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Abstract. In this paper we decompose the realized volatility of the GARCH-RV model into 

continuous sample path variation and discontinuous jump variation to provide a practical 

and robust framework for non- parametrically measuring the jump component in asset 

return volatility. By using 5-minute high-frequency data of MASI Index in Morocco for the 

period (January 15, 2010 - January 29, 2016), we estimate parameters of the constructed 

GARCH and EGARCH-type models (namely, GARCH, GARCH-RV, GARCH-CJ, 

EGARCH, EGARCH-RV, and EGARCH-CJ) and evaluate their predictive power to 

forecast future volatility.  The results show that the realized volatility and the continuous 

sample path variation have certain predictive power for future volatility while the 

discontinuous jump variation contains relatively less information for forecasting volatility. 

More interestingly, the findings show that the GARCH-CJ-type models have stronger 

predictive power for future volatility than the other two types of models. These results have 

a major contribution in financial practices such as financial derivatives pricing, capital asset 

pricing, and risk measures. 
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JEL. C22, F37, F47, G17. 

 

1. Introduction 
common finding in much of the empirical finance literature is that asset 

returns volatility exhibits “clustering” and “persistence” features. This is 

why Engle (1982) proposed the Auto Regressive Conditional 

heteroskedasticity (ARCH) model which was generalized later by Bollerslev 

(1986) to take into account bigger regression order and proposed the GARCH 

model. Nelson (1991) found that the asset volatility is “asymmetric” relatively to 

bad and good news on the market, then he modified the GARCH model and built 

an exponential GARCH model (EGARCH). These models (GARCH and 

EGARCH) were found to be more powerful in predicting future volatility 

(Andersen & Bollerslev, 1998). 

Despite the fact that GARCH style models have been continuously proved to be 

stronger for predicting asset returns volatility, seeking to improve the accuracy of 

future volatility prediction is an endless process and constitutes the premise of 

quantitative financial analysis. This is because measuring and predicting accurately 

the asset returns volatility has too much practical uses in financial asset pricing, 

financial derivative pricing, and financial risk management. 
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In order to enhance the accuracy of volatility forecasting, Koopman et al. (2005) 

introduced the realized volatility (RV) as an exogenous variable into the volatility 

equation of GARCH model. They built a GARCHRV model and found that it has 

stronger predictive power than the traditional GARCH model. The same results 

were found by Fuertes et al. (2009) and Frijns et al. (2011). 

But in realistic financial markets, the process of asset volatility is not 

completely continuous but contains some jump components. In fact, Andersen et 

al. (2007) and Huang et al. (2013) studied the HAR-type RV model and found that 

model built with continuous sample path variation and discontinuous jump 

variation that decomposed from RV has stronger power than the under composed 

HAR-RV model in measuring and predicting the asset volatility. 

Based on these findings, we estimate that it makes sense to split the exogenous 

variable RV introduced in GARCH-RV model into a continuous sample path 

variation and discontinuous jumps variation in order to further enhance the 

predictive power of GARCH-RV model. Similarly, in this paper we will also 

extend the EGARCH model to an EGARCH-RV model and an EGARCH-CJ 

model. Next, we estimate parameters of the above mentioned models and evaluate 

their forecasting power for the future volatility to identify which volatility model 

has stronger power for the asset volatility measurement and prediction. This by 

using the 5-minute high-frequency data of the broad based Moroccan All Shares 

Index for a 5 years period ranging from January 15, 2010 to January 29, 2016. 

The remaining of this paper is as follows, Section 2. discusses the construction 

of the GARCH-CJ-type models, Section 3. presents the empirical results of 

parameters estimation and predictive power evaluation, and Section 4. serves to 

conclude. 

 

2. Model Specification 
2.1. GARCH-CJ Model building 
2.1.1. GARCH-RV Model Construction 

Stock return volatility cannot be directly observable but can be measured in the 

asset return series. Financial literature shows that return volatility is “clustering” 

and “persistent” over time. Engle (1982) proposed the Auto Regressive Conditional 

heteroskedasticity (ARCH) model that captures the clustering feature and 

Bollerslev (1986) generalized it to take into account bigger regression order and 

proposed the GARCH model. Scholars generally use the GARCH(1,1) model 

described by: 

 

𝑟𝑡  = ln  
𝐼𝑡

𝐼𝑡−1
 = 𝐸 𝑟𝑡 Ψ𝑡−1 + 𝜖𝑡      

  

𝜖𝑡  = σ𝑡 ⋅  𝑧𝑡    ,    𝑧𝑡 ∼ ψ 0,1, υ      (1) 
 

σt
2 = ω + α ϵ𝑡−1

2 + β σt−1
2       

  

 

𝐼𝑡  is the price of the index at time 𝑡 and Ψ𝑡−1 contains all information up to 

day 𝑡 − 1. 𝜖𝑡  are the randominnovations (surprises) with 𝐸(𝑡) = 0 and they are 

split into a white noise disturbance 𝑧𝑡  and a time-dependentstandard deviation σ𝑡  

characterizing the typical size of the error terms.  ψ(. ) marks a conditional density 

functionand υ denotes a vector of parameters needed to specify the probability 

distribution of 𝑧𝑡 . σ𝑡  is the volatility andω , α, and βare parameters to be estimated. 

Seeking to improve the explanatory and the predictive power of the traditional 

GARCH model, Koopman et al. (2005) incorporated the Realized Volatility (RV) 
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as an exogenous variable into the volatility model GARCH(1,1) and built the 

GARCH-RV model expressed as follows: 

 

𝑟𝑡 =  E 𝑟𝑡 𝛹𝑡−1 + 𝜖𝑡       , 𝜖𝑡 = 𝜎𝑡 ⋅  𝑧𝑡 ,    
  

𝜎𝑡
2 = 𝜔 + 𝛼 𝜖𝑡−1

2 + 𝛽 𝜎𝑡−1
2 + 𝜆 𝑅𝑉𝑡−1 .    (2) 

 

λ is a parameter to be estimated as for ω , α, and β, and RVt−1 is the realized 

volatility at time 𝑡 − 1. Martens (2002) and Koopman et al. (2005) emphasized the 

importance of using high-frequency intraday returns to the measuring and 

forecasting of volatility and expressed the realized volatility as a function of 

overnight return variance. 

 

𝑅𝑉𝑡 =  𝑟𝑡 ,𝑖
2𝑁

𝑖=1 + 𝑟𝑡 ,𝑛
2 =  𝑟𝑡 ,𝑗

2𝑀
𝑗 =1    , 𝑀 = 𝑁 + 1.   (3) 

    

By assuming 𝑁 equally divided parts of a trading day, 𝑟𝑡,1 represents the log-

return for the first period (part) of the day where 𝑟𝑡,1 = ln(𝐼𝑡,1 𝐼𝑡 ,0 ) and 𝐼𝑡,1 is the 

opening price at Day 𝑡 , 𝑟𝑡 ,2 is the log-return for thesecond period; ..., and 

𝑟𝑡,𝑁expresses the N
th
return at Day 𝑡. Finally, 𝑟𝑡,𝑛 = 𝑟𝑡,𝑀 = ln(𝐼𝑡 ,1 𝐼𝑡−1,𝑐 )where𝐼𝑡−1,𝑐 is 

the closing price in Day 𝑡 − 1. 

2.1.2. GARCH-CJ Model Construction 

There is empirical evidence that stock markets exhibit fractal features and 

financial asset price volatility is not continuous but rather generated by a jump 

process. The nonlinear properties of the stock market volatility is almost due to big 

information shocks and investors’ irrational behaviors. Therein, in order to improve 

the predictive power of the GARCH-RV model, Andersen et al. (2007) 

decomposed the realized volatility (𝑅𝑉) in model (2) into a continuous sample path 

variation denoted 𝐶𝑗  and a discontinuous jump variation𝐽𝑡 . 

Alternatively, Barndorff-Nielsen & Sheppard (2006) introduced the Realized 

Bipower Variation (𝑅𝐵𝑉) with more robustness properties described by: 

 

𝑅𝐵𝑉𝑡
 𝑟 ,𝑠 

=    
ℎ

𝑀
 

1−(𝑟+𝑠) 2 

  |𝑟𝑗 ,𝑡|𝑟𝑀−1
𝑗=1 |𝑟𝑗+1,𝑡|𝑠 ,     𝑟, 𝑠 ≥ 0.  (4) 

 

Where 𝑟  and 𝑠  are constants
1
, ℎ  is a fix time interval and 𝑀  is the sample 

frequency within interval ℎ. Barndorff-Nielsen and Shephard (2006) demonstrated 

that when a stochastic volatility and an infrequent jumps process exist, then the 

difference between RV and RBV estimates the quadratic variation of the jump 

component 𝐽𝑡  when 𝑀 → ∞. 

 

𝑅𝑉𝑡 − 𝑅𝐵𝑉𝑡

𝑀→∞
    𝐽𝑡  .       (5) 

 

Given a limited sample size, the jumps variation 𝐽𝑡  calculated in (5) may not be 

always positive and to overcome this issue, we treat 𝐽𝑡  in the following way: 

 

𝐽𝑡 =  Max 𝑅𝑉𝑡 − 𝑅𝐵𝑉𝑡  , 0  .      (6) 

 

 
1
Usually 𝑟 =  𝑠 =  1is given so that𝑅𝐵𝑉𝑡

 1,1 
=  |𝑟𝑗 ,𝑡 |𝑟𝑀−1

𝑗 =1 |𝑟𝑗 +1,𝑡|𝑠  
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When calculating the discontinuous jumps variation 𝐽𝑡  a problem of accuracy 

occurs for an intraday data sampled at unequal frequency. This is why Barndorff-

Nielsen & Shephard (2006) introduced a 𝑍𝑡  statistic to test for 𝐽𝑡 . 𝑍𝑡  is described 

by: 

 

𝑍𝑡 =
 𝑅𝑉𝑡−𝑅𝐵𝑉𝑡 𝑅𝑉𝑡

−1

 Max 1,𝑅𝑇𝑄𝑡/𝑅𝐵𝑉𝑡
2  1 𝑀    𝜋 2  +𝜋−5 

 → 𝑁(0,1) .   (7) 

 

Where: 

 

𝑅𝑇𝑄𝑡 = 𝑀𝜇4 3 
−3  

𝑀

𝑀−4
  |𝑟𝑡 ,𝑗−4|4 3 𝑀

𝑗 =4 |𝑟𝑡 ,𝑗−2|4 3 |𝑟𝑡,𝑗 |4 3 ,  (8) 

 

 𝜇4 3 = E  𝑍𝑡  
4 3  = 2

2

3  Γ  
7

6
 Γ  

1

2
 

−1

 .  

 

𝑅𝑇𝑄𝑡  is the Realized Tripower Quarticity which is an asymptotically unbiased 

estimator of integrated quarticity in the absence of microstructure noise. 

The calculation of 𝑅𝐵𝑉𝑡  relies mainly on the sampling frequency of intraday 

data which might result in some convergence issues when the sampling frequency 

is sufficiently high. This is due to several factors and one of these is the market 

microstructure. Andersen et al. (2012) introduced the Median Realized Volatility 

(Med𝑅𝑉𝑡 ) as a robust estimator for 𝐽𝑡  instead of the biased 𝑅𝑉𝑡 . The alternative 

Med𝑅𝑉𝑡  uses two-sided truncation, picking the median of three adjacent absolute 

returns and is expressed by (9). Similarly, 𝑅𝑇𝑄𝑡  used for 𝑍𝑡  calculation in (7) is 

replaced by Med𝑅𝑇𝑄𝑡  described hereafter by (10). 

 

Med𝑅𝑉𝑡 =
𝜋

6−4 3+𝜋
 

𝑀

𝑀−2
 ×  Med𝑀−1

𝑖=2   𝑟𝑡,𝑖−1 ,  𝑟𝑡,𝑖 ,  𝑟𝑡 ,𝑖+1  
2
 (9) 

 

Med𝑅𝑇𝑄𝑡 =
3𝜋𝑀

9𝜋+72−52 3
 

𝑀

𝑀−2
 ×  Med𝑀−1

𝑖=2   𝑟𝑡 ,𝑖−1 ,  𝑟𝑡 ,𝑖 ,  𝑟𝑡,𝑖+1  
4
(10) 

 

By replacing 𝑅𝑉𝑡 . and 𝑅𝑇𝑄𝑡  in (7) with Med𝑅𝑉𝑡  and Med𝑅𝑇𝑄𝑡  respectively, 

we calculate the 𝑍𝑡 statistic and get the estimator for both discontinuous jump 

variation 𝐽𝑡  and continuous sample path variation 𝐶𝑡  at 1 − 𝛼 significance level. In 

this paper, based on previous research, we choose a confidence level of 99%. 𝐽𝑡  and 

𝐶𝑡  are then defined as: 

 

𝐽𝑡 =  𝐼(𝑍𝑡 > 𝜙𝛼 )(𝑅𝑉𝑡 − Med𝑅𝑉𝑡),               (11) 

 

𝐶𝑡 = 𝐼 𝑍𝑡 ≤ 𝜙𝛼 𝑅𝑉𝑡  +  𝐼 𝑍𝑡 > 𝜙𝛼 Med𝑅𝑉𝑡 .              (12) 

 

Finally, according to the above 𝑅𝑉𝑡  decomposition into 𝐶𝑡  and 𝐽𝑡 , the GARCH-

RV model in (2) becomes the GARCH-CJ model expressed as follows: 

 

𝑟𝑡 =  E 𝑟𝑡 𝛹𝑡−1 + 𝜖𝑡       , 𝜖𝑡 = 𝜎𝑡 ⋅  𝑧𝑡 ,    

  

𝜎𝑡
2 = 𝜔 + 𝛼 𝜖𝑡−1

2 + 𝛽 𝜎𝑡−1
2 + 𝜆 𝐶𝑡−1 + 𝛾𝐽𝑡−1 .             (13) 

 

2.2. EGARCH-CJ Model specification 
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In response to the weakness of traditional GARCH model to capture all the 

leptokurtosis of the error terms and to handle the asymmetric responses of 

volatility, Nelson (1991) constructed the Exponential GARCH (EGARCH) model 

on the basis of the baseline GARCH model. Most commonly, researchers use the 

EGARCH(1,1) model described by: 

 

𝑟𝑡 =  E 𝑟𝑡 𝛹𝑡−1 + 𝜖𝑡       , 𝜖𝑡 = 𝜎𝑡 ⋅  𝑧𝑡 , 

 

𝑙𝑛 𝜎𝑡
2 = 𝜔 + 𝛼   𝑧𝑡−1 − 𝐸  𝑧𝑡−1   + 𝛽 𝑙𝑛 𝜎𝑡−1

2  + 𝜃 𝑧𝑡−1 .            (14) 

 

Following the method discussed in Section 2.1.1, we get the EGARCH-RV 

model by introducing the log of the one-period-lagged realized volatility (𝑅𝑉𝑡−1). 

Thus, equation (14) becomes: 

𝑙𝑛 𝜎𝑡
2 = 𝜔 + 𝛼   𝑧𝑡−1 − 𝐸  𝑧𝑡−1   + 𝛽 𝑙𝑛 𝜎𝑡−1

2  + 𝜃 𝑧𝑡−1 + 𝜆 ln(𝑅𝑉𝑡−1)  (15) 

 

We split 𝑅𝑉𝑡−1 into 𝐶𝑡−1and 𝐽𝑡−1 , we take their logarithms and replace them 

in(15), thus we obtainthe EGARCH-CJ model described as follows: 

 

𝑟𝑡 =  E 𝑟𝑡 𝛹𝑡−1 + 𝜖𝑡       , 𝜖𝑡 = 𝜎𝑡 ⋅  𝑧𝑡 , 

 

𝑙𝑛 𝜎𝑡
2 = 𝜔 + 𝛼  𝑧𝑡−1 − 𝐸  𝑧𝑡−1   + 𝛽 𝑙𝑛 𝜎𝑡−1

2  + 𝜃 𝑧𝑡−1 +
𝜆 ln(𝐶𝑡−1) + 𝛾 ln(𝐽𝑡−1 + 1)                (16)

   

3. Empirical Results and Comparative Analysis of Models’ 

Predictive Power 
3.1. Data and Empirical Properties 
3.1.1. Sample Statistics 

Our data set is the Moroccan All Shares Index (MASI), recorded at 5 minutes 

(5-min) intervals during the sample period of January 15, 2010 to January 29, 

2016. Data is acquired from Bloomberg
®
. The Casablanca Stock Exchange opens 

at 9:30 (GMT) and the first record of the MASI index for that day is registered at 

9:31. The market closes at 15:30 (GMT) and the last record of the day is registered 

at 15:31. Therefore, considering a 5-min intervals during one trading day and by 

using the moving average interpolation for missed data we obtain 144 daily index 

records. Overall, our sample period consists of 1,506 days. We eliminated 

weekends and holidays during which the market was closed. 

 

 
Graph 1. Moroccan All Shares Index (MASI) at 5-min intervals 

(A) MASI Index level (B) 5-min returns (log difference, in percent) (C) 5-min volatility (absolute return, in 

percent). Sample period is January 15, 2010 - January 29, 2016 (216,864 5-mins, 1,506 days). Data source: 

Bloomberg® 
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Table-1 below presents descriptive statistics of all variables needed to estimate 

the GARCH-type models described before, i.e. intraday returns 𝑟𝑡,𝑖 , Realized 

Volatility 𝑅𝑉𝑡 , continuous sample path variation 𝐶𝑡 and discontinuous jump 

variation 𝐽𝑡, and their respective logarithms: ln(𝑅𝑉𝑡), ln(𝐶𝑡) and ln(𝐽𝑡 + 1). 

 
Table 1.Summary Statistics of Study’s Variables 

 Mean Std. dev. Skewness Kurtosis Jarque-Bera ADF t-statistic 

𝑟𝑡 ,𝑖  -0.0129 0.6003 0.0815 5.655 444.09*** -34.064*** 

𝑅𝑉𝑡  1.1639 1.5647 -4.9915 37.873 10615.02*** -18.125*** 

𝐶𝑡  0.8523 1.1063 -5.1326 60.345 19221.69*** -11.934*** 

𝐽𝑡  0.3116 1.1170 -9.6719 91.238 42360.17*** -22.872*** 

ln(𝑅𝑉𝑡) 0.3594 0.3681 -0.5231 3.152 121.65*** -5.166*** 

ln(𝐶𝑡) 0.2967 0.2390 -0.3266 2.791 95.95*** -5.710*** 

ln(𝐽𝑡 + 1) 0.1199 0.2476 -3.4885 13.478 1592.14*** -21.246*** 

Notes: (***) denotes significance at 1% level of significance. 

 

We can clearly observe from Table-1 that returns 𝑟𝑡,𝑖  and realized volatility 𝑅𝑉𝑡  

are not normally distributed. These are fat-tailed which implies that volatility in 

Moroccan stock market is high. Furthermore, the ADF t-statistics are all significant 

at 99% level of confidence, we can easily reject the null hypothesis of unit root 

existence in the series. This allows us to use the variables for further models 

analysis and estimation of parameters. 

3.1.2. Estimation of Models’ parameters and Comparison 
The method of estimation adopted in this paper is maximum likelihood, and 

parameters of the six competing models (GARCH, GARCH-RV, GARCH-CJ, 

EGARCH, EGARCH-RV and EGARCH-CJ) were estimated under two 

assumptions for errors distribution, i.e. the normal distribution and Student-t 

distribution. Goodness of fit is compared using the log-likelihood, Akaike 

Information Criterion (AIC) and Schwarz Information Criterion (SIC). 

From Table-2 below, by comparing log-likelihood and information criterion 

AIC and SIC, we can see that the EGARCH-type models (i.e. EGARCH, 

EGARCH-RV and EGARCH-CJ) outperform the GARCH-type models (i.e. 

GARCH, GARCH-RV and GARCH-CJ) in terms of goodness of fit of the data. 

This means that volatility on the stock market has an asymmetric response 

relatively to bad news and good news. Furthermore, both of GARCH-type models 

and EGARCH-type models fit better the data when residuals are assumed to be 

following a Student-t distribution. 

 
Table 2. Log-likelihood, AIC and SIC for GARCH-type Models and EGARCH-type Models 

 Gaussian distribution Student-t distribution 

 LL AIC SIC LL AIC SIC d.f. 

GARCH(1,1) -1288.76 1.715 1.726 -1245.90 1.659 1.674 5.935*** 

GARCH-RV -1262.13 1.729 1.732 -1236.18 1.693 1.711 6.344*** 

GARCH-CJ -1238.56 1.753 1.754 -1225.44 1.745 1.737 7.119*** 

EGARCH(1,1) -1288.49 1.716 1.730 -1245.54 1.660 1.678 5.926*** 

EGARCH-RV -1259.28 1.732 1.733 -1223.66 1.695 1.701 6.845*** 

EGARCH-CJ -1254.75 1.754 1.762 -1219.25 1.711 1.712 6.731*** 

Note: LL is the log-likelihood score. d.f. are degrees of freedom of t-distribution and are all 

significant at 1% level of significance (***). LL, AIC and SIC were calculated using 5-min returns of 

the MASI Index for the period covering January 15, 2010 to January 29, 2016. 

 

Tables-3 bellow shows that coefficients (𝜆) of newly added exogenous variables 

𝑅𝑉𝑡  and ln(𝑅𝑉𝑡)are all significantly positive at 1% or 5% level of significance. 

This indicates that volatility in Moroccan stock market exhibits pronounced 

persistence and last period volatility may affect current period volatility; this result 
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is consistent with (Koopman et al., 2005). As for the newly GARCH-CJ and 

EGARCH-CJ models, the coefficients (𝜆) for 𝐶𝑡  are significantly positive at 10% 

significance level, and the coefficients (𝛾) for Jt are non-significant only when the 

residual errors in the GARCH-CJ model are assumed to follow a Student-t 

distribution, otherwise significant. 

These estimation results indicate that, in the Moroccan stock market, the lagged 

continuous sample path variation contains relatively more information for 

predicting the current volatility, while the lagged discontinuous jump variation 

contains relatively less information for forecasting. This finding leads us to test for 

which models has more predictive power for future volatility. Also, the leverage 

effect is negative (negative estimates for 𝜃), meaning that the volatility in the stock 

market is more influenced by bad news than good news. 

 
Table 3. Estimates of Parameters for GARCH-type Models and EGARCH-type Models 
 Normally distributed residuals Student-t distributed residuals 

 GARCH GARCH-RV GARCH-CJ GARCH GARCH-RV GARCH-CJ 

𝜔 0.0883*** 0.0786** 0.0735** 0.0747*** 0.1892** 0.1956** 

𝛼 0.2355*** -0.2968*** -0.3341*** 0.2441*** -0.4219*** -0.3955*** 

𝛽 0.5273*** 0.3541** 0.3917*** 0.5655*** 0.4123*** 0.3963** 

𝜆  0.1254** 0.1349**  0.1784** 0.1996* 

𝛾   0.0533*   0.0378 

d.f.    5.935*** 6.344*** 7.119*** 

 EGARCH EGARCH-RV EGARCH-CJ EGARCH EGARCH-RV EGARCH-CJ 

𝜔 -0.5098*** 0.2514*** 0.2763*** -0.4873*** 0.3649*** 0.3821*** 

𝛼 0.3849*** -0.4159*** -0.4236*** 0.3906*** -0.6144*** 0.6232*** 

𝛽 0.8031*** 0.7810** 0.7749*** 0.8260** 0.6971** 0.6892* 

𝜃 -0.0130 -0.0985 -0.0948 -0.0268 -0.0828 -0.0847* 

𝜆  0.1365* 0.1289**  0.1437* 0.1510* 

𝛾   0.0348*   0.0458* 

d.f.    5.926*** 6.845*** 6.731*** 

Note:d.f. are degrees of freedom of t-distribution and are all significant at 1% level of significance. 

Models’ parameters are estimated using 5-min returns of the MASI Index for the period covering 

January 15, 2010 to January 29, 2016. ***, **, and * denote significance at the 1%, 5%, and 10% 

significance level respectively. 

 

3.2. Forecasting Methodology and Evaluation Criteria 

3.2.1. In-Sample Forecasting 
In this paper, we use a loss-function to determine whether the GARCH-CJ-type 

models have better predictive power than GARCH and GARCH-RV-type models. 

We compare predictive power of these volatility models using four measures, 

namely, Mean Absolute Error (MAE), Heteroskedasticity-adjusted Mean Absolute 

Error (HMAE), Root Mean Squared Error (RMSE), and Heteroskedasticity-

adjusted Root Mean Squared Error (HRMSE). In general, the smaller are these four 

statistics, the better is the predictive power of the volatility models. Statistics of 

MAE, HMAE, RMSE and HRMSE are calculated using formulae in (17). This 

paper follows the works of Koopman et al. (2005) and Corsi (2009) who used the 

realized volatility 𝑅𝑉 as a substitute for the volatility in Day 𝑡. 

 

𝑀𝐴𝐸 =
1

2
  𝜎𝑡

2 − 𝜎𝑡
2  𝑛

𝑖=1 ,                (20) 

𝐻𝑀𝐴𝐸 =
1

2
  

𝜎𝑡
2−𝜎𝑡
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2  𝑛

𝑖=1 ,                (21) 
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𝑅𝑀𝑆𝐸 =  1

2
  

𝜎𝑡
2−𝜎𝑡

2 

𝜎𝑡
2  

2
𝑛
𝑖=1 .                (23) 

 

 

Where 𝑛  denotes the size of the predictive sample, 𝜎𝑡
2  is the real volatility 

substituted by 𝑅𝑉𝑡 , and 𝜎𝑡
2  is the predicted volatility. 

Values of in-sample predictive power indexes for the GARCH-type models and 

EGARCH-type models are listed in Table 4 below. 

 
Table 4.In-Sample Forecast Evaluation 

 Errors following normal distribution Errors following t-distribution 

 MAE HMAE RMSE HRMSE MAE HMAE RMSE HRMSE 

GARCH(1,1) 3.5981 0.9837 7.1927 1.3671 3.5647 0.9846 7.2239 1.5410 

GARCH-RV 3.5467 0.9216 6.8913 0.9180 3.4988 0.9517 7.2603 1.6131 

GARCH-CJ 3.2830 0.8217 6.9516 0.8692 3.4207 0.8946 7.2554 1.6128 

EGARCH(1,1) 3.5218 0.9610 7.0220 1.2593 3.5158 0.9126 6.9373 1.5416 

EGARCH-RV 3.4894 0.9154 6.8556 1.1346 3.4791 0.8978 6.6210 1.1246 

EGARCH-CJ 3.4412 0.8999 6.8373 1.1299 3.4697 0.8615 6.5431 1.1222 

Notes: Our full sample consists of 216,864 observations (5-min returns) corresponding to 1,506 days 

from January 15, 2010 to January 29, 2016. GARCH and EGARCH-type models are estimated over 

the first 195,264 observations of the full sample, i.e. over the period January 15, 2010 to June 15, 

2015. 

 

Table-4 shows that all values for GARCH-CJ-type models are smaller than that 

of both GARCH-RV and GARCH type models consecutively. This leads us to 

conclude that in in-sample volatility forecasting, the GARCH-CJ-type models 

perform better than their counterparts and have more predictive power. However, 

when comparing forecasting power of volatility models given normal and student-t 

distribution for residuals, the findings are mixed and inconclusive regarding which 

error distribution assumption contributes better to boost the predictive power of the 

models. See that for the same given model of the six competing models, the four 

measures when assuming normal distribution for errors are not all smaller 

(alternatively, higher) than those for a student-t assumption for errors distribution, 

and judging the predictive power of models relies on which measure is used to for 

the comparison. 

3.2.2. Out-Of-Sample Forecasting 

Compared to the in-sample prediction of the models, the results of out-of-

sample forecasting are more interesting since they have more practical value. As 

for the in-sample predictive power evaluation, we divided the full sample of 5-min 

returns (216,864 observations, January 15, 2010 - January 29, 2016) into two parts. 

The first part for models parameters estimation covers the period from January 15, 

2010 to June 15, 2015, and the second part used for prediction covers the 

remaining 150 days till January 29, 2016. We still use the same loss function to 

evaluate the predictive power as for in-sample forecasting. 

Table 5 below presents the values for out-of-sample forecasting measures. As in 

in-sample predictive power evaluation, it is found that GARCH-CJ type-models 

perform better than GARCH-RV and GARCH type-models for predicting future 

volatility. In addition, the EGARCH type-models has smaller measures values than 

GARCH type-models which supposes that the former have more predictive power. 

More interestingly, the assumption for normal distribution of errors allows the 

GARCH type-models to predict better future volatility. This result is not the same 

for EGARCH type-models where predictive power measures are not scattered 
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similarly as for the GARCH type-models, and the predictive power judgment 

depends also here on the measure used for evaluation. 

 
TABLE-5:Out-of-Sample Forecast Evaluation 

 Errors following normal distribution Errors following t-distribution 

 MAE HMAE RMSE HRMSE MAE HMAE RMSE HRMSE 

GARCH(1,1) 0.977 0.965 1.210 1.062 0.972 0.958 1.194 1.048 

GARCH-RV 0.971 0.946 1.209 0.988 0.945 0.936 1.183 0.991 

GARCH-CJ 0.965 0.937 1.095 0.967 0.923 0.913 1.001 0.984 

EGARCH(1,1) 1.002 0.966 1.164 1.059 0.973 0.951 1.189 1.005 

EGARCH-RV 0.979 0.954 1.137 0.976 0.939 0.926 1.102 0.975 

EGARCH-CJ 0.958 0.929 0.996 0.946 0.914 0.890 0.978 0.972 

Notes: Our full sample consists of 216,864 observations (5-min returns) corresponding to 1,506 days 

from January 15, 2010 to January 29, 2016. GARCH and EGARCH type-models are estimated over 

the first 195,264 observations of the full sample, i.e. over the period January 15, 2010 to June 15, 

2015 

 

Based on discussions in sections 3.2.1 and 3.2.2, we conclude that among all the 

competing models, on top of their best fitting for intraday returns volatility, the 

GARCH-CJ-type models perform better when forecasting future volatility. Thus, 

introducing the realized volatility into GARCH model and splitting it into 

continuous sample path variation (𝐶𝑡 ) and discontinuous jumps variation ( 𝐽𝑡 ) 

enhances the model’s explanatory and predictive powers. 

 

4. Concluding remarks 
In this paper, we constructed a GARCH-CJ type model with continuous sample 

path variation and discontinuous jump variation based on the GARCH-RV model 

introduced by Koopman et al. (2005). In order to test the model’s validity, we 

performed an empirical study using 5-min high-frequency data of the broad based 

Moroccan All Shares Index (MASI Index) for the period covering January 15, 

2010 to January 29, 2016. Then we estimated the parameters of the six competing 

models, namely, GARCH, GARCH-RV, GARCH-CJ, EGARCH, EGARCH-RV 

and EGARCH-CJ. We also evaluated each model’s predictive power using a loss 

function by calculating four measures (MAE, HMAE, RMSE, and HRMSE) in 

both cases of in-sample and out-of-sample forecasting. 

The estimation results show that EGARCH-type models fit better the data 

meaning that the volatility in the Moroccan stock market has asymmetric responses 

with regard to good news and bad news. Indeed, the leverage effect estimates are 

negative which means that volatility on the Moroccan stock market is more 

sensitive to bad news than good news. Also, the distribution of the MASI’s returns 

is found to be leptokurtic indicating that volatility is high in the Moroccan stock 

market. A result that is consistent with other findings of studies on emerging 

financial markets. Further conclusions are drawn from the estimation results as 

follows: 

(1) The GARCH-type models and EGARCH-type models fit better the data 

when a Student-t distribution is assumed for residuals; 

(2) Volatility in the Moroccan stock market exhibits pronounced persistence 

considering the significant positive estimates for introduced realized volatility 

(RV ); 

(3) The lagged continuous sample path variation contains relatively more 

information for predicting the current volatility than the lagged discontinuous jump 

variation; 

(4) According to predictive power of the models, the GARCH-CJ are found to 

be better than GARCH and GARCH-RV-type models for forecasting future 
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volatility. This result was found when performing both in-sample and out-of-

sample forecasting. 

These findings mean that it makes sense to split the realized volatility in the 

GARCH-RV model into a continuous sample path and discontinuous jumps 

variations to enhance the models explanatory and predictive power of daily 

volatility in financial practices such as financial derivatives pricing, capital asset 

pricing, and risk measures. 

Despite the fact that the constructed GARCH-CJ-type models have shown 

better performance for predicting stock index volatility, it is still necessary to 

improve the accuracy of measuring and predicting volatility with further 

improvements for the GARCH-CJ model in our forthcoming research by 

introducing more significant exogenous variables that impact volatility. 
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