the models using varying hyperparameters, and 
chose the ones that yielded the highest accuracy. We tested: 

 
SVM 
- γ (gamma; kernel coefficient) - {0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 

10, 1/n features (scikit-learn’s automatic value)} 
- C (penalty parameter of the error term) - {0.001, 0.01, 0.1, 1, 10, 100, 1000} 
- kernel (the kernel type to be used in the algorithm) - {linear, radial basis 

function, polynomial, sigmoid} 
- E (epsilon; the epsilon-tube within which no penalty is associated in the 

training loss function with points predicted within a distance epsilon from 
the actual value) 

- {.001, .01, .1, 1} 
 
RF 
- Number of trees - {10, 50, 100, 200, 300} 
- criterion to measure the quality of a split - {mean squared error, mean 

absolute error} 
 
k -NN 
- n neighbors (number of neighbors to call) - {3, 4, 5, 8, 10, 15} 
- weights - {uniform, distance} 
 
DNN 
- hidden layers -{25, 50, 75, 100, 150, 200} 
- activation function for the hidden layer - {identity (no-op activation), 

logistic sigmoid function, hyperbolic tan function, rectified linear unit 
function} 

- solver for weight optimization - {LBFGS (quasi-Newton method), “adam” 
stochas- tic gradient-based optimized} 
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10. Model Creation 
Our models accept the black market premium, official exchange rate, and 

PPP implied inflation rate as its inputs. They predict the DoI and MtE with 
these inputs. 

Along with optimizing the hyperparameters for accuracy, we tested 
different splits of the train and test set to see which yielded the optimal 
accuracy. We found the following parameters yielded the most accurate 
results: 

• Models predicting DoI (difference of inflation, or reported - implied 
inflation rate) 

- Training dataset size: 60%, testing dataset size: 40% 
- SVM 

∗ γ (gamma) = 0.0001 
∗ C = 100 
∗ kernel = radial basis function 
∗ E (epsilon) = 0.01 

- RF 
∗ number of trees = 50 
∗ criterion = mean absolute error 

- k -NN 
∗ n neighbors = 4 
∗ weights = distance 

- DNN 
∗ hidden layers = 50 
∗ activation function = identity (no-op activation) 
∗ solver for weight optimization = LBFGS (quasi-Newton method) 

• Models predicting MtE (months to equilibrium, or months until DoI = 0) 
- Training dataset size: 70%, testing dataset size: 40% 
- SVM 

∗ γ (gamma) = 0.000001 
∗ C = 100 
∗ kernel = radial basis function 
∗ E (epsilon) = 0.01 

- RF 
∗ number of trees = 50 
∗ criterion = mean squared error 

- k -NN 
∗ n neighbors = 5 
∗ weights = distance 

- DNN 
∗ hidden layers = 50 
∗ activation function = identity (no-op activation) 
∗ solver for weight optimization = LBFGS (quasi-Newton method) 

 

11. Description of DoI and MtE Data 
11.1. Distribution of Data 

Before analyzing the accuracy of the different models, it is important to 
understand the distribution and autocorrelation of the outputs (DoI and MtE). 

Though we expect the DoI data may be normally distributed, we do not 
expect the MtE data to be normally distributed. This is because the inflation 
rates reach equilibrium multiple times throughout the dataset. Therefore, 
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after the first time when the inflation rates are at equilibrium, most of the MtE 
values will be low. Therefore, we expect the MtE distribution to have higher 
frequencies at lower MtE values. See Figure 4 on the next page. 
 

  
Figure 4. (a) Histogram of DoI data. (b) Histogram of MtE data. 

 
As expected, the distribution for the DoI appears close to normal, while the 

MtE distri- bution is far from it. Though it is important to note that the data 
itself does not come from a normal distribution, it does not affect our model 
creation. 

 

11.2. Autocorrelation of Data 
We expect the DoI data to have high autocorrelation, given that the PPP 

implied in- flation rate and official inflation rate approach each other when the 
DoI is high (i.e. mean reversion). Therefore, the DoI data will have a high 
autocorrelation in the beginning of the data, which will level out after the 
inflation rates reach equilibrium for the first time. This same phenomenon will 
likely apply to the MtE data. At the beginning of the dataset (i.e. before the 
first time DoI = 0), the MtE is always approaching 0. Therefore, it will have high 
autocorrelation in the beginning of its data. See Figure 5. 

 

  
Figure 5. (a) Autocorrelation plot of DoI data. (b) Autocorrelation plot of MtE data. 

 
As expected, both datasets have some autocorrelation. Datasets with 

minimal or no autocorrelation will have autocorrelation values near 0 for the 

majority of the dataset. The high autocorrelation values in the first 1̃ 0  lags, along 
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with the negative autocorrelation after the first time DoI = 0 shows that both the 
DoI and MtE data have autocorrelation. 

 

12. Model Analysis 
12.1. DoI Models 

Because we are primarily interested in finding and analyzing the PPP lag 
time, our discussion of the DoI models will be limited to simple goodness-of-fit 
metrics - R2 and mean squared error. Both these metrics give an estimate of 
how well the model fits the data. 

Table 1 below shows the R2 and mean squared error for the DoI models. 
 

Table 1. R2 and mean squared error for the DoI models 

Model R2 Mean Squ. Error 

SVM 0.938 81.004 
RF 0.973 35.309 

k -NN 0.914 112.929 
DNN 0.961 50.970 

 
All four models have very strong accuracy according to their R2 and mean 

squared error. Furthermore, the models have a significantly lower variance than 
the simple linear models (made in Sections 3.1 and 3.2). 

 

12.2. MtE Models 
As we did with the DoI models, we will first examine the R2 and mean 

squared error of the models. 
After measuring these basic goodness-of-fit metrics, we will then perform k -

fold cross- validation, along with various analyses on the models’ residuals to 
both further examine their accuracy by testing their randomness and 
normality. 

 
12.2.1. R2 and Mean Squared Error 

Table 2 on the next page shows the R2 and mean squared error of the models. 
 

Table 2. R2 and mean squared error of MtE models. 

Model R2 Mean Squ. Error 

SVM 0.902 2.181 
RF 0.883 2.607 

k -NN 0.860 3.113 
DNN 0.747 5.615 

 
The models’ R2 values are relatively strong, and the mean squared error for 

all models is low. All models have a mean squared error of less than 6 months, 
indicating that our estimates for PPP lag will likely have an error of less than 
half a year. 

 
12.2.2. k-Fold Cross-Validation 

To examine that our models are not overfitting (meaning they would have 
very high variance when applied to other data), we performed k -fold cross-
validation for the models’ R2 scores. 

Table 3 below shows the cross-validation scores and the 95% confidence 
intervals of the scores. 
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Table 3. Cross-validation scores and 95% confidence interval for R2 

Model Cross-Validation Score for R2 95% Confidence Interval 

SVM 0.874 ±0.103 
RF 0.710 ±0.268 

k -NN 0.768 ±0.096 
DNN 0.468 ±0.344 

 
Only the DNNs cross-validation score is significantly lower than its R2. This 

combined with the fact that its 95% confidence interval has the largest range of the 
regressions indicates that the DNN is likely overfitting to some extent. However, 
the DNN had the lowest R2 and highest mean squared error of the 4 regressions, 
so we already suspected it would be the least accurate. This assumption will 
be tested more later. 

The other three regressions have cross-validation scores only marginally lower 
than their R2, and their 95% confidence intervals have small ranges. The R2 for 
the RF and k -NN is at the upper end of the 95% confidence interval for the cross-
validation score. Meanwhile, the SVM’s R2 is very close to its cross-validation 
score. Therefore, the SVM is likely the most accurate regression. The RF and k -
NN regressions are similarly accurate, and the DNN is the least accurate. 

 
12.2.3. Standardized Residuals Test 

To prove that the models’ errors are truly random and to account for the fact 
that variances for different observations differ, we standardized the residuals of 
all four models. Because the number of samples (n) in our test set is less than 
30, we used the following equation: 
 

 
 

95% of the standardized residuals should be within two standard deviations of 
the mean, and any standardized residual with an absolute value greater than 2 is 
an outlier. See Figure 6 below. 

 

 
Figure 6. Standardized residuals test results for all four models. 
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Only the RF fails to pass the 95% threshold for standardized residuals within 
two stan- dard deviations of the mean. Furthermore, it has two standardized 
residuals with absolute value greater than 2. Therefore, its errors are not truly 
random. 

Along with passing the 95% threshold, each of the other three models have 
only one standardized residual with absolute value greater than 2. Furthermore, 
their standardized residuals plots have no visible trend, further indicating that 
the models’ errors are random. Therefore, the standardized residuals test 
confirms that the errors of the SVM, k -NN, and DNN are random and likely 
normally distributed. The results question the accuracy of the RF model, given 
that it fails some qualifications of the statistical test. 

 
12.2.4. Q-Q Plot for Standardized Residuals 

To further examine the distribution of the standardized residuals for the 
models, we created a Q-Q plot (quantile-quantile). A Q-Q plot plots the 
quantiles of our sample data against the quantiles of a normal distribution. A 
normally distributed sample has a Q-Q plot with a line y = x, with most of the 
points close to said line. See Figure 7 below. 

 

 
Figure 7. Q-Q plot of standardized residuals for all four models. 

 
All the Q-Q plots seem to have a line with a 45◦ angle. Furthermore, they all 

appear to have a line close to y = x, though the DNN’s line is slightly elevated. 
The points for the SVM, k -NN, and DNN appear very close to the line with no 

significant jumps. Though most of the RF’s points fall close to the line, the two 
left-most points have a significant jump between them and the rest of the 
graph. 

Therefore, the SVM, k -NN, and DNN standardized residuals likely follow a 
normal dis- tribution according to the Q-Q plot, while the RF standardized 
residuals likely follow a bimodal distribution because of the jump in the data. 
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12.2.5. Shapiro-Wilk Test for Normality of Standardized Residuals 
To further test whether the models’ standardized residuals are normally 

distributed, we performed a Shapiro-Wilk test on the standardized residuals. 
The test returns a W-value between 0 and 1. W = 1 when the data is perfectly 

normally distributed. Smaller values for W indicate the data is less likely to be 
normally distributed. The test also returns a p-value. Note, however, that the 
H0 (null hypothesis) of a Shapiro- Wilk test is that the data is not normally 
distributed. Therefore, higher p-values indicate a higher likelihood that the 
data is normally distributed, as a higher p-value signals a lower probability of 
rejecting H0. See Table 4 below. 
 
Table 4. Shapiro-Wilk test for normality of standardized residuals results. 

Model W-value p-value 

SVM 0.943 0.193 
RF 0.895 0.016 
k -NN 0.965 0.556 
DNN 0.965 0.550 

 
The Shapiro-Wilk test confirms our suspicion from the Q-Q plot that the RF’s 

standard- ized residuals are not normally distributed. The RF had the lowest 
W-value of the four models, and its p-value of 0.016 indicates we can reject H0. 
Therefore, because the p-value allows us to reject H0, we conclude that the RF’s 
standardized residuals are not normally distributed. 

The test’s result for the other three models’ standardized residuals are 
encouraging. The SVM has the lowest p-value of the three, at 0.193. However, 
because p > 0.05, we cannot reject the H0 that the SVM’s standardized residuals 
are normally distributed. 

Because the k -NN and DNN have W-values close to 1 and high p-values, it is 
very likely k -NN and DNN’s standardized residuals are normally distributed. 
Despite the SVM’s high W-value, its low p-value indicates there is a higher 
chance of rejecting H0 for the SVM than for the k -NN and DNN. Therefore, 
though it is likely the SVM’s standardized residuals are normally distributed, 
we cannot come to a certain conclusion. We can, however, conclude with high 
certainty that the RF’s standardized residuals are not normally distributed, given 
that p < 0.05. 
 
12.2.6. Durbin-Watson Test for Autocorrelation of Standardized 
Residuals 

Along with testing that the models’ standardized residuals are normally 
distributed, it is important to test that they have minimal autocorrelation. Any 
significant autocorrelation in a model’s errors indicates it makes the same 
mistake several times and is, therefore, underfitting to an extent (i.e. the model 
is not complex enough to accurately understand a relationship between our 
inputs and outputs). 

To test for autocorrelation, we performed a Durbin-Watson test. A Durbin-
Watson test returns a Durbin-Watson test statistic (DW-value) between 0 and 
4. A value of 2 indicates no autocorrelation. Values between 0 and 2 indicate 
positive autocorrelation, and values between 2 and 4 indicate negative 
autocorrelation. See Table 5 below. 
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Table 5. Durbin-Watson test for autocorrelation of standardized residuals results. 

Model DW-value 

SVM 2.159 
RF 2.600 
k -NN 2.009 
DNN 2.054 

 
The Durbin-Watson test confirms our results from the other tests in terms 

of which models are most usable. The k -NN and DNN have DW-values closest 
to 2, with the SVM close behind them. The RF has a DW-value significantly 
farther from 2 than the other three models. Therefore, the Durbin-Watson test 
helps prove that the k -NN and DNN are the most accurate models, followed 
by the SVM, and then the RF. 

 

13. Improving Accuracy for Future Models 
Though our models are already very robust, we suspect they can be improved 

with more data. Our data extends back to only January 2012. Because we only 
included points for which the official inflation rate was available, we only have 
one data point per month. 

To examine whether adding more data would increase the models’ accuracy, 
we plotted the models’ learning curves (their training and testing set error with 
varying training set sizes). The trend of the error lines indicates not only 
whether future data will improve the model accuracy but also if there is a high 
bias or error in the models. We can examine these lines for both mean squared 
error (MSE) and R2. See Figure 8 below. 

 

 
Figure 8. Learning curve of all four models for MSE. 

 
Note that the k -NN data starts at a training set size of 5 because the k -NN is 

constructed using the 5 nearest neighbors, and n samples ≥ n neighbors. 
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The noticeable difference between the training set error and testing set error 
lines for the RF and k -NN indicate that adding more training data is very likely 
to increase accuracy. 

Though the training and testing set lines appear very close together for the 
SVM and DNN, there is still a significant margin between the final result. The 
difference between the testing set error and training set error for the SVM and 
DNN is about 33.336 and 48.960, respectively. Therefore, all four models are 
likely to have a decreased MSE if more training data was added. 

The minimal changes in the training set error indicate that the models are in 
a low bias, high variance state. We think this is the ideal case in the bias-
variance tradeoff for our models, given that additional data will have similar 
qualities to our current training data. 

We also made a learning curve for the models’ R2. See Figure 9 below. 
 

 
Figure 9: Learning curve of all four models for R2. 

 
These learning curves also show a low bias state. Because the training set’s R2 

is between 0 and 1, it is difficult to see how close the testing set error line is to 
the training set error line. See Figure 10 below for the learning curves with a 
smaller y-axis range, such that the difference between the training set error and 
testing set error lines is clear. 
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Figure 10. Learning curve of all four models for R2 with y-axis range of (-10, 5). 

 
This shows that though the R2 of the testing set is approaching that of the 

training set, there is still a sizable difference between the two. Therefore, the 
models’ R2 would increase if more training data was added. 

 

14. Conclusion 
By applying ML algorithms to Iran’s inflation data, we can accurately 

measure the PPP lag time, and how long it will take for there to be no PPP lag. 
Though we only minimally discussed the DoI models, they can be used to 
predict Iran’s official inflation rate with very high accuracy (at least by basic 
goodness-of-fit metrics). Our MtE models are also very robust. They not only 
have strong goodness-of-fit metrics, but also pass various other tests examining 
whether the errors are normally distributed and random. Therefore, they can be 
used to measure PPP lag times with minimal variance and high accuracy. 

As more data becomes available, the models’ accuracy will improve, as 
shown by the learning curves. This will make even lower variance predictions 
of PPP lag. Furthermore, these same methods can be applied to other countries 
with enough data to predict their PPP lag. 
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