Abstract
Abstract. Storage facilities have an important role for uninterrupted product/service flow and ensuring continuity in supply chains. Criteria, which will be taken into account for the location of this facilities, and criteria values, can alter in accordance with private or public sector and risk environment as well. Besides logistics costs, transportation opportunities and proximity to the customers, risk based criteria such as terror, sabotage, air strikes, and natural disasters play an important role in order to select facility location. During production flow, Logistics Support Bases (LSB) are the military facilities, which affect firstly operation process positively or negatively and secondly result of the operations, serve in the risk environment. In a specific environment, selection of LSB becomes a Multi-Criteria Decision Making (MCDM) problem for the decision maker. This study aims to determine qualifications which will be used to select the best suitable location of LSB; define the importance value of selected qualifications via DEMATEL method, and select the best location of LSB between alternative places. DEMATEL has used in the determination of criteria values and then VIKOR method has used to select the most appropriate location for LSB in the risk environment.
Keywords. Logistics support unit, Risk, Facility location, Multi-criteria decision making, DEMATEL, VIKOR.
JEL. D81, R53, C40, C44, D70.References
Ağdaş, M., Bali, Ö., & Ballı, H., (2014). Afet lojistiği kapsamında dağıtım merkezi için yer seçimi: SMAA-2 tekniği ile bir uygulama. III. Ulusal Lojistik ve Tedarik Zinciri Yönetimi Kongresi: 15-17 Mayıs 2014, pp.272-283. Trabzon, Turkey.
Aksakal, E., & Dağdeviren, M. (2010). ANP ve DEMATEL yöntemleri ile personel seçimi problemine bütünleşik bir yaklaşım. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 25(4), 905-910.
Arabani, A.B., & Farahani, R.Z. (2012). Facility location dynamics: an Overview of classifications and applications, Computers&Industrial Engineering, 62 (1), 408-420. doi. 10.1016/j.cie.2011.09.018
Aras, H., Erdoğmuş, Ş., & Koç, E. (2004). Multi-criteria selection for a wind observation station location using analytic hierarchy process. Renewable Energy, 29(8), 1383-1392. doi. 10.1016/j.renene.2003.12.020
Ashrafzadeh, M., Rafiei, F. M., & Zare, Z. (2012). The Application of fuzzy analytic hierarchy process approach for the selection of warehouse location: a case study. International Journal of Business and Social Science, 3(4), 112-125.
Awasthi, A., Chauhan, S.S., & Goyal, S.K. (2011). A multi-criteria decision making approach for location planning for urban distribution centers under uncertainty. Mathematical and Computer Modelling, 53(1), 98-109. doi. 10.1016/j.mcm.2010.07.023
Badri, M.A. (1999). Combining the analytic hierarchy process and goal programming for global facility location-allocation problem. International journal of production economics, 62(3), 237-248. doi. 10.1016 S0925/-5273(98)00249-7
Canbolat, Y.B., Chelst, K., & Garg, N. (2007). Combining decision tree and MAUT for selecting a country for a global manufacturing facility. Omega, 35(3), 312-325. doi. 10.1016/j.omega.2005.07.002
Chan, F.T.S., & Chung, S.H. (2004). Multi-criteria genetic optimization for distribution network problems. The International Journal of Advanced Manufacturing Technology, 24(7), 517-532. doi. 10.1007/s00170-002-1445-5
Chou, T.Y., Hsu, C.L., & Chen, M.C. (2008). A fuzzy multi-criteria decision model for international tourist hotels location selection. International journal of hospitality management, 27(2), 293-301. doi. 10.1016/j.ijhm.2007.07.029
Çınar, Y. (2013). Kariyer tercihi probleminin yapısal bir modeli ve riske karşı tutumlar: Olasılıklı DEMATEL yöntemi temelli bütünleşik bir yaklaşım. Sosyoekonomi, 19(19), 158-186.
Doerner, K.F., Gutjahr, W.J., & Nolz, P.C. (2009). Multi-criteria location planning for public facilities in tsunami-prone coastal areas. Or Spectrum, 31(3), 651-678. doi. 10.1007/s00291-008-0126-7
Greco, S., Ehrgott, M., & Figueira, J. R. (Eds.). (2010). Trends in multiple criteria decision analysis (Vol. 142). Springer Science & Business Media.
Ertuğrul, İ., & Karakaşoğlu, N. (2008). Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. The International Journal of Advanced Manufacturing Technology, 39(7-8), 783-795. doi. 10.1007 s00170/-007-1249-8
Farahani, R.Z., SteadieSeifi, M., & Asgari, N. (2010). Multiple criteria facility location problems: A survey. Applied Mathematical Modelling, 34(7), 1689-1709. doi. 10.1016/j.apm.2009.10.005
Fernández, I., & Ruiz, M.C. (2009). Descriptive model and evaluation system to locate sustainable industrial areas. Journal of Cleaner Production, 17(1), 87-100. doi. 10.1016/j.jclepro.2008.02.011
Guneri, A.F., Cengiz, M., & Seker, S. (2009). A fuzzy ANP approach to shipyard location selection. Expert Systems with Applications, 36(4), 7992-7999. doi. 10.1016/j.eswa.2008.10.059
Kahraman, C., Ruan, D., & Doǧan, I. (2003). Fuzzy group decision-making for facility location selection. Information Sciences, 157, 135-153. doi. 10.1016/S0020-0255(03)00183-X
Kuo, M.S. (2011). Optimal location selection for an international distribution center by using a new hybrid method. Expert Systems with Applications, 38(6), 7208-7221. doi. 10.1016/j.eswa.2010.12.002
Lahdelma, R., Salminen, P., & Hokkanen, J. (2002). Locating a waste treatment facility by using stochastic multicriteria acceptability analysis with ordinal criteria. European Journal of Operational Research, 142(2), 345-356. doi. 10.1016/S0377-2217(01)00303-4
Norese, M. F. (2006). ELECTRE III as a support for participatory decision-making on the localisation of waste-treatment plants. Land Use Policy, 23(1), 76-85. doi. 10.1016/j.landusepol.2004.08.009
Opricovic, S., & Tzeng, G.H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455. doi. 10.1016 S0377/-1577
Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research, 178(2), 514-529. doi. 10.1016/j.ejor.2006.01.020
Organ, A. (2013). Bulanık Dematel yöntemiyle makine seçimini etkileyen kriterlerin değerlendirilmesi. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 22(1).
Önüt, S., Efendigil, T., & Kara, S.S. (2010). A combined fuzzy MCDM approach for selecting shopping center site: An example from Istanbul, Turkey. Expert Systems with Applications, 37(3), 1973-1980. doi. 10.1016/j.eswa.2009.06.080
Özdağoğlu, A. (2012). A multi-criteria decision-making methodology on the selection of facility location: fuzzy ANP. The International Journal of Advanced Manufacturing Technology, 59(5-8), 787-803. doi. 10.1007 s00170/-011-3505-1
ReVelle, C.S., & Eiselt, H. A. (2005). Location analysis: A synthesis and survey. European Journal of Operational Research, 165(1), 1-19. doi:10.1016/j.ejor.2003.11.032
Shen, C.Y., & Yu, K.T. (2009). A generalized fuzzy approach for strategic problems: The empirical study on facility location selection of authors’ management consultation client as an example. Expert Systems with Applications, 36(3), 4709-4716. doi. 10.1016/j.eswa.2008.06.035
Shieh, J.I., Wu, H.H., & Huang, K.K. (2010). A DEMATEL method in identifying key success factors of hospital service quality. Knowledge-Based Systems, 23(3), 277-282. doi. 10.1016/j.knosys.2010.01.013
Smith, H.K., Laporte, G., & Harper, P.R. (2009). Locational analysis: highlights of growth to maturity. Journal of the Operational Research Society, 60(1), 140-148.
Tabari, M., Kaboli, A., Aryanezhad, M.B., Shahanaghi, K., & Siadat, A. (2008). A new method for location selection: a hybrid analysis. Applied Mathematics and Computation, 206(2), 598-606. doi. 10.1016/j.amc.2008.05.111
Tuzkaya, G., Önüt, S., Tuzkaya, U.R., & Gülsün, B. (2008). An analytic network process approach for locating undesirable facilities: An example from Istanbul, Turkey. Journal of Environmental management, 88(4), 970-983. doi. 10.1016/j.jenvman.2007.05.004
Tzeng, G.H., & Huang, J.J. (2011). Multiple Attribute Decision Making: Methods and Applications. CRC press.
Tzeng, G.H., Teng, M.H., Chen, J.J., & Opricovic, S. (2002). Multicriteria selection for a restaurant location in Taipei. International journal of Hospitality Management, 21(2), 171-187. doi. 10.1016/S0278-4319(02)00005-1
Vahidnia, M.H., Alesheikh, A.A., & Alimohammadi, A. (2009). Hospital site selection using fuzzy AHP and its derivatives. Journal of environmental management, 90(10), 3048-3056. doi. 10.1016/j.jenvman.2009.04.010
Wadhwa, S., Madaan, J., & Chan, F.T.S. (2009). Flexible decision modeling of reverse logistics system: A value adding MCDM approach for alternative selection. Robotics and Computer-Integrated Manufacturing, 25(2), 460-469. doi. 10.1016/j.rcim.2008.01.006
Viswanadham, N., & Kameshwaran, S. (2007). A decision framework for location selection in global supply chains. In Automation Science and Engineering, 2007. CASE 2007. IEEE International Conference on (pp. 704-709). IEEE.
Yong, D. (2006). Plant location selection based on fuzzy TOPSIS. The International Journal of Advanced Manufacturing Technology, 28(7-8), 839-844. doi. 10.1007 s00170/-004-2436-5