
Turkish Economic Review 
www.kspjournals.org 

Volume 3                              March 2016                              Issue 1 

 

Wealth-In-Utility and Time-Consistent Growth: 

Real Excursions with an “Overlapping” Welfare 

Function 

 

By Ana Paula MARTINS
1†

 

 
Abstract. This research explores the dynamic potential of point-wise utility functions 

optimization of representative agent economies. Such functions were generically 

considered to depend upon current consumption and wealth to be made available for next 

period usage or income generation, implying an endogenous (pseudo-)rate of time 

preference. At first inspection, the framework reproduced closely the dynamics and steady-

state properties of the traditional Solow-Swan and Ramsey models – with population 

growth, exogenous technical progress, land, or increasing returns to scale - as well as, when 

human capital/knowledge was introduced, the Lucas-Uzawa endogenous growth set-up. 

General uncertainty – simulated at different decision stages - resulted in intuitively 

appealing solutions. Overlapping optimization of the capital stock generated forward-

looking recursive dynamics. Homothetic preferences (CES or generalized Cobb-Douglas) - 

implying a constant consumption-(lead)wealth ratio along an optimal path and resulting in 

steady-state saving rates independent of CRS technologies features in simple structures -, 

were assumed for illustration, and also generic separable forms in the arguments. The latter 

were useful under uncertainty, allowing the inspection of the role of risk-aversion and 

diminishing marginal returns to capital in equilibrium and steady-state determination. 

Keywords. Wealth-in-Utility (WIU); Capital-in-Utility (KIU). Overlapping Utility 

Functions. Consumption; Saving. Growth. Time (In)Consistency. Discounting; Rate of 

Time Preference. Growth under Uncertainty. 
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1. Introduction 
aximization of an inter temporal utility function, usually with the form of 

accumulated discounted felicity (per period utility), has become a 

common objective of the representative agent in most macroeconomic 

and growth models. The formulation, after Ramsey (1928)
i
, has proved successful 

in generating long-run and specially short-run and cyclical insights in the most 

varied economic subjects; however, it has the disadvantage of generating time 

inconsistent results. It is the purpose of this research to propose an alternative 

modelling framework capable of circumvent such shortcoming: assume that 

individuals proceed to the point-wise (or per period, in discrete time) maximization 

of an - eventually time indexed – utility function, with two types of arguments: 

perishable items (consumption, leisure), and assets. It is through the latter – a self 
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as general bequest carried over to the next period - that concerns over future 

consumption are internalized. 

On a superficial appraisal, the formulation would remind Sidrauski’s (1967) 

money-in-utility functions. Or spirit-of capitalism-ones
ii
. In fact, it is quite different 

on both the rationale as on the dynamic implications: in MIU models, money is 

imbedded in felicity functions – themselves measures of per period flows of 

individuals’ well-being -, and its inclusion meant to represent its favorable role in 

transactions. In spirit of capitalism models, wealth is included in the felicity 

function of intertemporal utility and its inclusion has been able to account for the 

savings puzzle
iii

 and for the high volatility of stock prices
iv

. Our purpose is 

different: wealth (real wealth…) captures all intertemporal welfare substitution 

pertaining to a decision period (horizon) – felicity discounting is no longer required 

or justified. One can say that the traditional growth models as Solow (1956) and 

Swan (1956), assuming a constant savings function, are, to some extent, an 

inspiration of such a device; of course, asset demand becomes clearer, more 

immediate, with the proposed objective function. Moreover, first-order conditions 

confer a permanent income or life cycle flavor to the optimal consumption path. 

In fact, intertemporal dynamic effects are quite present: even if individuals 

maximize static utility functions, they are (still…) conditioned by existing past 

wealth – they prepare today the wealth stock that will be available next period. On 

the other hand, they must form expectations to correctly assess today’s real value 

of their possessions – or in a general equilibrium framework, those expectations 

will concur to generate their actual value. If we introduce leisure, future work-

consumption-wealth decisions will also affect today’s value of what we can call 

“full-time wealth”. Moreover, a wealth plan for two periods may be evaluated 

today (a conditional decision over capital made in the past “overlapping” with the 

one made in the present) – and forward dynamics arise, with the same potential as 

future expectations models. 

Overlapping generations
v
 can also be simulated through the aggregation of 

coexisting cohorts supplies and demands – with younger generations exhibiting a 

stronger preference for capital relative to older ones. Technically, with the 

proposed function it becomes a matter of heterogeneity of contemporaneous 

agents. 

In this article, we concentrate on the study of the potential of the modelling 

device – and work with discrete variables, even if continuous-time generalizations 

are straight-forward. Hence, we set out to replicate the dynamics of some of the 

widely recognized neoclassical benchmark environments, but under the new 

representative agent’s behavior: firstly, the basic Solow-Swan and Ramsey-Cass-

Koopmans one-sector models with their multiple extensions. Secondly, the 

endogenous growth Lucas-Uzawa experiment. Finally, we digress over the 

mechanisms behind exogenous shocks and their volatility transmission – or 

heterogeneity… - to economic aggregates under the current framework.  

The exposition proceeds as follows: section 1 introduces the utility function and 

the representative agent dynamic problem; short-run dynamics and steady-state 

properties are explored in section 2, with the supportive market equilibrium briefly 

justified in section 3. Exogenous technical progress and the Lucas-Uzawa 

hypothesis concerning human capital formation are analyzed in section 4, 

implications of increasing returns to scale and fixed resources (land) studied in 

section 5. Section 6 deals with the effects of exogenous uncertainty, experimenting 

with both additive and multiplicative shocks. In section 7, an enlarged utility 

function, including lead capital as well, originates a recursive solution. A final 

appraisal and possible extensions produce a concluding section. 
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2. The Wealth-In-Utility Welfare Function 
We will assume a generic utility function: 

 

Ut(ct, wt)      (1) 

 

ct denotes (per capita) consumption in period t, wt is the stock of wealth the 

individual gathered in period t – made available in period t+1
vi
. Theoretically, such 

type of “reduced” form arguments are suggested by Bellman’s equation 

formulations of standard accumulated discounted felicity functions
vii

 – yet, these 

imply a special recursive structure of today’s wealth evaluation which on the one 

hand, we leave free, and, on the other, we do not make correspondence to. Rather, 

a weight of future consumption is embedded in preferences over wt. 

Assume a simple economy: only capital, kt, can constitute wealth. At each point 

in time, the representative consumer-producer must decide whether to produce 

investment goods, it, adding to his pre-existing capital stock, or consumption 

goods, ct, exhausted in the period, which are homogeneously generated by a CRS 

production function, implying an average labor product one denoted by f(kt), with 

f(0) = 0 andfk(kt) > 0 around the relevant range of kt: 

 

ct + it  =  f(kt-1)      (2) 

 

Each unit of capital depreciates at rate d per period. Wealth will evolve 

according to: 

 

kt  =  kt-1 + it - d kt-1      (3) 

 

Hence, at each point in time, given a level kt-1, the representative agent’s 

problem – assuming that the utility function is immutable, so that Ut(ct, kt) = U(ct, 

kt) for all t - is: 

 

,t tc k
Max U(ct, kt)      (4) 

s.t: kt  =  (1 – d) kt-1 + f(kt-1) - ct    (5) 

 Given kt-1 

 

or in lagrangean form: 

 

, ,t t tc k
Max


L(ct, kt, t) = U(ct, kt) + t [kt  - (1 – d) kt-1 - f(kt-1) + ct]  (6) 

 

F.O.C., along with the restriction, require: 

t

L

c




=  Uc(ct, kt) + t  =  0       (7) 

t

L

k




=  Uk(ct, kt) + t  =  0       (8) 

from where 

Uc(ct, kt)  =  Uk(ct, kt)       (9) 
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A first implication is therefore that in each period the consumer is going to 

equate marginal utility from consumption to that he derives from wealth available 

for next period income-product generation. At the empirical level, (9) suggests a 

relation – an “income-expansion” path - between consumption in a period and the 

lead stock of wealth: past consumption choices condition more closely the current 

level of attained wealth – and not the other way around...  

Another is that if U(c, k) is homothetic, condition ct and kt will move at the 

same proportional change rate along any optimal path – i.e., ct / kt is kept constant. 

For instance: 

1) A Cobb-Douglas utility function, U(ct, kt) =  A ct


kt


, would generate: ct = 




kt. ct / kt increases with  and decreases with . 

2) A CES utility function, U(ct, kt) = A 1 2t ta c a k


   

 
 with a

1
, a

2
> 0, a

1
 + 

a
2

 = 1,  1, would imply:  ct = 

1

1
1

2

a

a

 
 
 

kt – where, as is well-known, 
1

1 
 =  

corresponds to the elasticity of substitution between the two arguments. ct / kt 

increases with a1 and decreases with a2; it increases (decreases) with  provided 

1

2

a

a
> (<) 1.  

For S.O.C. of the problem to hold, U[ct, (1 – d) kt-1 + f(kt-1) – ct] should be 

concave viii in ct, or Ucc + Ukk - 2 Uck< 0. 

 

3. Short-Run Dynamics and Steady-State Properties 
Along (9): 

t

t

c

k




  =  kk ck

cc ck

U U

U U




  = 

kk ck

k

cc ck

c

U U

U

U U

U




               (10) 

 

kk ck

cc ck

U U

U U




is expected to be larger than zero. It reflects how consumption is 

exchanged for capital along any optimal path, i.e., maintaining equality between 

the marginal utility with respect to capital and that to consumption – keeping the 

marginal rate of substitution between consumption and capital fixed and equal to 1. 

It has a similar status to a discount rate – the rate of time preference - in standard 

discounted utility models: a unit of capital available at the end of the period would 

be exchangeable or equivalently evaluated to perpetual future consumption flows at 

that rate, so that rate would be the trade-off with today’s consumption, ct we should 

be measuring by t

t

c

k




 over an optimal path. 
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Under homothetic utility functions, t

t

c

k




 is expected to be constant – once it is 

evaluated at (9); using the previous examples: for the Cobb-Douglas, t

t

c

k




= 




; 

for the CES, t

t

c

k




 = 1

2

a

a


 
 
 

.  

Additively separable utility functions will imply Uck = 0, and t

t

c

k




 is just the 

ratio between the concavity (or absolute risk-aversion) of U in k to that in c. 

 

An alternative definition of the rate of time preference would be 

1 1 1( , )[1 ( )]

( , )

c t t k t

c t t

U c k d f k

U c k

   
 - 1 = 1 1 1( , )[1 ( )]

( , )

k t t k t

k t t

U c k d f k

U c k

   
 - 1. Such ratio 

would be suggested by the traditional F.O.C. of the Ramsey problem. With a minor 

adjustment: 

 

1 1( , )[1 ( )]

( , )

c t t k t

c t t

U c k d f k

U c k

   
 - 1 = 1 1( , )[1 ( )]

( , )

c t t k t

k t t

U c k d f k

U c k

   
 - 1            (11) 

 

would measure the relation between the marginal contribution of today’s unit of 

capital (of the potentially consumable input) for tomorrow’s utility – internalizing 

that U(ct+1, kt+1) = U[(1 – d) kt + f(kt) – kt+1, kt+1] - relative to the immediate 

one, minus 1. And, then, in steady-states coinciding with fk – d. One could say that 

if this definition measures how utility is implicitly evaluated, the other affers it in 

terms of the consumption capital trade-off. We shall prefer the former definition. 

 

. The equation driving capital dynamics is (5) obeying (9),  

 

1

t

t

k

k 




 = (1 – d) + fk(kt-1) - t

t

c

k



 1

t

t

k

k 




 = [1 – d + fk(kt-1)] / (1 + t

t

c

k




) 

 

Replacing (10) in the previous expression and solving for  

 

1

t

t

k

k 




=  [1 – d + fk(kt-1)] 

2

cc ck

cc kk ck

U U

U U U



 
              (12) 

 

The dynamics of the system can now be studied with reference to the properties 

of (12). 
1

t

t

k

k 




is expected to be positive provided U is concave in both arguments. 

1

t

t

k

k 




< 1 and the solution will be stable iff (around the steady-state) 

fk(kt-1) – d< kk ck

cc ck

U U

U U




 = t

t

c

k




               (13) 
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Otherwise, it will be unstable. Stability requires that the marginal product of 

capital, deducted of the depreciation rate (coinciding, in the steady-state, with our 

second alternative for the definition of the rate of time preference), be smaller than 

the pseudo-discount rate.  

 

. Being stable, the system will converge to the solution for which kt = kt-1, that 

is, using (5): 

 

ct  =f(kt)  –  d kt = f(kt-1) – d kt-1            (14) 

 

positively sloped while fk(kt) > d – certainly for low levels of k under 

diminishing marginal returns -, and obey (9): k* will be such that 

 

Uc[f(k*) - d k*, k*]  =  Uk[f(k*) - d k*, k*]              

(15) 

 

(9) establishes an immediate “saddle-path” trajectory for contemporaneous 

consumption and capital to follow. The ct on such path is reached from, for given 

kt-1:  

 

Uc[ct, (1 – d) kt-1 + f(kt-1) – ct] = Uk[ct, (1 – d) kt-1 + f(kt-1) – ct]       

(16) 

 

originating a slope 

 

1

t

t

c

k 




 = [1 – d + fk(kt-1)] 

2

kk ck

cc kk ck

U U

U U U



 
 =[1 – d + fk(kt-1] 

1

1
1

t

t

c

k






      

(17) 

We can plot the implicit function (16) in space (kt-1, ct) – below on Fig. 1. 

Under stability, it will have a smaller slope than the saddle-path (9) evaluated at the 

lag – i.e., in co-ordinates (kt-1, ct-1), which is also plotted. We plot phaseline (14) 

– for the lag 
ix
 - as well – above it kt-1 is decreasing: kt - kt-1 = f(kt-1) – d kt-1 – 

ct< 0. Below (14), kt-1 is rising. (14) has slope, 
1

t

t

c

k 




 = fk(kt-1) – d; it will be 

smaller than that of (16) provided that (13) holds, i.e., that the system is stable, - 

and then also smaller than the slope of 1

1

t

t

c

k








 from (9). 
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Fig. 1 

If we start at a point like k0 (k0’) consumption will be c1 (c1’) on line given by 

(16), and k1 (k1’) then is read over line (9): we follow the ascending (descendent) 

steps signaled in the Figure. 

Under instability, (16) should have a smaller slope than (14) around the steady-

state, and then also (9) would have a smaller slope than (16). The path would be 

divergent from the steady-state – where both lines meet -, but nevertheless 

fluctuate (within the space) between (new) lines (16) and (9). 

Apparently, the saddle-path properties would resemble those of the Ramsey’s 

problem – see Azariadis, p. 74, for example. 

We did not find – unlike in the neoclassical framework – any reason why ka, the 

point for which function (14) exhibits a maximum and, therefore, fk(ka) = d, 

should be larger than k*. Apparently, then, it is possible that fk(k*) < d. That might 

not be the case if we had postulated, instead of (5), a state equation kt = (1 – d) kt-1 

+ f(kt) – ct, allowing kt to be immediately available as a production input; not only 

that would not seem so realistic, as it would render manipulations somewhat more 

tedious. 

. One can show, using (15), that 

*k

d




 = 

( ) *

( )( )

cc ck

cc ck k ck kk

U U k

U U f d U U



   
 = 

*

ck kk
k

cc ck

k

U U
f d

U U


 



 = 

*

t
k

t

k

c
f d

k


 


                 (18)

 

If the system is stable, 
*k

d




< 0. 

. Let us assess the likelihood of stability by an example. Assume an homothetic 

utility function and that ct = a kt, where a is a constant; then, (14) implies f(k*) = (a 

+ d) k*. From (13), stability requires that fk(k*)< a + d; with the previous, that k* 
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fk(k*)<f(k*). With CRS, f(k) – k fk(k) equals the marginal product of labor which 

will be positive. Hence the steady-state will necessarily be stable. In such case, 

capital dynamics are completely described by kt = 1 1(1 ) ( )

1

t td k f k

a

  


, positively 

sloped - once
1

t

t

k

k 




 = 11 ( )

1

k td f k

a

 


> 0 and 1 – d > 0 – and concave (in kt) iff 

fkk(k) < 0 – crossing the 45º line at k* in space (kt-1, kt): 

 

 
Fig. 2 

 
With those preferences: 

 

*k

a




 = 

*

( *)k

k

f k d a 
                 (19)

 

 

Given that stability holds, 
*k

a




< 0: the optimal k* will decrease with the 

pseudo-rate of time preference. 

. Population growth - at an exogenous constant rate n, i.e., Lt = (1 + n) Lt-1- 

would not imply any qualitative change to the previous model, provided we keep 

considering k as the capital-labor ratio, or capital stock per capita: kt-1 = 1t

t

K

L

 ; as 

in the Solow-Swan model 
x
, the left hand-side of the capital equation (5) becomes:  

 

 (1 + n) kt  =  (1 – d) kt-1 + f(kt-1) - ct               (20) 

 

Then (9) becomes  

 

Uc(ct, kt)  =  Uk(ct, kt)/(1 + n)                (21) 
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The marginal rate of substitution between consumption and capital is now going 

to be kept at level (1 + n) - t

t

c

k




 is now 

(1 )

(1 )

kk ck

cc ck

U n U

n U U

 

 
. At any level of kt-1, line 

(9) - the saddle-path, depicted in Fig. 1 - will most likely go up (to (21)): over (21), 

tc

n




 = 

(1 )

c

ck cc

U

U n U 
 and (by SOC) probably positive. For kt = kt-1, ct  =f(kt-

1) – (n +d) kt-1 – line (14) also in Fig. 1 - lowers with n at any level of kt-1 -, and 

in the steady-state: 

 

 (1 + n) Uc[f(k*) – (d + n) k*, k*]  =  Uk[f(k*) – (d + n) k*, k*]             (22) 

Now: 

*k

n




=

[ (1 ) ] *

[ (1 ) ]( ) (1 )

cc ck c

cc ck k ck kk

U n U k U

U n U f d n n U U

  

      
=

*
(1 )

(1 )

(1 )

c

cc ck

ck kk
k

cc ck

U
k

U n U

n U U
f d n

U n U


 

 
  

 
                 (23)

 

 

For stability – the denominator will be negative -, and for S.O.C. to hold – 

which suggests that the second term of the numerator will likely be positive -, the 

optimal capital-labor ratio will decline with n.  

It is easily deducted that for homothetic preferences of the CES form the steady-

state savings rate 1 – c*/f(k*), because c* = f(k*) – (d + n) k* = a k* where a = 

1

2

a

a


 
 
 

 1 n


  is a constant, is equal to: 

s* = 
d n

a d n



 
                (24) 

It decreases with a, the “rate of time preference”, with 1

2

a

a


 
 
 

, it increases with 

d and, provided (1 + n) > (d + n), with n - as one encounters in specific cases of 

the neoclassical model, using say Cobb-Douglas technology and constant elasticity 

felicity function 
xi
. Unlike in these, it will be independent of technology features. 

 

4. Free Market Equilibrium 
A decentralized market equilibrium can easily support the previous problem, 

provided the firms’ production function F(K, L) is CRS. Being wages wt and the 

interest rate rt (net of depreciation), firms will maximize profits so as to equate the 

first to the marginal product of labor, f(kt-1) – kt-1 fk(kt-1), the second plus 

depreciation to that of capital, fk(kt-1), and the economy will follow that same 

described path with no need for intervention. If agents care for their off-springs – 

sharing the capital stock -, population growth will not alter the conclusion. 

Even decreasing returns to scale – with each individual owning his own 

production plant and using his own equipment according to f(kt-1) – would revert 

to the previous solution and be efficient, provided there is no population growth. 
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5. Technical Progress and Human Capital 
Technical progress, may generate explosive paths. We shall analyze under 

which circumstances it may generate stable growth rates. We consider two 

scenarios: one, in which technical progress is exogenous. Another – in the Uzawa 

(1965) - Lucas (1988) tradition -, in which it is the product of applied resources to 

a second sector, that requires but qualified labor to accumulate knowledge or 

human capital stock, also used in the production of the other goods.  

 

. Admit, then, that the production function is CRS of the type: 

 

F(Kt-1, At-1 Lt)  =  At-1 Lt F( 1

1

t

t

k

A





, 1)  =  At-1 Lt f(
1

1

t

t

k

A





)             

(25) 

 

At-1 is an efficiency factor affecting labor – labor-augmenting, Harrod-neutral 

technical progress -, exogenously growing at proportional rate x:  

 

At  =  (1 + x) At-1                 (26) 

 

Then one can convert (20) to: 

 

 (1 + n) 
1

t

t

k

A 

  =  (1 – d) 1

1

t

t

k

A





 + f( 1

1

t

t

k

A





) - 
1

t

t

c

A 

              (27) 

or 

 (1 + n) (1 + x) t

t

k

A
  =  (1 – d) 1

1

t

t

k

A





 + f( 1

1

t

t

k

A





) - t

t

c

A
 (1 + x)            (28) 

 

Provided that U(c, k) is homothetic, condition (21) allows for ct and kt to move 

at the same proportional rate along any optimal path, and it will also be true that: 

 

 (1 + n) Uc( t

t

c

A
, t

t

k

A
)  =  Uk( t

t

c

A
, t

t

k

A
)                (29) 

Then the problem is stated in such a way that t

t

k

A
 =  tk  and t

t

c

A
= tc  enjoy the 

same properties as kt and ct in the previous model: there will be a steady state level

 *k  and *c  that will be stable under similar requirements as before. It involves – 

as it does for the intertemporal utility function, neoclassical, case - a balanced-

growth path for ct and kt, moving at the proportional rate x per period, at which At 

grows as well. The steady-state adjusted capital-labor ratio will be such that  tk  = 


1tk   and we can re-arrange (28) to: 

 

tc =  [f(  tk ) – (d + n + x + n x)  tk ] / (1 + x)               (30) 
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In Fig. 1, the line – equivalent to (14) before - will descend with x, and 

therefore, with stability, the steady-state *c  and  *k  will decrease with it, once 

(29) is invariant to x (as long as the latter is positively sloped). 

Under homothetic preferences, the steady-state savings rate 1 – ct/f(kt) = 1 – 

(1+x) *c /f(  *k ), because *c  = [f(  *k ) – (d + n + x + n x)  *k ]/ (1 + x) = a  *k  

where a is a constant but dependent on n, is equal to: 

 

s* = 
(1 )

(1 )

d n x n

a d n x a n

  

    
 = 

1

(1 )
1

(1 )

a x

d n x n




  

            (31) 

 

It will increase with x (provided d < 1, which is expected). 

. We are going to allow human capital h, to be included in the individual’s 

utility function: on the one hand, it accrues to the individual’s productivity 

potential. On the other, it carries over earnings ability to future periods. The 

individual can split his time between studying – creating h according to per period 

function g(.) using only his time endowment, normalized at 1 per period – or 

producing, lt. 

At each point in time, the planner solves the representative agent’s problem: 

 

, , ,t t t tc k h l
Max U(ct, kt, ht)                (32) 

s.t: kt  =  (1 – d) kt-1 + f(kt-1, ht-1 lt) - ct             (33) 

ht  =  (1 – e) ht-1 + g[ht-1 (1 - lt)]               (34) 

  

Given kt-1 and ht-1 

or in lagrangean form: 

 

, , , ,t t t t tc l k
Max

 
L(ct, lt, kt, ht,t,t) = U(ct, kt, ht) + t [kt - (1– d) kt-1 - f(kt-1, ht-1 lt) 

+ ct] +                    (35) 

 + t {ht  - (1 – e) ht-1 - g[ht-1 (1 - lt)]} 

F.O.C. require: 

t

L

c




  =  Uc(ct, kt, ht) + t  =  0                (36) 

t

L

l




  =  - tht-1 f2(kt-1, ht-1 lt) + tht-1 g’[ht-1 (1 - lt)]  =  0             (37) 

t

L

k




  =  Uk(ct, kt, ht) + t  =  0                (38) 

t

L

h




  =  Uh(ct, kt, ht) + t  =  0                (39) 

from where we derive that: 

 

Uc(ct, kt, ht)  =  Uk(ct, kt, ht)                 (40) 

Uc(ct, kt, ht) f2(kt-1, ht-1 lt) / Uh(ct, kt, ht)  =  g’[ht-1 (1 - lt)]            (41) 
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The two equations generate a saddle path system for ct and lt – as a function of 

(contemporaneous) kt and ht -, if we replace kt-1 and ht-1 from the two state 

equations in (41). 

A stable steady-state for k and h may exist, but for some functional forms, a 

steady growth rate may be compatible with the optimal solution: 

. Assume g(.) is linear in the argument: g(z) = b z and therefore g’(z) = b. Then 

ht grows at rate b (1 – lt) – e. Take also U(ct, kt, ht) to be of the CES type (or 

similar), so that (40) insures that ct and kt will grow at the same proportional rate, 

i.e., ct = a kt where a is a constant. That will determine a saddle-path requirement 

for ct and kt. 

Then one can re-write condition (33) as: 

 

t

t

k

h
  =  [(1 – d) 1

1

t

t

k

h





 + f( 1

1

t

t

k

h





, lt)] / {[1 + b (1 – lt) – e] (1 + a)}          (42) 

 

As f(kt-1, ht-1 lt) is CRS in the two arguments its partial derivatives are 

homogeneous of degree 0 and condition (41) becomes 

 

bUh(ct,kt,ht)/Uc(ct,kt,ht) = f2(kt-1,ht-1 lt)= f[kt-1/(ltht-1),1] - 1

1

t

t

k

h





1

tl

fk[kt-1/(ltht-1),1] =                  (43) 

  

=  
1

tl
 [f(kt-1/ht-1, lt) - 

1

1

t

t

k

h





 fk(kt-1/ht-1, lt)] = f2(kt-1/ht-1, lt) 

 

As U is CES, Uh(ct, kt, ht) / Uc(ct, kt, ht) = m(ct/ht) where m(.) is a function 

independent of the arguments of U but ct/ht, in which it is increasing. Then, 

because ct = a kt, (43) can be written as: 

 

b  m(a t

t

k

h
)=  f2(kt-1/ht-1, lt)                            (44) 

b m(a [(1 – d) 1

1

t

t

k

h





 + f( 1

1

t

t

k

h





, lt)] / {[1 + b (1 – lt) – e] (1 + a)}) = f2( 1

1

t

t

k

h





, lt)     (45) 

 

(42) and (44) allow us to determine, at each point in time, t

t

k

h
 = tk


 and lt as a 

function of, solely, 1

1

t

t

k

h





 = 1tk 


 and describe the whole system dynamics. From 

(45), and as lt is not a state variable, its path is determined by it, 

 

1

t

t

l

k 




  = ( fk2( 1tk 


, lt) - b a m’(.) [1 – d + fk( 1tk 


, lt)] /{[1 + b (1 – lt) – e] (1 + 

a)}) / 

 / { b a m’(.) ( f2( 1tk 


, lt) / {[1 + b (1 – lt) – e] (1 + a)} +  



Turkish Economic Review 

 TER, 3(1), A.P. Martins, p.54-81. 

66 

66 

+ b (1 + a) [(1 – d) 1tk 


 + f( 1tk 


, lt)] / {[1 + b (1 – lt) – e] (1 + a)}

2
 ) - f22( 1tk 


, 

lt)}                                (46) 

 

A (contemporaneous) saddle-path could be generated replacing instead tk


 

implicit in the state equation (42) in (44). Given 1tk 


, lt is on (45); then, tk


 would 

be on that “saddle-path”. 

From (42),  

 

1

t

t

k

k 







  = [1 – d + fk( 1tk 


, lt)] / {[1 + b (1 – lt) – e] (1 + a)}+ 

 + ( f2( 1tk 


, lt) / {[1 + b (1 – lt) – e] (1 + a)} +  

 + b (1 + a) [(1 – d) 1tk 


 + f( 1tk 


, lt)] / {[1 + b (1 – lt) – e] (1 + a)}

2
 ) 

1

t

t

l

k 




                     (47) 

 

It will be positive if (but not only if) 
1

t

t

l

k 




 > 0. The system will be stable 

provided (47) is smaller than 1 (in absolute value). It will be smaller than 1 iff ((46) 

is smaller than): 

 

1

t

t

l

k 




 < [{[b (1 – lt) – e] (1 + a)  + a + d} - fk( 1tk 


, lt)] [1 + b (1 – lt) – e] /  

 / {f2( 1tk 


, lt) [1 + b (1 – lt) – e] + b [(1 – d) 1tk 


 + f( 1tk 


, lt)] }     (48) 

 

For tk


= 1tk 


, the dynamic equation (42) becomes: 

 

1tk 


  =  f( 1tk 


, lt) / {[b (1 – lt) – e] (1 + a)  + a + d}             (49) 

 

which has slope: 

1

t

t

l

k 




  = [{[b (1 – lt) – e] (1 + a)  + a + d} - fk( 1tk 


, lt) ] /  

 / ( f2( 1tk 


, lt) + b (1 + a) 1tk 


)                (50) 

 

With CRS, it will be positive, once f( 1tk 


, lt) > 1tk 


 fk( 1tk 


, lt) insuring positive 

numerator. 

We can plot line (49) on space (kt-1, lt), along with (45), function lt = j( 1tk 


). 

Above (49) – because the right hand-side of (42) rises with lt -, 1tk 


< tk


 and tk


 is 

rising: let g( 1tk 


, lt) denote the right-hand-side of (42), implying tk


 - 1tk 


 = g( 1tk 



, lt) - 1tk 


 = 0 over (49); above it, tk


 - 1tk 


> 0 ( tk


 is rising) iff 1tk 


<g( 1tk 


, lt). 

Below (49), the opposite occurs.  

If the system is stable – (47) has a slope smaller than 1, being positive, and (48) 

holds -, (49) will have a higher slope, (50), than that of (46) (because the right 
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hand-side of (48) evaluated at (49) is equal to (50)). If (46) > 0, the saddle-path 

should have a slope between the two around the steady-state; if negative, it should 

be more negative that (46). Graphically: 

 

 

Fig. 3 

 

6. Increasing Returns to Scale and Land 
Assume that the aggregate production function is homogeneous of degree  in 

the two arguments, aggregate stock of capital, Kt and labor force Lt. IRS 

(increasing returns to scale) occur for > 1. As Lt is exogenous, if we can view the 

production function as CRS in the two arguments, Kt-1 and (At-1 Lt) of: 

 

F(Kt-1, At-1 Lt)    where    At-1 = Lt
(-1)/(1-g)

                         (51) 

 

where g is the degree of homogeneity of F(Kt, Lt) in Kt only – this occurs for a 

Cobb-Douglas technology, for example -, then we fall under the conditions of 

exogenous technical progress – and along the stable balanced growth path, kt and 

ct will grow at the same proportional rate as Lt
(-1)/(1-g)

: (1 + n)
(-1)/(1-g)

 – 1 
xii

. 

Note, however, that a constant population will allow – unlike in Romer (1986) - 

for a stable steady-state even with increasing marginal returns to capital, once these 

are not required – recall (13) – for stability. But of course, they may contend 

indirectly with the requirement, at least after some level of kt. 

. Admit, on the other extreme that there is also a fixed resource, asset, land, 

denoted by D, that enters the production function and cannot be changed. Its 

property is evenly distributed among the population and the representative agent’s 

utility function also depends on it. The aggregate production function is of the type 

F(Kt-1, Lt, D), homogeneous in the two arguments Kt and Lt in such a way that we 

can write F(Kt-1, Lt, D) = LtAt-1 f(kt-1/At-1, 1, D) where At-1 is a power of Lt. 

An individual solves: 
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, , ,t t t tc k h l
Max U(ct, kt, D/Lt) 

s.t: (1 + n) kt  =  (1 – d) kt-1 + At-1 f(kt-1/At-1, D) - ct            (52) 

 Given kt-1 

 

Then, with population growth, there will be a steady-state balanced growth path 

in the economy where ct and kt grow (or decrease…) at the same proportional rate 

that At-1 – conditioned by the degree of homogeneity of F(Kt-1, Lt, D) in Kt-1 and 

Lt only –, as long as along the optimal path, Uc(ct, kt, D/Lt) = Uk(ct, kt, D/Lt) 

allows it – say, U(., ., .) is of the CES type in the three arguments. 
xiii

 

If F(Kt-1, At-1 Lt, D) is homogeneous of degree 1 in the three arguments, there 

will be, in equilibrium with a (gross…) payment of FD(Kt-1, At-1Lt, D) in real – 

consumption and/or final product - terms to owners of land per unit of the resource, 

adjusting F(Kt-1, At-1Lt, D)  =  Fk(Kt-1, At-1Lt, D)  Kt-1  +  FL(Kt-1, At-1Lt, D)  

Lt-1  +  FD(Kt-1, At-1Lt, D)  D; or, denoting 1tk 


 = Kt-1 /At-1Lt, F(Kt-1, LtAt-1, 

D) / LtAt-1  =  Fk[ 1tk 


, D/ (LtAt-1)] 1tk 


  +  FL[ 1tk 


, 1, D/ (LtAt-1)]  +  FD[ 1tk 


, 

1, D/ (LtAt-1)]  D/ (At-1 Lt). In an economy of instantaneous firms, a relative price 

p
D

t – the price of land in units of either capital, product and, consumption may 

have to emerge – to account for the fact that they contribute differently to 

production and consumption and that land does not depreciate – even in the 

absence of technical progress… Then: UD(ct, kt, D/Lt) / Uc(ct, kt, D/Lt)  =  UD(ct, 

kt, D/Lt) / Uk(ct, kt, D/Lt)  =  p
D

t. 

 

7. Uncertain Wealth 
7.1. Additive Uncertainty in Stationary Models 
One can hypothesize that the value of the capital stock is a random variable, say 

added of a noise et, translating expectations of future gains from savings 

applications or expected appreciation or other. Decisions must be made ex-ante, 

that is, before et is observed, and therefore they exhibit no recurrent consequences, 

or these being independent as long as the external shocks also are. Nevertheless, 

the disturbance must cause (general) precautionary reaction: now the consumer 

maximizes expected welfare. 

 

,t tc k
Max   EeU(ct, kt + et)                (53) 

s.t: kt  =  (1 – d) kt-1 + f(kt-1) - ct              (54) 

 Given kt-1 

or in lagrangean form: 

  

, ,t t tc k
Max


L(ct, t) = EeU(ct, kt + et) + t [kt  - (1 – d) kt-1 - f(kt-1) + ct ] 

F.O.C., along with the restriction, require: 

 

t

L

c




=  EeUc(ct, kt + et) + t  =  0                (55) 
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t

L

k




  =  EeUk(ct, kt + et) + t  =  0                (56) 

 

from where 

 

EeUc(ct, kt + et)  =  ExUk(ct, kt + et)               (57) 

 

We can now use Taylor’s approximation to expand the marginal utilities around 

kt (or we could have expand U(ct, kt + et) before optimization). Taking the 

corresponding expected value - assuming the noise has null mean - and denoting 

the variance of et multiplied by 2 (for simplification) by s2: Var(et) = E[et
2

] = 2 s2, 

 

Uc(ct, kt) + Uckk(ct, kt) s2  =  Uk(ct, kt) + Ukkk(ct, kt) s2            (58) 

 

or 

  

Uc(ct, kt) - Uk(ct, kt)  =  [Ukkk(ct, kt) - Uckk(ct, kt)] s2 

 

For s2 larger than 0, Uc(ct, kt) - Uk(ct, kt) > 0, suggesting a more favorable 

capital relative to consumption transformation path than the s2=0 case iff Ukkk(ct, 

kt) > Uckk(ct, kt), that is, if Ukk raises more – or – Ukk, measuring the concavity 

of U in k, related to the aversion to a risk added to k, decreases more - per unit 

increase of capital than per unit rise in consumption. 

Now, 

 

t

t

c

k




  =  

2 2

2 2

kk kkkk ck ckkk

cc cckk ck ckkk

U U s U U s

U U s U U s

  

  
               (59) 

Stability still requires fk(kt-1) – d < t

t

c

k




 around the steady-state. 

The new consumption path (kt-1, ct) will satisfy (57) and  (54), i.e.: 

 

Uc[ct, (1 – d) kt-1 + f(kt-1) – ct] + Uckk[ct, (1 – d) kt-1 + f(kt-1) - ct] s2  =  

=  Uk[ct, (1 – d) kt-1 + f(kt-1) – ct] + Ukkk[ct, (1 – d) kt-1 + f(kt-1) - ct] s2     

(60) 

 

2

tc

s




  =  

2 2 2 2 2

kkk ckk

cc kk ck cckk ckkk kkkk

U U

U U U U s U s U s



    
             (61) 

 

Second order conditions require the denominator to be negative – they will be 

satisfied if not only U[ct, (1 – d) kt-1 + f(kt-1) - ct] but also Ukk[ct, (1 – d) kt-1 + 

f(kt-1) - ct] is concave in ct. The consumption path will lower with s2 at given kt-1 

iff Ukkk> Uckk, i.e., if the marginal utility of consumption is more concave in k 

than the marginal utility of capital is. Then, as long as that path is positively sloped 

(which is expected by S.O.C.), – recall Fig. 1 -, k* will rise with uncertainty. Such 

steady-state value, implying c*  =f(k*) - d k*, requires: 
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Uc[f(k*) - d k*, k*] + Uckk[f(k*) - d k*, k*] s2  =                (62) 

 =  Uk[f(k*) - d k*, k*] + Ukkk[f(k*) - d k*, k*] s2 

or Uc[f(k*) - d k*, k*] - Uk[f(k*) - d k*, k*]  =   

 =  {Ukkk[f(k*) - d k*, k*] - Uckk[f(k*) - d k*, k*]} s2 

 

The steady-state savings rate, s* = 1 - c*/f(k*) = d k* / f(k*), will respond to 

uncertainty according to: 

 

*

2

s

s




 = 

2

[ ( *) * ( *)]

( *)

kd f k k f k

f k

 *

2

k

s




               (63) 

 

As with CRS f(k*) - k* fk(k*) equals the, positive, marginal product of labor, s* 

will respond to s2 in the same direction as k* does. 

Admit separability between c and k in the utility function such that cross-

derivatives are null and we can write  

 

U(ct, kt)  = uc(ct) + uk(kt)                (64) 

 

Then (58) becomes: 

 

uc
c(ct)  =  uk

k(kt) + uk
kkk(kt) s2               (65) 

 

and along the saddle-path 

t

t

c

k




  =  

2k k

kk kkkk

c

cc

u u s

u


                 (66) 

 

In the steady-state: 

 

 uc
c[f(k*) - d k*]  =  uk

k(k*)  +  uk
kkk(k*) s2 

*

2

k

s




 = 

( *)

[ ( *) ] ( *) ( *) 2

k

kkk

c k k

cc k kk kkkk

u k

u f k d u k u k s  
 =  

( *)

( *)

( *) ( *) 2
( *)

( *)

k

kkk

c

cc

k k

kk kkkk
k c

cc

u k

u k

u k u k s
f k d

u k


 

               (67) 

If the system is stable, the denominator is negative. Then, 
*

2

k

s




 will be positive 

and k* increases with uncertainty iff 
( *)

( *)

k

kkk

c

cc

u k

u k
=

( *)

( *)

k

kkk

c

cc

u k

u k




< 0: it will if uc(c) – 

and U(c,k) - is concave in c and uk
k(k) – as Uk(c, k) - is convex in k. The 

condition establishes that if - 
( *)

( *)

k

kkk

c

cc

u k

u k
 - that resembles Kimball’s (1990) 

xiv
 

measure of absolute prudence, determining how a control variable reacts to added 

uncertainty in the static context - is positive, k* will rise with uncertainty. 
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. Let us consider the reasonable alternative: that optimization behavior is made 

ex-post and works “deterministically” and that uncertainty only affects production 
xv

: 

 

 
,t tc k

Max U(ct, kt) 

s.t: kt  =  (1 – d) (kt-1 + et-1) + f(kt-1 + et-1) - ct                        

(68) 

 Given kt-1 and et-1 

 

et-1 is known at time t. Then, obviously, there will not be a “steady-state” for 

kt: it will fluctuate according to et-1, obeying (68) and (9).  

Interestingly, (9) and (68) – in general, the current setup - provide a rationale for 

a co-integrating relation with a structural error-correction mechanism. 

Using Taylor expansion on the state equation: 

 

kt  =  (1 – d) (kt-1 + et-1) + f(kt-1) + fk(kt-1) et-1 + 
1

2
 fkk(kt-1) et-1

2 - ct        

(69) 

 

From F.O.C, equality between marginal utility of consumption and capital will 

be satisfied. We could inspect the effect on the “expected” phaseline of a rise in s2, 

but we would not account for the simultaneous determination of kt and ct. Rather, 

we must consider that the later responds to kt-1 according to: 

 

Uc[ct, (1 – d) (kt-1 + et-1) + f(kt-1 + et-1)– ct]  =                (70) 

=  Uk[ct, (1 – d) (kt-1 + et-1) + f(kt-1 + et-1) – ct] 

 

(70) establishes a relation ct = c(kt-1 + et-1) identical to that without 

uncertainty. Expanding around kt-1,  

ct  =  c(kt-1 + et-1) = c(kt-1) + 
1

t

t

c

k 




 et-1 +  

2

2

1

t

t

d c

dk 

 et-1
2 / 2  

We can write then that: 

 

kt  =  (1 – d) (kt-1 + et-1) + f(kt-1 + et-1) - c(kt-1 + et-1)  =              (71) 

= (1 – d) (kt-1+et-1) + f(kt-1) + fk(kt-1) et-1 +
1

2
fkk(kt-1) et-1

2 - c(kt-1) -

1

t

t

c

k 




et-1-

1

2

2

2

1

t

t

d c

dk 

et-1
2 

 

Let again Var(et) = E[et
2
] = 2 s2. The expected value of kt at time t is, 

therefore: 

 

E[kt]  =(1 – d) kt-1+ f(kt-1) + fkk(kt-1) s2 - c(kt-1)-

2

2

1

t

t

d c

dk 

 s2             (72) 
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Stability requires 
1

t

t

k

k 




to be between –1 and 1. Assume that 

2

2

1

t

t

d c

dk 

 is 

negligible. Then: 

 

 
1

t

t

k

k 




=  (1 – d) + fk(kt-1) + fkkk(kt-1) s2 ] / (1 + t

t

c

k




) 

 

where t

t

c

k




 comes from the equality between marginal utility of capital and 

consumption. Admit, for example, homothetic preferences such that ct = a kt. 

Then: 

kt  =  [(1 – d) kt-1 + f(kt-1) + fk(kt-1) et-1 +
1

2
 fkk(kt-1) et-1

2] / (1 + a)            (73) 

1

t

t

k

k 




=  [(1 – d) + fk(kt-1) + fkk(kt-1) et-1 +

1

2
 fkkk(kt-1) et-1

2] / (1 + a)         (74) 

 

On average, we can expect stability iff 

 

 s2fkkk(kt-1)< a + d - fk(kt-1) 

 

If fkkk(kt-1)> 0 – a plausible assumption -, that requires a low volatility of 

capital value or productive potential – a low s2. In other words, even if stability 

were guaranteed under deterministic conditions, if fkkk(kt-1)> 0, it is no longer so. 

Consider expectations of (73). For a steady-state level of capital, k*: 

 

f(k*) + fkk(k*) s2  =  (a + d) k*                           (75) 

*

2

k

s




 = 

( *)

( *) ( *) 2

kk

k kkk

f k

a d f k f k s  
              (76)

 

 

With stability, diminishing marginal returns to capital - fkk(k*)< 0 – imply that 

k* decreases with uncertainty (and also c* if the saddle-path is positively sloped, 

which is expected by SOC). 

The steady-state savings rate, s* = 1 - c*/f(k*) = d k* / [f(k*) + fkk(k*) s2], will 

be: 

s* = 
d

a d
                (77) 

 

It will be invariant to uncertainty. 

. A juxtaposition of the two effects would be realistic: that the agent solves: 

 
,t tc k

Max   EeU(ct, kt + et) 

 s.t: kt  =  (1 – d) (kt-1 + et-1) + f(kt-1 + et-1) - ct 

  

Given kt-1 and et-1 
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The previous decomposition allows us to distinguish the utility and technology 

channels through which uncertainty – dispersion of tastes - affects the equilibrium.  

7.2. Multiplicative Uncertainty 

.Suppose: 

,t tc k
Max   EeU[ct, kt (1 + et)]                (78) 

s.t: kt  =  (1 – d) kt-1 + f(kt-1) - ct             (79) 

  

Given kt-1 

Admit further separability of the utility function so that we can write: U[ct, kt (1 

+ et)] = uc(ct) + uk[kt (1 + et)] so that EeU[ct, kt (1 + et)]  uc(ct) + uk(kt) + 

uk
kk(kt) k

2
 s2. Then: 

 

uc
c(ct)  =  uk

k(kt) + [uk
kkk(kt) kt

2
 + 2 uk

kk(kt) kt] s2             

(80) 

 

and along the saddle-path: 

 

t

t

c

k




  =  

2( 4 2 ) 2k k k k

kk t kkkk t kkk kk

c

cc

u k u k u u s

u

  
              (81) 

 

In the steady-state: 

 uc
c[f(k*) - d k*]  = uk

k(k*) +  [uk
kkk(k*) k*

2
 + 2 uk

kk(k*) k* ] 

s2 

*

2

k

s




 = 

2( *) * 2 ( *) *

[ ( *) ] ( *) [ ( *) 2 * ( *)] 2

k k

kkk kk

c k k k

cc k kk kkkk kkk

u k k u k k

u f k d u k u k k u k s



   
 =  

 =  

2( *) * 2 ( *) *

( *) [ ( *) 2 * ( *)] 2
[ ( *) ]

k k

kkk kk

c

cc

k k k

kk kkkk kkk
k c

cc

u k k u k k

u

u k u k k u k s
f k d

u



 
 

        (82) 

 

If the system is stable, it will be positive iff 

2( *) * 2 ( *) *k k

kkk kk

c

cc

u k k u k k

u


< 0: it 

will if uc(c) – and U(c,k) - is concave in c and [uk
kk(k) k

2
] rises with k. 

. Finally, let preferences be homothetic and admit 

 

kt  =  (1 – d) kt-1 (1 + et-1) + f[kt-1 (1 + et-1)] - ct              (83) 

 

Now  

kt = [(1 – d) (kt-1 + et-1) + f(kt-1) + fk(kt-1) kt-1et-1 + 
1

2
fkk(kt-1) kt-1

2 

et-1
2] / (1+a)                  (84) 

 

In the expected steady-state 
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f(k*) + k*2 fkk(k*) s2  =  (a + d) k*                        (85) 

*

2

k

s




 = 

2

2

* ( *)

( *) [ * ( *) 2 * ( *)] 2

kk

k kkk kk

k f k

a d f k k f k k f k s   
            (86)

 

 

As before, with stability, diminishing marginal returns to capital - fkk(k*)< 0 – 

insure that k* (and c*) decreases with uncertainty. 

. If we are in the presence of exogenous labor-augmenting technical progress, 

balanced growth would be recovered (at least on average), with system dynamics 

towards kt/At approaching that of kt in the current framework. Given that 

uncertainty factors capital, we do not expect effects of uncertainty on balanced 

growth rates even if effects remain in steady-sate ratios. 

 

8. Overlapping Optimization: Recursive Structures. 
One could argue that the previous problem fails to capture forward-looking 

intertemporal effects. That may not be so, but we could assume then that kt+1 also 

enters the individual’s utility function at time t and that the following period’s 

capital constraint is (therefore) also considered in the current problem. Then the 

finite-horizon problem – problems - would be 
xvi

: 

 

1, ,t t tc k k
Max



U(ct, kt, kt+1)    ,     t = 1,2,…, T              (87) 

s.t: kt  =  (1 – d) kt-1 + f(kt-1) - ct    ,  t = 1,2,…, T 

 kt+1  =  (1 – d) kt + f(kt) – ct+1   ,  t = 1,2,…, T-1            (88) 

 Given k0, kT+1 

or in lagrangean form: 

 

1, , , ,t t t t tc k k
Max

 

L(ct, t) = U(ct, kt, kt+1) + t [kt  - (1 – d) kt-1 - f(kt-1) + ct] +      (89) 

 + t [kt+1  - (1 – d) kt - f(kt) + ct+1]   

 

F.O.C., along with the restrictions, require for t = 1,2,…,T-1 that 

 

 
t

L

c




=  Uc(ct, kt, kt+1) + t  =  0  

 
t

L

k




=  Uk1(ct, kt, kt+1) + t - t [(1 – d) + fk(kt)] =  0  

 
1t

L

k 




=  Uk2(ct, kt, kt+1) + t  =  0  

 

from where 

 

Uc(ct, kt, kt+1) = Uk1(ct, kt, kt+1) + Uk2(ct, kt, kt+1) [(1 – d) + fk(kt)] , t = 

1,2,…,T-1                    (90) 

 

Uc(cT, kT, kT+1)  =  Uk1(cT, kT, kT+1)              (91) 
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There are (T + T) unknowns – (ct, kt), t = 1,2,…,T -, and T + T equations – (90) 

and (91) and the T generic state equations, (88) 
xvii

. Therefore, the problem should 

have a well-defined solution, obeying 

 

ct = c(kt-1, ct+1), kt = k1(kt-1, ct+1), kt+1 = k2(kt-1, ct+1) , t = 1,2,…T-1        (91) 

 cT = cT(kT-1, kT+1),  kT = kT(kT-1, kT+1) 

 

The rate of time preference would become: 

 

t

t

c

k




  =  1 1 1 2 2 1

1 2

(1 )

(1 )

k k k k k k kk ck

cc ck ck k

U U d f U f U

U U U d f

    

   
             (92) 

 

Again, we could propose as an alternative definition: 

1 1 2 1

1

( , , )[1 ( )]

( , , )

c t t t k t

c t t t

U c k k d f k

U c k k

   



 
 - 1 or 1 1 2

1

( , , )[1 ( )]

( , , )

c t t t k t

c t t t

U c k k d f k

U c k k

  



 
 - 1. 

S.O.C. would require U{ct, (1 – d) kt-1 + f(kt-1) - ct, (1 – d) [(1 – d) kt-1 + f(kt-

1) - ct] + f[(1 – d) kt-1 + f(kt-1) - ct] – ct+1} concave in ct, i.e., that Ucc - Uk1c - 

Uk2c (1 – d + fk) - Uck1 + Uk1k1 + Uk2k1 (1 – d + fk) –[Uck2 - Uk1k2 - Uk2k2 

(1 – d + fk)](1 – d + fk) + Uk2 fkk< 0. They are therefore satisfied with decreasing 

marginal utility with respect to each argument (Ujj< 0, all j), positive Ucj’s, j = k1, 

k2, and negative Uk1k2. 

In infinite horizons, (90) and the state equations define the properties of the 

optimal path; a boundary – or limiting transversality-like - condition could replace 

the establishment of kT+1. A steady-state would satisfy: 

 

Uc[f(k*) – d k*, k*, k*]  =  Uk1[f(k*) – d k*, k*, k*] +              (94) 

 + Uk2[f(k*) – d k*, k*, k*] [1 – d + fk(k*)] 

 

One can study the optimal solution dynamics by analyzing the system (around 

the steady-state, at least) 
xviii

: 

 

Uc(ct, kt, kt+1) = Uk1(ct, kt, kt+1) + Uk2(ct, kt, kt+1) [1 – d + fk(kt)]    (95) 

kt+1  =  (1 – d) kt + f(kt) – ct+1               (96) 

 

From the two, we can generate: 

 

kt+1  =  g1(kt, ct)  (This, immediately from (95))             (97) 

ct+1  =  g2(kt, ct)  (In our system, g2(kt, ct) = (1 – d) kt + f(kt) - g1(kt, ct))  (98) 

 

The (2x2) Jacobian matrix A = [ aij ], would contain: 

 

a11 = 1t

t

k

k




 = 1 1 1 2 2 1

2 1 2 2 2

(1 )

(1 )

k k k k k k kk ck

ck k k k k k

U U d f U f U

U U U d f

    

   
 

a12 = 1t

t

k

c




 = 1 2

2 1 2 2 2

(1 )

(1 )

k c k c k cc

ck k k k k k

U U d f U

U U U d f

   

   
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a21 = 1t

t

c

k




 = [1 – d + fk(kt)] – a11 

a22 = 1t

t

c

c




 = - a12 

 

It has trace T and determinant D, having correspondence with the eigenvalues 

of A, r1 and r2, in such a way that: 

T = a11 + a22 = 1 1 1 2 2 2 1

2 1 2 2 2

( )(1 ) 2

(1 )

k k cc k k ck k k kk ck

ck k k k k k

U U U U d f U f U

U U U d f

      

   
 = r1 

+ r2< 0 

D = a11 a22 - a12 a21 = - [1 – d + fk(kt)] a12 = 

 =- [1 – d + fk(kt)] 
1 2

2 1 2 2 2

(1 )

(1 )

k c k c k cc

ck k k k k k

U U d f U

U U U d f

   

   
 = r1r2< 0 

 

If in moduli one eigenvalue is larger than one and the other is smaller than one, 

the system is unstable and possesses a saddle-path that converges to the steady-

state. The determinant and the trace most likely are negative (if we assume 

decreasing marginal utility with respect to each argument, positive Ucj’s, j = k1, 

k2, and negative Uk1k2); T
2

 – 4 D is then positive and the two roots are real. As D 

and T are negative, one eigenvalue is positive and the other is negative. As their 

sum - T - is negative, numbering the regions in space (T, D) according to Azariadis 

(1998), p.65-66:  

If D = - [1 – d + fk(kt)] a12< - 1, i.e. fk(kt) > d for a12 larger or equal to 1, the 

steady-state is: 

Case A: a source (unstable) if D < T – 1: both have moduli larger than 1 - 

Region (2).  

Case B: a saddle if D > T – 1, D < - (T + 1) - for D < -1 (T < 0), only the first 

bound is relevant: both eigenvalues are on the same side of –1, different sides of 1: 

one is in (-1, 1), the other in (1, ) – Region (3).  

If - 1 < D < 0; as T < 0, the steady-state is either 

Case C: a saddle if D > T – 1, D < - (T + 1) – for –1 < D < 0 (T < 0), only the 

second bound is relevant: both eigenvalues are on the same side of –1, different 

sides of 1: one is in (-1, 1), the other in (1, ) – Region (3).  

Case D: a sink (stable) if D > - (T + 1): both eigenvalues fall in (-1,1) – Region 

(7b).  

Case E: a flip (period-doubling) bifurcation (Azariadis, p. 93) if D = - (T + 1). 

We can compute: 

 

 T – 1  =  a11 - a12 - 1  

 - (T + 1)  =  - (a11 - a12 + 1) 

 

As D = - [1 – d + fk(kt)] a12, D > T – 1 implies a11 – 1 < - [fk(kt) - d] a12. If 

fk(kt) > d, this will necessarily occur (because a11< 0 and a12> 0 are most likely). 

Then, we rule out case A. 

D < - (T + 1) translates to - [1 – d + fk(kt)] a12< - (a11 - a12 + 1). We could not 

prove that the opposite cannot occur, which would discard Case D (and E). But at 

least D < - (T + 1) would cover – once T < 0 – a larger range of possibilities. 
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Alternatively, we can rely on the simpler analysis of the variables’ trends 

around the functions kt+1 =g1(kt, ct) and ct+1 = g2(kt, ct) evaluated at the steady-

state, i.e., for kt+1 = kt and ct+1 = ct – the phaselines. We plot the resulting 

conclusions – valid for linear approximations around the steady-state - in the phase 

diagrams, Fig. 4 and 5, below: 

Taking (97) for steady-state kt, kt = g1(kt, ct) (or (95)) and evaluating its slope 

at kt+1 = kt and ct+1 = ct, i.e. on: 

 

Uc(ct, kt, kt) = Uk1(ct, kt, kt) + Uk2(ct, kt, kt) [1 – d + fk(kt)]            (99) 

 

We derive: 

 

t

t

c

k




1 - a11) / a12>0                      (100) 

 

It is (if T < 0, a justified assumption) positively sloped: above (99), kt is rising. 

kt+1 – kt = g1(kt, ct) – kt; it will be larger than 0 and kt is rising iff g1(kt, ct) > kt – 

once at a given kt, as g1c = a12> 0, for values of ct to the right of the line g1 shows 

larger values (and then, larger than kt). 

Repeating the same exercise for (98), ct = g2(ct, kt) that we can solve for ct = 

g3(kt) - that differs from (14). We have that over it: 

 

t

t

c

k




 = a21 / (a12 + 1) > 0.               (101) 

 

It is also most likely positively sloped: to the right of ct = g2(kt, ct), ct is 

increasing. ct+1 – ct = g2(kt, ct) – ct; it will be larger than 0 and ct is rising iff 

g2(kt, ct) > ct – once at a given ct, as g2k = a21> 0 (most likely), g2 is larger for 

larger values of kt than over the line. 

Then either: 

ct = g2(kt, ct) has a higher slope than kt = g1(kt, ct) – Fig. 4 – and we have a 

saddle-path (Case C): 
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Fig. 4 

The arrows point to the steady-state, where the two functions meet, in only two 

quadrants (the system is not stable) where the saddle-path must lie, exhibiting the 

pattern shown in the figure. Interestingly, the saddle-path appears negatively sloped 

– a different pattern from that of Fig.1. 

Or ct = g2(kt, ct) has a smaller slope than kt = g1(kt, ct) – depicted in Fig. 5 – 

and we have a (stable) “sink” steady-state – Case D: 

 

 

Fig. 5 

A final comment on the optimization structure should be added. One could 

forward an optimization procedure where intertemporal efficiency was also 

required: 
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, ,t t tc k M

Max U(ct, kt, kt+1) 

kt+j  =  (1 – d) kt+j-1 + f(kt+j-1) – ct+j   ,   j = 0, 1 (or 0, 1, 2, 3) (102) 

U(ct+j, kt+j, kt+j-1)    tjtU ,    ,     j = 1 (or 1, 2, 3)           (103) 

 

Given kt-1 

In lagrangean form: 

 

1, ,t t tk k
Max



L(ct, kt, kt+1, t) = U(ct, kt, kt+1) + t [kt  - (1 – d) kt-1 - f(kt-1) + ct] + 

 + t [kt+1  - (1 – d) kt - f(kt) + ct+1] +  

 + t { ttU ,1   - U(ct+1, kt+1, kt+2)}          (104) 

 

However, at time t, tjtU ,  is still forthcoming – tjtU ,  would not even have to 

equal stjtU  , : the corresponding multiplier should in fact be 0. In fact we are 

assuming that different people may proceed to subsequent optimization and freeing 

the analogous constraint that implicitly structures accumulated discounted utility 

maximizers. 

 

9. Conclusion 
We explored the potential of point-wise optimization of individuals’ utility 

functions dependent on consumption and wealth to reproduce the dynamic 

behavior of the macroeconomy. The framework proved to be capable of generating 

similar dynamics as traditional and neoclassical real growth models – based on 

intertemporal utility maximization. Exogenous population growth, technical 

progress and increasing returns showed similar consequences and stability 

requirements as “conventional” models do. 

With the introduction of human capital, more sophisticated scenarios could be 

explored. Under the current framework, the inclusion of human capital along with 

material wealth in the utility function becomes natural. Again, Uzawa’s 

technological setup implied the same dynamic patterns. 

One can ask then why would the proposed function should be of use? Firstly, 

because it does not require an hypothesis of accumulated discounted utility 

maximand. Rather, an implicit or pseudo-rate of time preference was 

mathematically deducted, relating the rate of change of consumption with that of 

capital along an optimal path - homothetic preferences rendering it constant. 

Eventually, time inconsistency 
xix

based on discounting patterns therefore 

disappears. 

Secondly, because it shifts the attention towards and stresses wealth formation – 

resulting from, caused by, the accumulation of past saving-investment – 

consumption abstinence – flows. Maybe we should not be looking for a long-run 

consumption function, but for a wealth or asset (demand) function – dependent on 

past consumption... Or functions of the two – wealth and lagged consumption - 

may just be more closely co-integrated. 

Thirdly, for its mathematical tractability – even if we foresee that the inclusion 

of money, bonds, taxes, public goods, multiple assets or market goods – debt, a 

potential negatively valued argument of the WIU function -, or yet life-cycle labor-

leisure choices, natural extensions or applications that we did not pursue here, may 

complicate it again. That allowed us to make reasonable deductions of matters like 

the effect of exogenous uncertainty – shocks – on tastes or technology over 
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intertemporal dynamics of economic stocks and flows – reviewing the role of risk-

aversion and pace of diminishing marginal returns to capital in growth 

determination. 

Finally, forward-looking dynamics were found to be compatible with capital-in-

utility (wealth-in-utility) modeling – sufficing to include the capital stock of two 

(an extra) future periods in the welfare function, optimization being thus made 

conditional on future decisions.  

Obviously, applications of the same principles to the intertemporal decisions of 

the firm are in the agenda. 
 

 

 

Notes 
 
i Cass (1965) and Koopmans (1965). Kurz (1968) includes wealth effects in the felicity function. 
ii Or status effect models – see Bakshi & Chen (1996) for an example. See also Zou (1998). 
iii Zou (1995). 
iv Bakshi & Chen (1996). 
v Diamond (1965). 
vi  One could postulate as well Ut(ct, wt+1). Provided that in the fundamental dynamic wealth 

equation(s) below wt (kt) is replaced by wt+1 (kt+1) for all t and wt+1 is determined with ct, the 

conclusions would remain. 
vii See, for example, Romer (1996), Ex. 4.11., p. 192-193. Or Blanchard & Fischer (1989), p.284. 
viii With quasi-concavity of U(ct, kt) in the arguments being sufficient to generate convex indifference 

contours in space (kt, ct) - where for given kt-1, the (budget) constraint (5) is linear with slope –1 - 

and that F.O.C. imply a maximum. 
ix Theoretically, if ct-1 entered the system as well, the curve to be plotted in a phase diagram, the 

phaseline, would not be this one – see section 7 below. Given the simple structure of the problem, 

the argument holds. Also, notice we are plotting ct against kt-1, which is not usual, but here 

sensible. 
x See Azariadis (1998), p. 4, for example. 
xi See Martins (1989), for example. 
xii Arrow’s (1962) IRS technology generates similar consequences.  
xiii Under increasing returns, a competitive solution will hardly guarantee a pareto optimal result. 

Market solutions with externalities are found in Martins (1987) and (1989), for example. 
xiv See also Martins (2004). 
xv A generalization of Ramsey’s problem with ex-ante uncertainty in production was studied by Brock 

& Mirman (1972). Of course, anticipation would have more complex effects than ours when 

intertemporal optimization is considered. 
xvi We could think that including the second restriction in the former, simpler, problem would render a 

recursive structure. It does not, once, as we have two lagrange multipliers, with only two controls, 

we are left with only the two state equations per periodic problem. Hence, kt+1 is “conditionally” 

decided today, and we have to confirm – or specify - our decision on kt+1 next period. Also, only kt 

and kt+1 appear in the current function, for current decision – hence, only two constraints (one for 

each of them) are relevant. 
xvii As one restriction always overlaps in two subsequent period problems, decisions over capital are 

forced to be consistent. 
xviii Technically, the F.O.C generate now similar dynamic traits as Ramsey’s structure – see Azariadis, 

p. 210, for example. 
xix See an early reference in Strotz (1955), and Frederick Loewenstein & O’Donoghue (2002) for a 

recent survey. 
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