Abstract
Abstract. Ecuador is an oil exporter country but it is also an importer of oil derivatives products, in this research the relationship between the world average price of oil and the GDP per capital of Ecuador is studied, taking annual data of both from 1980 to 2015 and using the methodology of Vector Autoregressive (VAR), it is concluded according to the Impulse Response Function that a positive shock on the price of oil affects positively the GDP growth of Ecuador for 2 unit times and then returns to its natural state later. This must be explained because Ecuador is a net exporter of oil, the VAR model showed itself stable, in addition it was demonstrated that there is a causal relationship of GDP to the Price according to methodology of Toda-Yamamoto.
Keywords. Average Oil price, GDP, VAR, Ecuador.
JEL. C32, 040, F20.
References
Agung, G.N. (2009). Time series data analysis using EViews. Stat Papers, 52(2), 497-499. doi. 10.1007/s00362-009-0281-1
Agung, I. (2009). Time series data analysis using EViews. Chichester, West Sussex: Wiley.
Aktaş, E., Özenç, Ç., & Arica, F. (2010). The impact of oil prices in Turkey on macroeconomics. MPRA, Working Paper, No.8658. [Retrieved from].
Arias, E., & Torres, C. Banco Central de Costa Rica. [Retrieved from].
Asteriou, D., & Hall, S.G. (2006) Applied Econometrics A Modern Approach. Ed. Rev. Ney York: Palgrave Mcmillan.
Aydin, L., & Acar, M. (2011). Economic impact of oil price shocks on the Turkish economy in the coming decades: A dynamic CGE analysis. Energy Policy, 39(3), 1722-1731. doi. 10.1016/j.enpol.2010.12.051
Berument, M., Ceylan, N., & Dogan, N. (2010). The impact of oil price shocks on the economic growth of selected MENA1 countries. The Energy Journal, International Association for Energy Economics, 31(1), 149-176. doi. 10.5547/ISSN0195-6574-EJ-Vol31-No1-7
Brook, C. (2008). Introductory Econometrics for Finance. 2ª.ed. Estados Unidos, Ney York: Cambridge University Press.
Dickey, D., & Fuller, W. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association. 74(366), 427-431. doi. 10.2307/2286348
Dickey, D., & Fuller, W. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057-1072. doi. 10.2307/1912517
Du, L., Yanan, H., & Wei, C. (2010). The relationship between oil price shocks and China’s macro-economy: An empirical analysis. Energy Policy, 38(8), 4142-4151. doi. 10.1016/j.enpol.2010.03.042
Enders, W. (2015). Applied Econometric Time Series. 4th. Ed. Chichester, West Sussex: Jhon Wiley & Sons.
Engle, R., & Granger, C. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica, 55(2), 251-276. doi. 10.2307/1913236
Ghosh, S., & Kanjilal, K. (2013). Oil price shocks on Indian economy: evidence from Toda Yamamoto and Markov regime-switching VAR. Macroeconomics and Finance in Emerging Market Economies, 7(1), 122-139. doi. 10.1080/17520843.2013.856333
Gomez-Loscos, A., Montañés, A., & Gadea, M. (2011). The impact of oil shocks on the Spanish economy. Energy Economics, 33(6), 1070-1081. doi. 10.1016/j.eneco.2011.05.016
Gujarati, D., & Porter, D. (2010). Econometría. 5th. Ed. Mexico: McGraw Hill.
Hamilton, J. (1996). This is what happened to the oil price-macroeconomy relationship. Journal of Monetary Economics, 38(2), 215-220. doi. 10.1016/S0304-3932(96)01282-2
Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2-3), 231-254. doi. 10.1016/0165-1889(88)90041-3
Johansen, S., & Juselius, K. (1992). Testing structural hypotheses in a multivariate cointegration analysis of the PPP and the UIP for UK. Journal of Econometrics, 53(1-3), 211-244. doi. 10.1016/0304-4076(92)90086-7
Johansen, S., & Juselius, K. (1994). Identification of the long-run and the short-run structure an application to the ISLM model. Journal of Econometrics, 63(1), 7-36. doi. 10.1016/0304-4076(93)01559-5
Johansen, S., & Juselius, K. (2009). Maximum likelihood estimation and inference on cointegration: With applications to the demond for money. Oxford Bulletin of Economics and Statistics, 52(2), 169-210. doi. 10.1111/j.1468-0084.1990.mp52002003.x
Leesombatpiboon, P. (2009). Multivariate Cointegration Analysis of the Role of Oil in The Thai Macroeconomy. Washington: Ph.D. Dissertation, the George Washington University.
Lescaroux, F., & Mignon, V. (2008). On the influence of oil prices on economic. OPEC Energy Review, 32(4), 343–380. 10.1111/j.1753-0237.2009.00157.x
Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Ney York: Springer-Verlag Berlin Heidelberg. doi. 10.1007/978-3-540-27752-1
Lütkepohl, H., & Krätzig, M. (2004). Applied Time Series Econometrics: Themes in Modern Econometrics, Cambridge University Press.
Mork, K. (1989). Oil and the macroeconomy when prices go up and down: An extension of Hamilton's results. Journal of Political Economy, 97(3). 740-744. doi. 10.1086/261625
Pesaran, H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1). 17-29. doi. 10.1016/S0165-1765(97)00214-0
Phillips, P., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346. doi. 10.1093/biomet/75.2.335
Rodriguez, J., & Sanchez, M. (2004). Oil price shocks and real GDP growth: Empirical evidence from some OECD countries. European Central Bank Working Paper Series, No.0362. doi. 10.1080/0003684042000281561
Toda, H., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics, 66(1-2), 225-250. doi. 10.1016/0304-4076(94)01616-8
Wooldridge, J. (2009). Introducción a la Econometría un enfoque moderno. 4th. Ed. Mexico: Cencage Learning.
World Bank Group, (2006). World Bank Group. Obtenido de [Retrieved from].
Zivot, E., & Wang, J. (2006). Modeling financial time series with S-plus. New York, NY: Springer.