Abstract
Abstract. This study estimates a production function for Turkey taking capital, labor and energy as input factors. The production function estimated is of the CES form with Hicks-neutral technology and constant returns to scale. A nonlinear least squares regression is employed on a dataset for the entire Turkish economy covering a time period of 27 years. The production function parameters provide insights into the elasticity of substitution of capital, labor and energy in Turkey. In particular, it is found that the elasticity of substitution between the capital-labor bundle and energy is, slightly higher than values found in other studies for various countries. This finding shows the relative ease of substitutability of capital-labor with energy for one another in Turkey and provides new insight on a critical parameter for future energy-economy modeling studies related to Turkey and other similar countries with no elasticity estimate. It is thought that the high substitutability for the case of Turkey may be related to the flexibility of its rapidly growing economy with investment needs that can easily be adapted to market conditions.
Keywords. Substitution elasticities, CES, Energy economics.
JEL. D22, E23, Q40.
References
Andic, A.B. (2016). On estimation of the normalized CES production function for Turkey, TCMB Working Paper, No.16/13. [Retrieved from].
Atiyas, I., & Bakis, O. (2013). Aggregate and sectoral TFP growth in Turkey: A growth accounting exercise. Sabanci University Working Paper, No. 2013-1. [Retrieved from].
Belisle, C.J.P. (1992). Convergence theorems for a class of simulated annealing algorithms on Rd. Journal of Applied Probability, 29, 885-895. doi. 10.2307/3214721
Berndt, E.R., & Wood, D.O. (1975). Technology, prices and the derived demand for energy. The Review of Economics and Statistics, 57(3), 259-268. doi. 10.2307/1923910
Besanko, D., & Braeutigam, R. (2005). Microeconomics (2nd ed.). New Jersey, New Jersey: Wiley Publishing.
Bosetti, V., Carraro, C., Galeotti, M., Massetti, E., & Tavoni, M. (2006). WITCH: A World induced technical change hybrid model. Energy Journal, 27, 13–37.
Brockway, P.E., Heun, M.K., Santos, J., & Barrett, J.R. (2017). Energy-extended CES aggregate production: Current aspects of their specification and econometric estimation. Energies, 10(2), 202. doi. 10.3390/en10020202
Broyden, C.G. (1970). The convergence of a class of double-rank minimization algorithms. Journal of the Institute of Mathematics and its Applications, 6(1), 76-90. doi. 10.1093/imamat/6.1.76
Chang, K.-P. (1994). Capital–energy substitution and the multi-level CES production function. Energy Economics, 16(1), 22-26. doi. 10.1016/0140-9883(94)90014-0
Energy Modelling Forum, (1977). Energy and the Economy. [Retrieved from].
Fletcher, R. (1970). A new approach to variable metric algorithms. Computer Journal, 13(3), 317-322. doi. 10.1093/comjnl/13.3.317
Gerlagh, R., & Van der Zwaan, B. (2003). Gross world product and consumption in a global warming model with endogenous technical change. Resource and Energy Economics, 25(1), 35-57. doi. 10.1016/S0928-7655(02)00020-9
Goldfarb, D. (1970). A family of variable metric updates derived by variational means. Mathematics of Computation, 24, 23-26. doi. 10.1090/S0025-5718-1970-0258249-6
Greene, W.H. (2011). Econometric Analysis (7th ed.). Boston, Massachusetts: Pearson Education Printing.
Henningsen, A., & Henningsen, G. (2011). Econometric estimation of the constant elasticity of substitution function in R: Package micEconCES. [Retrieved from].
International Labor Organization, & Organization for Economic Co-operation and Development (2015). The labour share in G20 economies. Report prepared for the G20 Employment Working Group in Antalya, Turkey. [Retrieved from].
Kemfert, C. (1998). Estimated substitution elasticities of a nested CES production function approach for Germany. Energy Economics, 20(3), 259-264. doi. 10.1016/S0140-9883(97)00014-5
Kemfert, C., & Welsch, H. (2000). Energy-capital-labor substitution and the economic effects of CO2 abatement: evidence for Germany. Journal of Policy Modeling, 22(6), 641-660. doi. 10.1016/S0161-8938(98)00036-2
Kmenta, J. (1967). On estimation of the CES production function. International Economic Review, 8, 180-189.
Koesler, S., & Schymura, M. (2015). Substitution elasticities in a constant elasticity of substitution framework-empirical estimates using nonlinear least squares. Economic Systems Research, 27(1), 101-121. doi. 10.1080/09535314.2014.926266
Kuan, C.M. (2004). Statistics: Concepts and Methods (2nd ed.), Taipei, China: Hua-Tai Publisher.
Manne, A., Mendelsohn, R., & Richels, R. (1995). MERGE: A model for evaluating regional and global effects of GHG reduction policies. Energy Policy, 23(1), 17-34. doi. 10.1016/0301-4215(95)90763-W
Mishra, S. (2006). A note on numerical estimation of Sato's two-level CES production function Paper No. 1019. [Retrieved from].
Mullen, K.M., Ardia, D., Gil, D.L., Windover, D., & Cline, J. (2011). DEoptim: An R package for global optimization by differential evolution. Journal of Statistical Software, 40(6), 1-26.
Nocedal, J., & Wright, S. (2006). Numerical Optimization (2nd ed). New York, NY: Springer-Verlag.
Nelder, J.A., & Mead, R. (1965). A simplex algorithm for function minimization. Computer Journal, 7(4), 308-313. doi. 10.1093/comjnl/7.4.308
Oláh, J., Lengyel, P., Balogh, P., Harangi-Rákos, M., & Popp, J. (2017). The Role of Biofuels in Food Commodity Prices Volatility and Land Use. Journal of Competitiveness, 9(4), 81-93. doi. 10.7441/joc.2017.04.06
Organization of the Petroleum Exporting Countries (2017). OPEC annual statistical bulletin 2017. [Retrieved from].
Paltsev, S., Reilly, J.M., Jacoby, H.D., Eckaus, R.S., McFarland, J., Sarofim, M., Asadoorian, M., & Babiker, M. (2005). The MIT emissions prediction and policy analysis (EPPA) model: Version 4. [Retrieved from].
Schnabel, R.B., Koontz, J.E., & Weiss, B.E. (1985). A modular system of algorithms for unconstrained minimization. ACM Transactions on Mathematical Software, 11(4), 419-440. doi. 10.1145/6187.6192
Shanno, D.F. (1970). Conditioning of quasi-newton methods for function minimization. Mathematics of Computation, 24(111), 647-656. 10.1090/S0025-5718-1970-0274029-X
Shen, K., & Whalley, J. (2013). Capital-labor-energy substitution in nested CES production functions for China, Working Paper, No. 19104. [Retrieved from].
Solow, R. (1956). A contribution to the theory of economic growth. The Quarterly Journal of Economics, 70(1), 65-94. doi. 10.2307/1884513
Su, J., Sha Wang, S., Xiao Wang, Q. (2008). Empirical research on factor allocation in economic growth. Journal of Shandong University (Natural Science), 43(10), 36-40.
Su, X., Zhou, W., Nakagami, K., Ren, H., & Mu, H. (2012). Capital stock-labor-energy substitution and production efficiency study for China. Energy Economics, 34(4), 1208-1213. doi. 10.1016/j.eneco.2011.11.002
Van der Werf, E. (2008). Production functions for climate policy modeling: An empirical analysis. Energy Economics, 30(6), 2964-2979. doi. 10.1016/j.eneco.2008.05.008