Disruptive innovations in quantum technologies for social change
PDF

Keywords

Quantum technologies
Radical innovations
Disruptive innovations
Technological trajectories
Technological change
Social change.

How to Cite

COCCIA, M. (2022). Disruptive innovations in quantum technologies for social change. Journal of Economics Bibliography, 9(1), 21–39. https://doi.org/10.1453/jeb.v9i1.2287

Abstract

Abstract. The purpose of this study is the technological analysis of trajectories in quantum technologies to clarify new directions of disruptive innovations that can generate economic and social change. Patent analysis and models of time series are applied to assess the growth of quantum technologies. Findings  reveals that path-breaking innovations in quantum technologies are driven by quantum information, quantum communication, quantum optics and semiconductor quantum dots. This study can explain new directions in quantum technologies to support decisions of  R&D investments  towards growing technological trajectories generating having a high potential impact in markets and main benefic effects in socioeconomic systems.

Keywords. Quantum technologies; Radical innovations; Disruptive innovations; Technological trajectories; Technological change; Social change.

JEL. G2, G10, F21, F68, O53, K23.
https://doi.org/10.1453/jeb.v9i1.2287
PDF

References

Ardito, L., Coccia, M., & Messeni-Petruzzelli, A. (2021). Technological exaptation and crisis management: Evidence from COVID-19 outbreaks. R&D Management, 51(4), 381-392. doi. 10.1111/radm.12455

Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., & Zeilinger, A. (1999). Wave–particle duality of C60 molecules. Nature, 401(6754), 680–682. doi. 10.1038/44348

Arora. S., Porter, A.L., Youtie, J., & Shapira, P. (2013). Capturing new developments in an emerging technology: An updated search strategy for identifying nanotechnology research outputs. Scientometrics, 95(1), 351–370. doi. 10.1007/s11192-012-0903-6

Atik, J., & Jeutner, V. (2021). Quantum computing and computational law. Law, Innovation and Technology. doi. 10.1080/17579961.2021.1977216

Batra, K., Zorn, K.M., Foil, D.H., (...), Lane, T.R., & Ekins, S. (2021). Quantum machine learning algorithms for drug discovery applications, Journal of Chemical Information and Modeling, 61(6), 2641-2647. doi. 10.1021/acs.jcim.1c00166

Benamar, L., Balagué, C., & Zhong, Z. (2020). Internet of things devices appropriation process: The dynamic interactions value appropriation (DIVA) framework, Technovation, 89(102082). doi. 10.1016/j.technovation.2019.06.001

Bennett, C.H., et al. (1992). Experimental quantum cryptography. Journal of Cryptology. 5(1), 3-28. doi. doi. 10.1007/bf00191318.S2CID206771454

Börner, K. (2011). Science of science studies: Sci2 Tool. Communications of the ACM, 54(3), 60-69.

Boyack, K.W., Börner, K., & Klavans, R. (2009). Mapping the structure and evolution of chemistry research. Scientometrics 79, 45–60. doi. 10.1007/s11192-009-0403-5

Bresnahan, T. (2010) ‘General purpose technologies’, in Hall, B.H. & Rosenberg, N. (Eds.), Handbook of the Economics of Innovation, Ch.18, Vol.2, Elsevier, Amsterdam.

Bresnahan, T.F., & Trajtenberg, M. (1995). General purpose technologies: ‘engines of growth’?’, Journal of Econometrics, Annals of Econometrics, 65(1), 83–108. doi. 10.1016/0304-4076(94)01598-T

Calabrese, G., Coccia, M., & Rolfo S. (2005). Strategy and market management of new product development: evidence from Italian SMEs. International Journal of Product Development, 2(1-2), 170-189. doi. 10.1504/IJPD.2005.006675

Calvano, E. (2007). Destructive Creation, Working Paper Series in Economics and Finance, No.653, December, Stockholm School of Economics.

Carberry, D., Nourbakhsh, A., Karon, J., (...), Andersson, M.P., & Mansouri, S.S. (2021). Building knowledge capacity for quantum computing in engineering education, Computer Aided Chemical Engineering, 50, 2065-2070. doi. 10.1016/B978-0-323-88506-5.50319-3

Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359-377. doi. 10.1002/asi.20317

Chen, C., Zeng, G., Lin, F., Chou, Y., & Chaoì, H. (2015). Quantum cryptography and its applications over the internet, IEEE Network, 29(5), 64-69. doi. 10.1109/MNET.2015.7293307

Coccia, M. (2019). A Theory of classification and evolution of technologies within a generalized Darwinism, Technology Analysis & Strategic Management, 31(5), 517-531. doi. 10.1080/09537325.2018.1523385

Coccia, M. (2015). Spatial relation between geo-climate zones and technological outputs to explain the evolution of technology. Int. J. Transitions and Innovation Systems, 4(1), 5-21. doi. 10.1504/IJTIS.2015.074642

Coccia, M., & Bellitto, M. (2018). Human progress and its socioeconomic effects in society, Journal of Economic and Social Thought, 5(2), 160-178. doi. 10.1453/jest.v5i2.1649

Coccia, M. (2017). Sources of disruptive technologies for industrial change. L’industria –Rivista di Economia e Politica Industriale, 38(1), 97-120. doi. 10.1430/87140

Coccia, M. (2018). The origins of the economics of Innovation, Journal of Economic and Social Thought, 5(1), 9-28. doi. 10.1453/jest.v5i1.1574

Coccia, M. (2019). Why do nations produce science advances and new technology? Technology in Society, 59, 101124, 1-9. doi. 10.1016/j.techsoc.2019.03.007

Coccia, M. (2019a). The theory of technological parasitism for the measurement of the evolution of technology and technological forecasting, Technological Forecasting and Social Change, 141, 289-304. doi. 10.1016/j.techfore.2018.12.012

Coccia, M., & Watts, J. (2020). A theory of the evolution of technology: technological parasitism and the implications for innovation management, Journal of Engineering and Technology Management, 55, 101552. doi. 10.1016/j.jengtecman.2019.11.003

Coccia, M. (2020a). Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technology in Society, 60, 1-11. doi. 10.1016/j.techsoc.2019.101198

Coccia, M. (2020). Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Science of the Total Environment, 729, 138474. doi. 10.1016/j.scitotenv.2020.138474

Coccia, M. (2020b). How (un)sustainable environments are related to the diffusion of COVID-19: The relation between coronavirus disease 2019, air pollution, wind resource and energy. Sustainability, 12, 9709. doi. 10.3390/su12229709

Coccia, M. (2020a). An index to quantify environmental risk of exposure to future epidemics of the COVID-19 and similar viral agents: Theory and practice. Environmental Research, 191, 110155. doi. 10.1016/j.envres.2020.110155

Coccia, M. (2021). Effects of the spread of COVID-19 on public health of polluted cities: results of the first wave for explaining the dejà vu in the second wave of COVID-19 pandemic and epidemics of future vital agents. Environmental Science and Pollution Research 28(15), 19147-19154. doi. 10.1007/s11356-020-11662-7

Coccia, M. (2021b). The relation between length of lockdown, numbers of infected people and deaths of Covid-19, and economic growth of countries: Lessons learned to cope with future pandemics similar to Covid-19. Science of The Total Environment, 145801. doi. 10.1016/j.scitotenv.2021.145801

Coccia, M. (2021c). The effects of atmospheric stability with low wind speed and of air pollution on the accelerated transmission dynamics of COVID-19. International Journal of Environmental Studies, 78(1), 1-27. oi. 10.1080/00207233.2020.1802937

Coccia, M. (2021d). The impact of first and second wave of the COVID-19 pandemic: comparative analysis to support control measures to cope with negative effects of future infectious diseases in society. Environmental Research, 111099, doi. 10.1016/j.envres.2021.111099

Cozzens, S., Gatchair, S., Kang, J., Kyung-Sup, K., Lee, H.J., Ordóñez, G., & Porter, A. (2010). Emerging technologies: quantitative identification and measurement, Technology Analysis & Strategic Management, 22(3), 361-376. doi. 10.1080/09537321003647396

Dahlberg, A., Skrzypczyk, M., Coopmans, T., Wubben, L., Rozpędek, F., Pompili, M., Stolk, A., Pawełczak, P., Knegjens, R., Filho, J.A., Hanson, R., & Wehner, S. (2019). A link layer protocol for quantum networks. Proceedings of the ACM Special Interest Group on Data Communication.

Deshmukh, S., & Mulay, P. (2021). Quantum clustering drives innovations: A bibliometric and patentometric analysis, Library Philosophy and Practice, 2021, pp.1-27. doi. 10.21203/rs.3.rs-1177285/v1

Ding, Y., Chowdhury, G., & Foo, S. (2000). Journal as markers of intellectual space: Journal co-citation analysis of information retrieval area, 1987–1997. Scientometrics, 47(1), 55-73. doi. 10.1023/A:1005665709109

Dowling, J.P., & Milburn, G.J. (2003). Quantum technology: The second quantum revolution. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 361, 1655-1674. doi. 10.1098/rsta.2003.1227

Freeman, C., & Soete, L. (1987). Technical Change and Full Employment, Basil Blackwell, Oxford, UK.

Glänzel, W., & Thijs, B. (2012). Using core documents for detecting and labelling new emerging topics. Scientometrics, 91(2), 399–416. doi. 10.1007/s11192-011-0591-7

Goubault de, B.T., Baboulin M., Valiron, B., Martiel, S., & Allouche, C. (2022). Decoding techniques applied to the compilation of CNOT circuits for NISQ architectures, Science of Computer Programming, 214, n.102726, doi. 10.1016/j.scico.2021.102726

Granstrand, O., & Holgersson, M. (2020). Innovation ecosystems: A conceptual review and a new definition Technovation, 90-91. 102098. doi. 10.1016/j.technovation.2019.102098

Hall, B.H., & Rosenberg, N. (Eds.) (2010). Handbook of the Economics of Innovation, Vols.1–2, Elsevier, Amsterdam.

Helpman, E. (Ed.) (1998). General Purpose Technologies and Economic Growth, MIT Press, Cambridge, MA.

Hensen, B., et al. (2015). Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers, Nature, 526(7575), 682-686. doi. 10.1038/nature15759

Hou, H., & Shi, Y. (2021). Ecosystem-as-structure and ecosystem-as-coevolution: A constructive examination, Technovation, 100, 102193. doi. 10.1016/j.technovation.2020.102193

Jaeger, L. (2018). The Second Quantum Revolution: From Entanglement to Quantum Computing and Other Super-Technologies, Springer: Berlin/Heidelberg, Germany.

Jaffe, A.B., & Trajtenberg, M. (2002). Patents, Citations, and Innovations: A Window on the Knowledge Economy. The MIT Press

Jovanovic, B., & Rousseau, P.L. (2005). General purpose technologies’, in Aghion, P. & Durlauf, S.N. (Eds.): Handbook of Economic Growth, Ch.18, Vol.1B, Elsevier, Amsterdam.

Jovanovic, M., Sjödin, D., & Parida, V. (2021). Co-evolution of Platform Architecture, Platform Services, and Platform Governance: Expanding the Platform Value of Industrial Digital Platforms. Technovation, n.102218. doi. 10.1016/j.technovation.2020.102218

Kocher, C.A., & Commins, E.D. (1967). Polarization correlation of photons emitted in an atomic cascade, Physical Review Letters. 18(15), 575-577. doi. 10.1103/PhysRevLett.18.575

Kozlowski, W., & Wehner, S. (2019). Towards large-scale quantum networks. In C. Contag, T. Melodia (Eds.), Proceedings of the 6th ACM International Conference on Nanoscale Computing and Communication, NANOCOM 2019 [3345497] (Proceedings of the 6th ACM International Conference on Nanoscale Computing and Communication, NANOCOM 2019). Association for Computing Machinery (ACM). doi. 10.1145/3345312.3345497

Lanzagorta, M., Uhlmann, J.K. (2009). Quantum Computer Science. Morgan & Claypool Publishers.

Lee, K.C., Sprague, M.R., Sussman, B.J., Nunn, J., Langford, N.K., Jin, X.- M., Champion, T., Michelberger, P., Reim, K.F., England, D., Jaksch, D., & Walmsley, I.A. (2011). Entangling macroscopic diamonds at room temperature. Science. 334 (6060), 1253-1256. doi. 10.1126/science.1211914

Li, G., Wu, A., & Shi Y., (...), Ding, Y., & Xie, Y. (2021). On the co-design of quantum software and hardware. Proceedings of the 8th ACM International Conference on Nanoscale Computing and Communication, NANOCOM 2021, 15.

Li, M. (2015). A novel three-dimension perspective to explore technology evolution. Scientometrics, 105(3) 1679–1697. doi. 10.1007/s11192-015-1591-9

Lipsey, R.G., Bekar, C.T., & Carlaw, K.I. (1998). What requires explanation?, in Helpman, E. (Ed.): General Purpose Technologies and Long-term Economic Growth, pp.15–54, MIT Press, Cambridge, MA.

Lipsey, R.G., Carlaw, K.I., & Bekar, C.T. (2005). Economic Transformations: General Purpose Technologies and Long Term Economic Growth, Oxford University Press, Oxford.

Long,, G.L., Mueller, P., & Patterson, J. (2019). Introducing Quantum Engineering. Quantum Eng. 1, e6.

Möller, M., & Vuik, C. (2017). On the impact of quantum computing technology on future developments in high-performance scientific computing. Ethics Inf Technol, 19, 253–269. 10.1007/s10676-017-9438-0

Nairz, O., Arndt, M., & Zeilinger, A. (2003). Quantum interference experiments with large molecules, American Journal of Physics, 71(April 2003), 319–325. doi. 10.1119/1.1531580

Nelson, R.R. (2008). Factors affecting the power of technological paradigms, Industrial and Corporate Change, 17(3), 485–497. doi. 10.1093/icc/dtn010

Nielsen, M.A., & Chuang, I.L. (2010). Quantum Computation and Quantum Information (2nd ed.). Cambridge: Cambridge University Press.

NIST (2021). Quantum Information Applications Without Computers. Accessed in November 2021. [Retrieved from].

Oh, D.-S., Phillips, F., Park, S., & Lee, E., (2016). Innovation ecosystems: A critical examination. Technovation, doi. 10.1016/j.technovation.2016.02.004

Ovalle-Magallanes, E., Avina-Cervantes, J.G., Cruz-Aceves, I., & Ruiz-Pinales, J. (2022). Hybrid classical–quantum Convolutional Neural Network for stenosis detection in X-ray coronary angiography, Expert Systems with Applications, 189, 116112. doi. 10.1016/j.eswa.2021.116112

Pagliaro, M., & Coccia, M. (2021). How self-determination of scholars outclasses shrinking public research lab budgets, supporting scientific production: a case study and R&D management implications. Heliyon. 7(1), e05998. doi. 10.1016/j.heliyon.2021.e05998

Pande, M., & Mulay, P. (2020). Bibliometric survey of quantum machine learning. Science and Technology Libraries, 39(4), 369-382. doi. 10.1080/0194262X.2020.1776193

Peirce, W.S. (1974). The ripple effects of technological innovation: the case of iron ore pelletizing, Omega, 2(1), 43–51. doi. 10.1016/0305-0483(74)90005-X

Rao, P., Yu, K., Lim, H., Jin, D., & Choi,, D. (2020). Quantum amplitude estimation algorithms on IBM quantum devices. Proceedings Volume 11507, Quantum Communications and Quantum Imaging, XVIII; 1150700. doi. 10.1117/12.2568748

Rosegger, G. (1980). The Economics of Production and Innovation, Pergamon Press, NY.

Roshani, S., Bagheri, R., Mosleh, M., & Coccia, M. (2021). What is the relationship between research funding and citation-based performance? A comparative analysis between critical research fields. Scientometrics. 10.1007/s11192-021-04077-9

Ruttan, V.W. (1997). Induced innovation, evolutionary theory and path dependence: sources of technical change, The Economic Journal, 107(444), 1520–1529. doi. 10.1111/j.1468-0297.1997.tb00063.x

Sahal, D. (1985). Foundations of technometrics, Technological Forecasting & Social Change, 27(1), 1-37. doi. 10.1016/0040-1625(85)90002-2

Savov, P., Jatowt, A., & Nielek, R. (2020). Identifying breakthrough scientific papers. Information Processing & Management, 57(2), 102168. doi. 10.1016/j.ipm.2019.102168

Scheidsteger, T., Haunschild, R., Bornmann, L., & Ettl, C. (2021). Bibliometric analysis in the field of quantum technology, Quantum Reports, 3(3), 549-575. doi. 10.3390/quantum3030036

Schultz, L.I. & Joutz, F.L. (2010) Methods for identifying emerging general purpose technologies: a case study of nanotechnologies. Scientometrics, 85(1), 155–170. doi. 10.1007/s11192-010-0244-2

Scopus, (2021). Documents, Accessed November 2021. [Retrieved from].

Scopus, (2021a). Scopus, Searching: Start exploring, [Retrieved from].

Shao, C., Li, Y. & Li, H. (2019). Quantum algorithm design: Techniques and applications. J Syst Sci Complex, 32, 375–452. doi. 10.1007/s11424-019-9008-0

Sun, X., Kaur, J., Milojevic, S., Flammini, A., & Menczer, F. (2013). Social dynamics of science. Scientific Reports, 3(1069), 1-6, doi. 10.1038/srep01069

van den Oord, A., & van Witteloostuijn, A. (2018). A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003. PloS one, 13(5), e0197024. doi. 10.1371/journal.pone.0197024

von Hippel, E. (1988). The Sources of Innovation, Oxford University Press, New York.

von Tunzelmann, N., Malerba, F., Nightingale, P., & Metcalfe, S. (2008). Technological paradigms: past, present and future, Industrial and Corporate Change, 17(3), 467-484. doi. 10.1093/icc/dtn012

Wineland, D.J., Bergquist, J.C., Bollinger, J.J., Drullinger, R.E., Itano, W.M. (2002). Quantum computers and atomic clocks, Frequency Standards and Metrology, 361-368. doi. 10.1142/9789812777713_0040

Zou, N. (2021). Quantum entanglement and its application in quantum communication. Journal of Physics: Conference Series, 1827, 6th International Conference on Electronic Technology and Information Science (ICETIS 2021) 8-10 January 2021, Harbin, China.

Creative Commons License
This article licensed under Creative Commons Attribution-NonCommercial license (4.0)

Downloads

Download data is not yet available.