Technological Parasitism
PDF

Keywords

Measurement of technology Technometrics
Technological evolution
Technological change
Coevolution
Nature of technology
Host technology
Parasitic technology
Technological parasitism
Technological innovation
Technological forecasting.

How to Cite

COCCIA, M. (2019). Technological Parasitism. Journal of Economic and Social Thought, 6(3), 173–209. https://doi.org/10.1453/jest.v6i3.1926

Abstract

Abstract. Technological parasitism is a new theory to explain the evolution of technology in society. In this context, this study proposes a model to analyze the interaction between a host technology (system) and a parasitic technology (subsystem) to explain evolutionary pathways of technologies as complex systems. The coefficient of evolutionary growth of the model here indicates the typology of evolution of parasitic technology in relation to host technology: i.e., underdevelopment, growth and development. This approach is illustrated with realistic examples using empirical data of product and process technologies. Overall, then, the theory of technological parasitism can be useful for bringing a new perspective to explain and generalize the evolution of technology and predict which innovations are likely to evolve rapidly in society.

Keywords. Measurement of technology, Technometrics, Technological evolution, Technological change, Coevolution, Nature of technology, Host technology, Parasitic technology, Technological parasitism, Technological innovation, Technological forecasting, Technology assessment, Technological progress.

JEL. O32, O33.

https://doi.org/10.1453/jest.v6i3.1926
PDF

References

Abernathy, W.J., & Clark, K.B. (1985). Innovation: mapping the winds of creative destruction. Research Policy, 14(1), 3-22. doi. 10.1016/0048-7333(85)90021-6

Alexander, A.J., & Nelson, J.R. (1973). Measuring technological change: Aircraft turbine engines, Technological Forecasting & Social Change, 5(2), 189-203. doi. 10.1016/0040-1625(73)90032-2

Anadon, L.D., Chan, G., Harley, A.G., Matus, K., Moon, S., Murthy, S.L., & Clark, W.C. (2016). Making technological innovation work for sustainable development, Proceedings of the National Academy of Sciences, 113(35), 9682-9690. doi. 10.1073/pnas.1525004113E

Anderson, P., & Tushman, P.M. (1986). Technological discontinuities and organizational environments. Administrative Science Quarterly, 31(3), 439-465. doi. 10.2307/2392832

Andriani, P., & Cohen, J. (2013). From exaptation to radical niche construction in biological and technological complex systems. Complexity, 18(5), 7-14. doi. 10.1002/cplx.21450

Arthur, B.W. (2009). The Nature of Technology. What it is and How it Evolves, Free Press, Simon & Schuster.

Arthur, B.W., & Polak W. (2006). The evolution of technology within a simple computer model, Complexity, 11(5), 23-31. doi. 10.1002/cplx.20130

Barabási, A-L., Freeh, V.W., Jeong, H., & Brockman, J.B. (2001). Parasitic computing. Nature, 412, 894-897. doi. 10.1038/35091039

Barton, C.M. (2014). Complexity, social complexity, and modeling, Journal of Archaeological Method and Theory, 21, 306-324.Basalla, G. (1988). The History of Technology, Cambridge University Press, Cambridge.

Burks, A., Goldstine, H.H., & von Neumann J. (1946). Preliminary Discussion of the Logical Design of an Electronic Computing Instruments, The Institute for Advanced Study, Princeton.

Carranza, J.E. (2010). Product innovation and adoption in market equilibrium: The case of digital cameras. International Journal of Industrial Organization, 28(6), 604-618. doi. 10.1016/j.ijindorg.2010.02.003

Coccia, M. (2001). Satisfaction, work involvement and R&D performance. International Journal of Human Resources Development and Management, 1(2-3-4), 268-282. doi. 10.1504/IJHRDM.2001.001010

Coccia, M. (2003). Metrics of R&D performance and management of public research institute. Proceedings of IEEE- IEMC 03, Piscataway, pp.231-236.

Coccia, M. (2004). Spatial metrics of the technological transfer: analysis and strategic management. Technology Analysis & Strategic Management, 16(1), 31-52. doi. 10.1080/0953732032000175490

Coccia, M. (2005). Countrymetrics: valutazione della performance economica e tecnologica dei paesi e posizionamento dell’Italia, Rivista Internazionale di Scienze Sociali, CXIII(3), 377-412.

Coccia, M. (2005a). Metrics to measure the technology transfer absorption: analysis of the relationship between institutes and adopters in northern Italy. International Journal of Technology Transfer and Commercialization, 4(4), 462-486. doi. 10.1504/IJTTC.2005.006699

Coccia, M. (2005b). Technometrics: Origins, historical evolution and new direction, Technological Forecasting & Social Change, 72(8), 944-979. doi. 10.1016/j.techfore.2005.05.011

Coccia, M. (2005c). Economics of scientific research: origins, nature and structure, Proceedings of Economic Society of Australia.

Coccia, M. (2006). Classifications of innovations: survey and future directions. Working Paper Ceris del Consiglio Nazionale delle Ricerche, 8(2), 1-19. [Retrieved from].

Coccia, M. (2006a). Analysis and classification of public research institutes. World Review of Science, Technology and Sustainable Development, 3(1), 1-16.

Coccia, M. (2007). A new taxonomy of country performance and risk based on economic and technological indicators, Journal of Applied Economics, 10(1), 29-42.

Coccia, M. (2008). Science, funding and economic growth: analysis and science policy implications. World Review of Science, Technology and Sustainable Development, 5(1), 1-27. doi. 10.1504/WRSTSD.2008.01781

Coccia, M. (2008a). Spatial mobility of knowledge transfer and absorptive capacity: analysis and measurement of the impact within the geoeconomic space. The Journal of Technology Transfer, 33(1), 105-122. doi. 10.1007/s10961-007-9032-4

Coccia, M. (2008b). New organizational behaviour of public research institutions: Lessons learned from Italian case study. International Journal of Business Innovation and Research, 2(4), 402–419. doi. 10.1504/IJBIR.2008.018589

Coccia, M. (2009). A new approach for measuring and analyzing patterns of regional economic growth: empirical analysis in Italy. Italian Journal of Regional Science- Scienze Regionali, 8(2), 71-95. doi. 10.3280/SCRE2009-002004

Coccia, M. (2009a). Measuring the impact of sustainable technological innovation, International Journal of Technology Intelligence and Planning, 5(3), 276-288. doi. 10.1504/IJTIP.2009.026749

Coccia, M. (2010). Public and private R&D investments as complementary inputs for productivity growth. International Journal of Technology, Policy and Management, 10(1/2), 73-91. doi. 10.1504/IJTPM.2010.032855

Coccia, M. (2010a). Foresight of technological determinants and primary energy resources of future economic long waves, International Journal of Foresight and Innovation Policy, 6(4), 225–232. doi. 10.1504/IJFIP.2010.037468

Coccia, M. (2010b). Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita. Energy Policy, 38(3), 1330-1339. doi. 10.1016/j.enpol.2009.11.011

Coccia, M. (2010c). Spatial patterns of technology transfer and measurement of its friction in the geo-economic space. International Journal of Technology Transfer and Commercialisation, 9(3), 255-267. doi. 10.1504/IJTTC.2010.030214

Coccia, M. (2010d). The asymmetric path of economic long waves, Technological Forecasting & Social Change, 77(5), 730-738. doi. 10.1016/j.techfore.2010.02.003

Coccia, M. (2010e). Democratization is the driving force for technological and economic change, Technological Forecasting & Social Change, 77(2), 248-264. doi. 10.1016/j.techfore.2009.06.007

Coccia, M. (2011). The interaction between public and private R&D expenditure and national productivity. Prometheus-Critical Studies in Innovation, 29(2), 121-130. doi. 10.1080/08109028.2011.601079

Coccia, M. (2012). Political economy of R&D to support the modern competitiveness of nations and determinants of economic optimization and inertia, Technovation, 32(6), 370–379. doi. 10.1016/j.technovation.2012.03.005

Coccia, M. (2012a). Evolutionary trajectories of the nanotechnology research across worldwide economic players. Technology Analysis & Strategic Management, 24(10), 1029-1050. doi. 10.1080/09537325.2012.705117

Coccia, M. (2012b). Evolutionary growth of knowledge in path-breaking targeted therapies for lung cancer: radical innovations and structure of the new technological paradigm. International Journal of Behavioural and Healthcare Research, 3(3-4), 273-290. doi. 10.1504/IJBHR.2012.051406

Coccia, M. (2012c). Converging genetics, genomics and nanotechnologies for groundbreaking pathways in biomedicine and nanomedicine. International Journal of Healthcare Technology and Management, 13(4), 184-197. doi. 10.1504/IJHTM.2012.050616

Coccia, M. (2012d). Driving forces of technological change in medicine: Radical innovations induced by side effects and their impact on society and healthcare. Technology in Society, 34(4), 271-283. doi. 10.1016/j.techsoc.2012.06.002

Coccia, M. (2013). What are the likely interactions among innovation, government debt, and employment? Innovation: The European Journal of Social Science Research, 26(4), 456–471. doi. 10.1080/13511610.2013.863704

Coccia, M. (2013a). The effect of country wealth on incidence of breast cancer. Breast Cancer Research and Treatment, 141(2), 225-229. doi. 10.1007/s10549-013-2683-y

Coccia, M. (2014). Path-breaking target therapies for lung cancer and a far-sighted health policy to support clinical and cost effectiveness. Health Policy and Technology, 1(3), 74-82. doi. 10.1016/j.hlpt.2013.09.007

Coccia, M. (2014a). Emerging technological trajectories of tissue engineering and the critical directions in cartilage regenerative medicine. Int. J. Healthcare Technology and Management, 14(3), 194-208. doi. 10.1504/IJHTM.2014.064247

Coccia, M. (2014b). Converging scientific fields and new technological paradigms as main drivers of the division of scientific labour in drug discovery process: the effects on strategic management of the R&D corporate change. Technology Analysis & Strategic Management, 26(7), 733-749, doi. 10.1080/09537325.2014.882501

Coccia, M. (2014c). Driving forces of technological change: The relation between population growth and technological innovation-Analysis of the optimal interaction across countries, Technological Forecasting & Social Change, 82(2), 52-65. doi. 10.1016/j.techfore.2013.06.001

Coccia, M. (2014). Socio-cultural origins of the patterns of technological innovation: What is the likely interaction among religious culture, religious plurality and innovation? Towards a theory of socio-cultural drivers of the patterns of technological innovation, Technology in Society, 36(1), 13-25. doi. 10.23760/2421-7158.2017.004

Coccia, M. (2014e). Religious culture, democratisation and patterns of technological innovation. International Journal of Sustainable Society, 6(4), 397-418. doi. 10.1504/IJSSOC.2014.066771

Coccia, M. (2014f). Structure and organisational behaviour of public research institutions under unstable growth of human resources, Int. J. Services Technology and Management, 20(4/5/6), 251–266. doi. 10.1504/IJSTM.2014.068857

Coccia, M. (2014g). Steel market and global trends of leading geo-economic players. International Journal of Trade and Global Markets, 7(1), 36-52, doi. 10.1504/IJTGM.2014.058714

Coccia, M. (2015). The Nexus between technological performances of countries and incidence of cancers in society. Technology in Society, 42, 61-70. doi. 10.1016/j.techsoc.2015.02.003

Coccia, M. (2015a). Patterns of innovative outputs across climate zones: the geography of innovation, Prometheus. Critical Studies in Innovation, 33(2), 165-186. doi. 10.1080/08109028.2015.1095979

Coccia, M. (2015b). General sources of general purpose technologies in complex societies: Theory of global leadership-driven innovation, warfare and human development, Technology in Society, 42, 199-226. doi. 10.1016/j.techsoc.2015.05.008

Coccia, M. (2015c). Spatial relation between geo-climate zones and technological outputs to explain the evolution of technology. Int. J. Transitions and Innovation Systems, 4(1-2), 5-21. doi. 10.1504/IJTIS.2015.074642

Coccia, M. (2015d). Technological paradigms and trajectories as determinants of the R&D corporate change in drug discovery industry. International Journal Knowledge and Learning, 10(1), 29-43. doi. 10.1504/IJKL.2015.071052

Coccia, M. (2016). Asymmetric paths of public debts and of general government deficits across countries within and outside the European monetary unification and economic policy of debt dissolution. The Journal of Economic Asymmetries, 15, 17-31. doi. 10.1016/j.jeca.2016.10.003

Coccia, M. (2016a). Radical innovations as drivers of breakthroughs: characteristics and properties of the management of technology leading to superior organizational performance in the discovery process of R&D labs. Technology Analysis & Strategic Management, 28(4), 381-395. doi. 10.1080/09537325.2015.1095287

Coccia, M. (2016). Problem-driven innovations in drug discovery: co-evolution of radical innovation with the evolution of problems, Health Policy and Technology, 5(2), 143-155. doi. 10.1016/j.hlpt.2016.02.003

Coccia, M. (2016c). The relation between price setting in markets and asymmetries of systems of measurement of goods. The Journal of Economic Asymmetries, 14(B), 168-178. doi. 10.1016/j.jeca.2016.06.001

Coccia, M. (2017). The source and nature of general purpose technologies for supporting next K-waves: Global leadership and the case study of the U.S. Navy's Mobile User Objective System, Technological Forecasting and Social Change, 116, 331-339. doi. 10.1016/j.techfore.2016.05.019

Coccia, M. (2017a). Optimization in R&D intensity and tax on corporate profits for supporting labor productivity of nations. The Journal of Technology Transfer, doi. 10.1007/s10961-017-9572-1

Coccia, M. (2017b). Varieties of capitalism’s theory of innovation and a conceptual integration with leadership-oriented executives: the relation between typologies of executive, technological and socioeconomic performances. Int. J. Public Sector Performance Management, 3(2), 148–168. doi. 10.1504/IJPSPM.2017.084672

Coccia, M. (2017c). Sources of disruptive technologies for industrial change. L’industria –rivista di Economia e Politicaindustriale, 38(1), 97-120.

Coccia, M. (2017d). Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis & Strategic Management, 29(9), 1048-1061. doi. 10.1080/09537325.2016.1268682

Coccia, M. (2017e). A Theory of general causes of violent crime: Homicides, income inequality and deficiencies of the heat hypothesis and of the model of CLASH, Aggression and Violent Behavior, 37, 190-200. doi. 10.1016/j.avb.2017.10.005

Coccia, M. (2017f). New directions in measurement of economic growth, development and under development, Journal of Economics and Political Economy, 4(4), 382-395.

Coccia, M. (2017g). Disruptive firms and industrial change, Journal of Economic and Social Thought, 4(4), 437-450.

Coccia, M. (2017h). The Fishbone diagram to identify, systematize and analyze the sources of general purpose Technologies, Journal of Social and Administrative Sciences, 4(4), 291-303.

Coccia, M. (2018). A theory of the general causes of long waves: War, general purpose technologies, and economic change. Technological Forecasting & Social Change, 128, 287-295 10.1016/j.techfore.2017.11.013

Coccia, M. (2018a). The relation between terrorism and high population growth, Journal of Economics and Political Economy, 5(1), 84-104.

Coccia, M. (2018c). Violent crime driven by income Inequality between countries, Turkish Economic Review, 5(1), 33-55.

Coccia, M. (2018d). The origins of the economics of innovation, Journal of Economic and Social Thought, 5(1), 9-28.

Coccia, M. (2018e). Theorem of not independence of any technological innovation, Journal of Economics Bibliography, 5(1), 29-35.

Coccia, M. (2018e). Theorem of not independence of any technological innovation, Journal of Social and Administrative Sciences, 5(1), 15-33.

Coccia, M. (2018f). Competition between basic and applied research in the organizational behaviour of public research labs, Journal of Economics Library, 5(2), 118-133.

Coccia, M. (2018g). An introduction to the methods od inquiry in social sciences, Journal of Social and Administrative Sciences, 5(2), xxx-xxx.

Coccia, M., & Bellitto, M. (2018). Human progress and its socioeconomic effects in society, Journal of Economic and Social Thought, 5(2), 160-178.

Coccia, M., & Igor, M. (2018). Rewards in public administration: a proposed classification, Journal of Social and Administrative Sciences, 5(2), 68-80.

Coccia, M., & Bozeman, B. (2016). Allometric models to measure and analyze the evolution of international research collaboration. Scientometrics, 108(3), 1065-1084. doi. 10.1007/s11192-016-2027-x

Coccia, M., Falavigna, G., & Manello, A. 2015. The impact of hybrid public and market-oriented financing mechanisms on scientific portfolio and performances of public research labs: a scientometric analysis. Scientometrics, 102(1), 151-168. doi. 10.1007/s11192-014-1427-z

Coccia, M., & Finardi, U. (2012). Emerging nanotechnological research for future pathway of biomedicine. International Journal of Biomedical Nanoscience and Nanotechnology, 2 (3-4), 299-317. doi. 10.1504/IJBNN.2012.051223

Coccia, M., & Finardi, U. (2013). New technological trajectories of non-thermal plasma technology in medicine. International Journal of Biomedical Engineering and Technology, 11(4), 337-356. doi. 10.1504/IJBET.2013.055665

Coccia, M., Finardi, U., & Margon, D. (2012). Current trends in nanotechnology research across worldwide geo-economic players, The Journal of Technology Transfer, 37(5), 777-787. doi. 10.1007/s10961-011-9219-6

Coccia, M., & Rolfo, S. (2000). Ricerca pubblica e trasferimento tecnologico: il caso della regione Piemonte. In S. Rolfo (ed), Innovazione e piccole imprese in Piemonte, Franco Angeli Editore, Milano.

Coccia, M., & Rolfo, S. (2002). Technology transfer analysis in the Italian national research council, Technovation - The International Journal of Technological Innovation and Entrepreneurship, 22(5), 291-299. doi. 10.1016/S0166-4972(01)00018-9

Coccia, M., & Rolfo, S. (2007). How research policy changes can affect the organization and productivity of public research institutes, Journal of Comparative Policy Analysis, Research and Practice, 9(3) 215-233. doi. 10.1080/13876980701494624

Coccia, M., & Rolfo, S. (2010). New entrepreneurial behaviour of public research organizations: opportunities and threats of technological services supply, International Journal of Services Technology and Management, 13(1-2), 134-151. doi. 10.1504/IJSTM.2010.029674

Coccia, M., & Rolfo, S. (2013). Human resource management and organizational behavior of public research institutions, International Journal of Public Administration, 36(4), 256-268. doi. 10.1080/01900692.2012.756889

Coccia, M., & Rolfo, S. (2009). Project management in public research organization: Strategic change in complex scenarios. International Journal of Project Organisation and Management, 1(3), 235–252. doi. 10.1504/IJPOM.2009.027537

Coccia, M., & Wang, L. (2015). Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy, Technological Forecasting and Social Change, 94, 155–169. doi. 10.1016/j.techfore.2014.09.007

Coccia, M., & Wang, L. (2016). Evolution and convergence of the patterns of international scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America, 113(8), 2057-2061. doi. 10.1073/pnas.1510820113

Cohen, W.M., & Levinthal, D.A. (1990). Absorptive capacity: a new perspective on learning and innovation, Administrative Science Quarterly, 35(1), 128-152. doi. 10.2307/2393553

Daim, T.U., Byung-Sun, Y., Lindenberg, J., Grizzi, R., Estep, J., & Oliver, T. (2018). Strategic roadmapping of robotics technologies for the power industry: A multicriteria technology assessment, Technological Forecasting & Social Change, 131, 49-66. doi. 10.1016/j.techfore.2017.06.006

Dawkins, R. (1983). Universal Darwinism. In: Bendall, D.S. (1983). Evolution from Molecules to Man. Cambridge University Press, Cambridge.

Dodson E.N. (1985). Measurement of state of the art and technological advance, Technological Forecasting & Social Change, 27(2-3), 129-146. doi. 10.1016/0040-1625(85)90056-3

Dosi, G. (1988). Sources procedures and microeconomic effects of innovation. Journal of Economic Literature, 26(3), 1120-1171.

Erwin, D.H., & Krakauer, D.C. (2004). Evolution: Insights into innovation. Science, 304(5674), 1117-1119. doi. 10.1126/science.1099385

Farmer, J.D., & Lafond, F. (2016). How predictable is technological progress? Research Policy, 45, 647–665. doi. 10.1016/j.respol.2015.11.001

Farrell, C.J. (1993). A theory of technological progress. Technological Forecasting & Social Change, 44(2), 161-178. doi. 10.1016/0040-1625(93)90025-3

Faust, K. (1990). Early identification of technological advances on the basis of patent data, Scientometrics, 19(5-6), 473-480. doi. 10.1007/BF02020708

Fisher, J.C., & Pry, R.H. (1971). A simple substitution model of technological change, Technological Forecasting & Social Change, 3(2-3), 75-88. doi. 10.1016/S0040-1625(71)80005-7

Freeman C., & Soete L. (1987). Technical Change and Full Employment, Basil Blackwell, Oxford, UK.

Gherardi, M., & Rotondo, P. (2016). Measuring logic complexity can guide pattern discovery in empirical systems, Complexity, 21(S2), 397-408. doi. 10.1002/cplx.21819

Grodal, S., Gotsopoulos, A., & Suarez, F.F. (2015). The coevolution of technologies and categories during industry emergence. Academy of Management Review, 40(3), 423-445. doi. 10.5465/amr.2013.0359

Hall-Bronwyn, H., & Jaffe, A.B. (2018). Measuring science, technology, and innovation: A review. Annals of Science and Technology Policy, 2(1), 1-74. doi. 10.1561/110.00000005

Henderson, R.M., & Clark, K.B. (1990). Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms, Administrative Science Quarterly, 35, 9-30. doi. 10.2307/2393549

Hodgson, G.M. (2002). Darwinism in economics: from analogy to ontology. Journal of Evolutionary Economics, 12, 259-281. doi. 10.1007/s00191-002-0118-8

Hodgson, G.M., & Knudsen, T. (2008). In search of general evolutionary principles: Why Darwinism is too important to be left to the biologists. Journal of Bioeconomics, 10(1), 51- 69. doi. 10.1007/s10818-008-9030-0

Hosler, D. (1994). The Sounds and Colors of Power: The Sacred Metallurgical Technology of Ancient West Mexico. MIT Press, Cambridge.

Jacob, F. (1977). Evolution as tinkering. Science, 196, 1161-1166. doi. 10.1126/science.860134

Janouskovec, J., & Keeling, P.J. (2016). Evolution: Causality and the origin of parasitism. Current Biology, 26, R157–R179. doi. 10.1016/j.cub.2015.12.057

Kauffman, S., & Macready, W. (1995). Technological evolution and adaptive organizations: Ideas from biology may find applications in economics. Complexity, 1(2), 26-43. doi. 10.1002/cplx.6130010208

Knight, K.E. (1985). A functional and structural measurement of technology, Technological Forecasting & Social Change, 27(2-3), 107-127. doi. 10.1016/0040-1625(85)90055-1

Koh, H., & Magee, C.L. (2006). A functional approach for studying technological progress: Application to information technology. Technological Forecasting and Social Change, 73(9), 1061–1083. doi. 10.1016/j.techfore.2006.06.001

Koh, H., & Magee, C.L. (2008). A functional approach for studying technological progress: extension to energy technology. Technological Forecasting and Social Change, 75(6), 735–758. doi. 10.1016/j.techfore.2007.05.007

Kreindler, G.E., & Peyton-Young, H. (2014). Rapid innovation diffusion in social networks, Proceedings of the National Academy of Sciences, 111(3), 10881-10888. doi. 10.1073/pnas.1400842111

Kyriazis, M. (2015). Technological integration and hyperconnectivity: Tools for promoting extreme human lifespans, Complexity, 20(6), 15-24. doi. 10.1002/cplx.21626

Levit, G., Hossfeld, U., & Witt, U. (2011). Can Darwinism be “Generalized” and of what use would this be? Journal of Evolutionary Economics, 21(4), 545-562. doi. 10.1007/s00191-011-0235-3

Linstone, H.A. (2004). From information age to molecular age, Technological Forecasting & Social Change, 71(1-2), 187-196. doi. 10.1016/j.techfore.2003.09.004

Luce, R.D., Bush, R.R., & Galanter, E. (1963). Mathematical Psychology. John Wiley and Sons, New York.

Magee, C.L., Basnet, S., Funk, J.L., & Benson, C.L. (2016). Quantitative empirical trends in technical performance. Technological Forecasting & Social Change, 104, 237-246. doi. 10.1016/j.techfore.2015.12.011

Magee, C.L. (2012). Towards quantification of the role of materials innovation in overall technological development. Complexity, 18(1), 10–25. doi. 10.1002/cplx.20309

Martino, J.P. (1985). Measurement of technology using trade-off surfaces, Technological Forecasting & Social Change, 27(2-3), 147-160. doi. 10.1016/0040-1625(85)90057-5

McNerney, J., Farmer, J.D., Redner, S., & Trancik, J.E. (2011). Role of design complexity in technology improvement, Proceedings of the National Academy of Sciences, 108(22), 9008-9013. doi. 10.1073/pnas.1017298108

Nagy, B., Farmer, J.D., Bui, Q.M., & Trancik, J.E. (2013). Statistical basis for predicting technological progress. PloS One, 8(2), e52669. doi. 10.1371/journal.pone.0052669

Nelson, R. (2006). Evolutionary social science and universal Darwinism. Journal of Evolutionary Economics, 16(5), 491-510. doi. 10.1007/s00191-006-0025-5

Nelson, R.R., & Winter, S.G. (1982). An Evolutionary Theory of Economic Change. Belknap Press of Harvard University Press, Cambridge, MA.

Nordhaus, W. (1997). Do real output and real wage measures capture reality? The history of light suggests not, In T. Bresnahan, & R.J. Gordon (Eds), The Economics of New Goods, (pp.29-70) NBER. Chicago: University of Chicago Press.

Oppenheimer, R. (1955). Analogy in science. Sixty-Third Annual Meeting of the American Psychological Association, San Francisco, California, September 4.

Oswalt, W.H. (1976). An Anthropological Analysis of Food-Getting Technology. John Wiley & Sons, New York.

Pistorius, C.W.I., & Utterback, J.M. (1997). Multi-mode interaction among technologies. Research Policy, 26(1), 67–84. doi. 10.1016/S0048-7333(96)00916-X

Poulin, R. (2006). Evolutionary Ecology of Parasites, Princeton University Press, Princeton.

Punto, C. (2018). Schede Tecniche Cellulari, [Retrieved from].

Reeve E. C. R., Huxley, J. S. (1945). Some problems in the study of allometric growth. In W. E. LeGros Clark & P. B. Medawar (Eds.), Essay on growth and form (pp. 121–156). Oxford University Press, Oxford.

Rosenberg, N. (1969). The direction of technological change: Inducement mechanisms and focusing oevices. Economic Development and Cultural Change, 18(1), 1-24. doi. 10.1086/450399

Ruttan, V.W. (2001). Technology, Growth and Development, An Induced Innovation Perspective. Oxford University Press, New York.

Sahal, D. (1981). Patterns of Technological Innovations. Addison-Wesley Publishing Company Inc.

Sahal, D. (1985). Technological guidepost and innovation avenues. Research Policy, 14(2), 61-82. doi. 10.1016/0048-7333(85)90015-0

Sandén, B.A., & Hillman, K.M. (2011). A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden. Research Policy, 40(3), 403-414. doi. 10.1016/j.respol.2010.12.005

Saviotti, P. (1985). An approach to the measurement of technology based on the hendonic price method and related methods, Technological Forecasting & Social Change, 27(2-3), 309-334. doi. 10.1016/0040-1625(85)90064-2

Schubert, C. (2014). “Generalized Darwinism” and the quest for an evolutionary theory of policy-making. Journal of Evolutionary Economics, 24(3), 479-513. doi. 10.1007/s00191-013-0304-x

Schuster, P. (2016). Major transitions in evolution and in technology. Complexity, 21(4), 7-13. doi. 10.1002/cplx.21773

Simon, H.A. (1962). The architecture of complexity, Proceeding of the American Philosophical Society, 106(6), 476-482.

Solé, R.V., Valverde, S., & Rodriguez-Caso, C. (2011). Convergent evolutionary paths in biological and technological networks, Evolution: Education and Outreach, 4, 415-423. doi. 10.1007/s12052-011-0346-1

Solé, R.V., Valverde, S., Casals, M.R., Kauffman, S.A., Farmer, D., & Eldredge, N. (2013). The Evolutionary Ecology of Technological Innovations. Complexity, 18(4), 25-27. doi. 10.1002/cplx.21436

Steil, B., Victor, D.G., & Nelson, R.R. (2002). Technological Innovation and Economic Performance, Princeton University Press.

Stevens, S.S. (1959). Measurements, Psychophysics, and Utility in Churchman C. W., Ratoosh P., Measurement: Definitions and Theories. John Wiley and Sons, New York.

Stoelhorst, J.W. (2008). The explanatory logic and ontological commitments of generalized Darwinism. Journal of Economic Methodology, 15(4), 343-363. doi. 10.1080/13501780802506661

Suppes, P., & Zinnes, J.L. (1963). Basic measurement theory, in R.D. Luce R.R. Bush, & E. Galanter (Eds), Mathematical Psychology. John Wiley and sons, New York.

Szathmáry, E. (2011). Evolution. To group or not to group. Science, 334(6063), 1648-1649. doi. 10.1126/science.1209548

Tran, T.A., & Daim T.U. (2008). A taxonomic review of methods and tools applied in technology assessment, Technological Forecasting and Social Change, 75(9), 1396-1405. doi. 10.1016/j.techfore.2008.04.004

Tushman, M., & Anderson, P. (1986). Technological Discontinuities and Organizational Environments. Administrative Science Quarterly, 31(3), 439-465. doi. 10.2307/2392832

Utterback, J.M. (1994). Mastering the Dynamics of Innovation, Harvard Business School Press, Cambridge, MA.

Valverde, S. (2016). Major transitions in information technology. Philosophical Transactions of the Royal Society B, 371(1701). doi. 10.1098/rstb.2015.0450

Valverde, S., Solé, R.V., Bedau, M.A., & Packard, N. (2007). Topology and evolution of technology innovation networks. Physical Review E, Stat Nonlin Soft Matter Phys. 76(5), 056118-1-7.

Wagner, A. (2011). The Origins of Evolutionary Innovations. A Theory of Transformative Change in Living Systems. Oxford University Press, Oxford, UK.

Wagner, A., & Rosen, W. (2014). Spaces of the possible: universal Darwinism and the wall between technological and biological innovation. Journal of the Royal Society Interface, 11, 1-11. doi. 10.1098/rsif.2013.1190

Wang, C.C., Sung, H.Y., & Huang, M.H. (2016). Technological evolution seen from the USPC reclassifications, Scientometrics, 107(2), 537-553. doi. 10.1007/s11192-016-1851-3

Watanabe, C., Kanno, G., & Tou, Y. (2012). Inside the learning dynamism inducing the resonance between innovation and high-demand consumption: A case of Japan's high-functional mobile phones, Technological Forecasting & Social Change, 79, 1292-1311. doi. 10.1016/j.techfore.2012.03.003

Wright, G. (1997). Towards a more historical approach to technological change, The Economic Journal, 107, 1560-1566. doi. 10.1098/rsif.2013.1190

Ziman, J. (2000). Technological Innovation as an Evolutionary Process. Cambridge University Press, Cambridge, MA.

Creative Commons License
This article licensed under Creative Commons Attribution-NonCommercial license (4.0)

Downloads

Download data is not yet available.