Abstract
Abstract. It is a common belief that in any environment where life is possible, life will generated. Here it suggested that the cause for a spontaneous generation of complex systems is probability driven processes. Based on equilibrium thermodynamics, it argued that in low occupation number statistical systems, the second law of thermodynamics yields an increase of thermal entropy and a canonic energy distribution. However, in high occupation number statistical systems, the same law for the same reasons yields an increase of information and a Benford's law/power-law energy distribution. It is therefore, plausible, that eventually the heat death is not necessarily the end of the universe.
Keywords. Information theory, Thermodynamics, Entropy, Evolution.
JEL. C62.
References
Bianconi, G., & Barabasi, A.L. (2001). Bose-Einstein condensation in complex networks, Physical Review Letters, 86(24), 5632. doi. 10.1103/PhysRevLett.86.5632
Benford, F. (1938). The law of anomalous numbers, Proceedings of the American Mathematical Society, 78(4), 551-572.
Brillouin, L. (1953). The negentropy principle of information, Journal of Applied Physics, 24, 1152. doi. 10.1063/1.1721463
Brillouin, L. (1962). Science and Information Theory, Academic Press NY.
Dawkins, R. (1976). The Selfish Gene, Oxford University Press.
Gershenfeld, N. (2000). The Physics of Information Technology, Cambridge University Press.
Gupta, H.M. Campanha, J.R., Pesce, R.A.G. (2005). Power-law distribution for the citation index of scientific publications and Scientists, Brazilizn Journal of Physics, 35(4), 981-986. doi. 10.1590/S0103-97332005000600012
Hill, T.P. (1996). A statistical derivation of the significant-digit law, Statistical Science, 10(4), 354-363.
Hill, T.P. (1986). The first digit phenomenon, American Scientist, 86(4), 358. doi. 10.1511/1998.4.358
Huang, K. (1987). Statistical Mechanics, John Wiley: New York.
Jaynes, E.T. (1957). Information theory and statistical mechanics I, Physical Review Letters, 106(4), 620. doi. 10.1103/PhysRev.106.620
Jaynes, E.T. (1957b). Information theory and statistical mechanics II, Physical Review Letters, 108(2), 171. doi. 10.1103/PhysRev.108.171
Jaynes, E.T. (1965). Gibbs vs. Boltzmann entropies, American Journal of Physics, 33, 391. doi. 10.1119/1.1971557
Jaynes, E.T. (1988). The evolution of Carnot's principle, in Maximum-Entropy and Bayesian Methods in Science and Engineering, 1, G.J. Erickson & C.R. Smith (Eds.), (pp.267-281), Springer. doi. 10.1007/978-94-009-3049-0_15
Kafri, O. (2007). The second law and informatics, Unpublished Paper, [Retrieved from].
Kafri, O. (2007b). Informatics Carnot cycle, Unpublished Paper, [Retrieved from].
Kafri, O., & Fishof, E. (2016). Economic inequality as a statistical outcome, Journal of Economics Bibliography, 3(4) 570-576.
Kafri, O., & Kafri, H. (2013). Entropy - God’s dice game. CreateSpace, pp.154-157. [Retrieved from].
Kestin, J. (Ed.) (1976). The Second Law of Thermodynamics, Dowden, Hutchinson and RossStroudsburg.
Newman, M.E. (2006). Power-law, Pareto Distribution and Zipf's law, Unpublished Paper, [Retrieved from].
Shannon, C.E. (1949). A Mathematical Theory of Communication, University of Illinois Press: Evanston, Ill.
Simeonov, P.L. (2010). Integral biomathics: A post-Newtonian view into the logos of bios, Progress in Biophysics and Molecular Biology, 102(2-3), 85-121. doi. 10.1016/j.pbiomolbio.2010.01.005
Xiu-San, X. (2007). Spontaneous entropy decrease and its statistical physics, Unpublished Paper, [Retrieved from].
Woolhouse, H.W. (1967). Negentropy, information and the feeding of organisms, Nature, 213, 952. doi. 10.1038/213952a0