Environmental, demographic, and geographical factors affecting the diffusion of covid-19: A case study
PDF

Keywords

Air pollution
Environment and health
Natural hazards
Risk assessment
Urban environment
Sustainable development and policy assessment
Sustainable growth.

How to Cite

COCCIA, M. (2022). Environmental, demographic, and geographical factors affecting the diffusion of covid-19: A case study. Journal of Economic and Social Thought, 9(2), 85–122. https://doi.org/10.1453/jest.v9i2.2332

Abstract

Italy was the first European country to experience a rapid increase in confirmed cases and deaths of the novel Coronavirus disease (COVID-19). This study explains how COVID-19 transmitted so rapidly in northern Italy, analysing the underlying relationships between infected people and environmental, demographic, and geographical factors that influenced its spread. This study analyses data on COVID-19 cases alongside environmental data. This study finds out that cities with little wind, high humidity and frequently high levels of air pollution — exceeding safe levels of ozone or particulate matter — had higher numbers of COVID-19 related infected individuals and deaths. Overall, then, results here suggest that that geo-environmental factors may have accelerated the spread of COVID-19 in northern Italian cities, leading to a higher number of infected individuals and deaths.

Keywords. Air pollution; Environment and health; Natural hazards; Risk assessment; Urban environment; Sustainable development and policy assessment; Sustainable growth.

JEL. F64; I10; I18; I19;  H75; H84; Q50; Q51; Q52; Q53; Q55; Q58.
https://doi.org/10.1453/jest.v9i2.2332
PDF

References

Ackoff, R.L., & Rovin, S. (2003). Redesigning Society, Stanford University Press, Stanford, CA.

Ardito, L., Coccia, M., & Messeni, P.A. (2021). Technological exaptation and crisis management: Evidence from COVID-19 outbreaks. R&D Management, 51(4), 381-392. doi. 10.1111/radm.12455

Backer, J.A., Klinkenberg, D., & Wallinga, J. (2020). Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Euro Surveill, 2020(25), 2000062.

Barger-Lux M.J., & Heaney, R.P. (2002). Effects of above average summer sun exposure on serum 25-hydroxyvitamin D and calcium absorption. J Clin Endocrinol Metab, 87(11), 4952–4956.

Bayram, H., Sapsford, R.J., Abdelaziz, M.M., & Khair, O.A. (2001). Effect of ozone and nitrogen dioxide on the release of proinflammatory mediators from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients in vitro. J Allergy Clin Immunol, 107, 287–94.

Beelen, R., Raaschou-Nielsen, O., Stafoggia, M., et al. (2013). Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. doi. 10.1016/S0140-6736(13)62158-3

Bell, M.L., Davis, D.L., & Fletcher, T. (2004). A retrospective assessment of mortality from the London Smog episode of 1952: the role of influenza and pollution. Environ Health Perspect, 112(1), 6.

Blackaby, F. (1978). De-Industrialisation. London: Heinemann.

Bloemsma, L.D., Hoek, G., Smit, L.A. (2016). Panel studies of air pollution in patients with COPD: systematic review and meta-analysis, Environ. Res. 151(2016) 458–468.

Bluestone, B., & Harrison, B. (1982). The Deindustrialization of America: Plant Closings, Community Abandonment and the Dismantling of Basic Industry. New York: Basic Books.

Brooks, S.K, Webster, R.K., Smith, L.E., Woodland, L., Wessely, S., Greenberg, N., & Rubin G.J. (2019). The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet. doi. 10.1016/S0140-6736(20)30460-8

Brunekreef, B., & Holgate, S.T. (2002). Air pollution and health, Lancet, 360, 1233–1242.

Brunekreef, B., & Holgate, S.T. (2002). Air pollution and health, The Lancet, 360(9341), 1233-1242. doi. 10.1016/S0140-6736(02)11274-8

Bundy, J., Pfarrer, M.D., Short, C.E., & Coombs, W.T. (2017). Crises and crisis management: integration, interpretation, and research development. Journal of Management, 43(6), 1661–1692. doi. 10.1177/0149206316680030

Camacho, A., Kucharski, A., Aki-Sawyerr, Y. et al. (2015). Temporal changes in Ebola transmission in Sierra Leone and implications for control requirements: a real-time modelling study. PLoS Curr, 2015; 7.

Carugno, M., Dentali, F., Mathieu, G., Fontanella, A., Mariani, J., Bordini, L., Milani, G.P., Consonni, D., Bonzini, M., Bollati, V., & Pesatori, A.C. (2018). PM10 exposure is associated with increased hospitalizations for respiratory syncytial virus bronchiolitis among infants in Lombardy, Italy, Environmental Research, 166(2018) 452–457. doi. 10.1016/j.envres.2018.06.016

Centers for Disease Control and Prevention, (2020). Quarantine and isolation. 2017. Accessed Jan 30, 2020. [Retrieved from].

Chan, J.F.W., Yuan, S., Kok, K.H., et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020(395), 514–523.

Chang, K.H., Hsu, C.C., Muo C.H., Hsu C.Y., Liu H.C., Kao C.H., Chen C.Y., Chang M.Y., & Hsu, Y.C. (2016). Air pollution exposure increases the risk of rheumatoid arthritis: a longitudinal and nationwide study. Environ. Int. 94, 495-499.

Charmi, H., Sneha, G., & Ujwalkumar, T. (2018). A review on recent progress in observations, and health effects of bio aerosols. Environ. Int. 118, 189e193.

Chen, S., Yang, J., Yang, W., Wang, C, & Barnighausen, T. (2020). COVID-19 control in China during mass population movements at New Year. Lancet, 395, 764–66.

Churchman, C.W. (1971). The Design of Inquiring Systems. Basic Books, New York.

Coccia, M. (2003). Metrics of R&D performance and management of public research institute, Proceedings of IEEE- IEMC 03, Piscataway, pp. 231-236.

Coccia, M. (2005). A taxonomy of public research bodies: a systemic approach, Prometheus, 23(1), 63-82. doi. 10.1080/0810902042000331322

Coccia, M. (2005a). Countrymetrics: valutazione della performance economica e tecnologica dei paesi e posizionamento dell’Italia, Rivista Internazionale di Scienze Sociali, 113(3), 377-412.

Coccia, M. (2008). Measuring scientific performance of public research units for strategic change. Journal of Informetrics, 2(3), 183-194. doi. 10.1016/j.joi.2008.04.001

Coccia, M. (2013). Population and technological innovation: the optimal interaction across modern countries, Working Paper Ceris del Consiglio Nazionale delle Ricerche, vol.15, n.7.

Coccia, M. (2014). Steel market and global trends of leading geo-economic players. International Journal of Trade and Global Markets, 7(1), 36-52. doi. 10.1504/IJTGM.2014.058714

Coccia, M. (2015). Spatial relation between geo-climate zones and technological outputs to explain the evolution of technology. Int. J. Transitions and Innovation Systems, 4(1), 5-21. doi. 10.1504/IJTIS.2015.074642

Coccia, M. (2016). Problem-driven innovations in drug discovery: co-evolution of the patterns of radical innovation with the evolution of problems, Health Policy and Technology, 5(2), 143-155. doi. 10.1016/j.hlpt.2016.02.003

Coccia, M. (2017). Varieties of capitalism’s theory of innovation and a conceptual integration with leadership-oriented executives: the relation between typologies of executive, technological and socioeconomic performances. Int. J. Public Sector Performance Management, 3(2), 148–168. doi. 10.1504/IJPSPM.2017.084672

Coccia, M. (2017a). Disruptive firms and industrial change, Journal of Economic and Social Thought, 4(4), 437-450. doi. 10.1453/jest.v4i4.1511

Coccia, M. (2017b). New directions in measurement of economic growth, development and under development, Journal of Economics and Political Economy, 4(4), 382-395. doi. 10.1453/jepe.v4i4.1533

Coccia, M. (2017c). Sources of disruptive technologies for industrial change. L’industria –Rivista di Economia e Politica Industriale, 38(1), 97-120. doi. 10.1430/87140

Coccia, M. (2017d). Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis & Strategic Management, 29(9), 1048-1061. doi. 10.1080/09537325.2016.1268682

Coccia, M. (2018). An introduction to the methods of inquiry in social sciences, Journal of Social and Administrative Sciences, 5(2), 116-126. doi. 10.1453/jsas.v5i2.1651

Coccia, M. (2018a). An introduction to the theories of institutional change, Journal of Economics Library, 5(4), 337-344. doi. 10.1453/jel.v5i4.1788

Coccia, M. (2018b). General properties of the evolution of research fields: a scientometric study of human microbiome, evolutionary robotics and astrobiology, Scientometrics, 117(2), 1265-1283. doi. 10.1007/s11192-018-2902-8

Coccia, M. (2018c). The origins of the economics of Innovation, Journal of Economic and Social Thought, 5(1), 9-28. doi. 10.1453/jest.v5i1.1574

Coccia, M. (2018d). The relation between terrorism and high population growth, Journal of Economics and Political Economy, 5(1), 84-104. doi. 10.1453/jepe.v5i1.1575

Coccia, M. (2018e). Classification of innovation considering technological interaction, Journal of Economics Bibliography, 5(2), 76-93. doi. 10.1453/jeb.v5i2.1650

Coccia, M. (2018f). An introduction to the theories of national and regional economic development, Turkish Economic Review, 5(4), 350-358. doi. 10.1453/ter.v5i4.1794

Coccia, M. (2019). Metabolism of public organizations: A case study, Journal of Social and Administrative Sciences, 6(1), 1-9. doi. 10.1453/jsas.v6i1.1793

Coccia, M. (2019a). The theory of technological parasitism for the measurement of the evolution of technology and technological forecasting, Technological Forecasting and Social Change, 141, 289-304. doi. 10.1016/j.techfore.2018.12.012

Coccia, M. (2019b). A Theory of classification and evolution of technologies within a Generalized Darwinism, Technology Analysis & Strategic Management, 31(5), 517-531. doi. 10.1080/09537325.2018.1523385

Coccia, M. (2019l). Theories and the reasons for war: a survey. Journal of Economic and Social Thought, 6(2), 115-124. doi. 10.1453/jest.v6i2.1890

Coccia, M. (2020a). Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Science of The Total Environment, 729, n.138474. doi. 10.1016/j.scitotenv.2020.138474

Coccia, M. (2020b). How (Un)sustainable Environments are Related to the Diffusion of COVID-19: The Relation between Coronavirus Disease 2019, Air Pollution, Wind Resource and Energy. Sustainability, 12, 9709. doi. 10.3390/su12229709

Coccia, M. (2020c). How do environmental, demographic, and geographical factors influence the spread of COVID-19. Journal of Social and Administrative Sciences, 7(3), 169-209. doi. 10.1453/jsas.v7i3.2018

Coccia, M. (2020d). Destructive Technologies for Industrial and Corporate Change. In: Farazmand A. (eds), Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer, Cham. doi. 10.1007/978-3-319-31816-5_3972-1

Coccia, M. (2020e). Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technology in Society, 60, 1-11, art. no.101198. doi. 10.1016/j.techsoc.2019.101198

Coccia, M. (2020f). How does science advance? Theories of the evolution of science. Journal of Economic and Social Thought, 7(3), 153-180. doi. 10.1453/jest.v7i3.2111

Coccia, M. (2020g). The evolution of scientific disciplines in applied sciences: dynamics and empirical properties of experimental physics, Scientometrics, 124, 451-487. doi. 10.1007/s11192-020-03464-y

Coccia, M. (2020h). Multiple working hypotheses for technology analysis, Journal of Economics Bibliography, 7(2), 111-126. doi. 10.1453/jeb.v7i2.2050

Coccia, M. (2020i). Asymmetry of the technological cycle of disruptive innovations. Technology Analysis & Strategic Management, 32(12), 1462-1477. doi. 10.1080/09537325.2020.1785415

Coccia, M., Bellitto, M. (2018). Human progress and its socioeconomic effects in society, Journal of Economic and Social Thought, 5(2), 160-178. doi. 10.1453/jest.v5i2.1649

Coccia, M., Benati, I. (2018). Rewards in public administration: A proposed classification, Journal of Social and Administrative Sciences, 5(2), 68-80. doi. 10.1453/jsas.v5i2.1648

Coccia, M., Benati, I. (2018a). Comparative Models of Inquiry, A. Farazmand (ed.), Global Encyclopedia of Public Administration, Public Policy, and Governance, Springer International Publishing AG, part of Springer Nature. doi. 10.1007/978-3-319-31816-5_1199-1

Coccia, M., Cadario, E. (2014). Organisational (un)learning of public research labs in turbulent context. International Journal of Innovation and Learning, 15(2), 115-129. doi. 10.1504/IJIL.2014.059756

Coccia, M., Finardi, U. (2012). Emerging nanotechnological research for future pathway of biomedicine. International Journal of Biomedical nanoscience and nanotechnology, 2(3-4), 299-317. doi. 10.1504/IJBNN.2012.051223

Coccia, M., Finardi, U. (2013). New technological trajectories of non-thermal plasma technology in medicine. Int. J. Biomedical Engineering and Technology, 11(4), 337-356. doi. 10.1504/IJBET.2013.055665

Coccia, M., Rolfo, S. (2000). Ricerca pubblica e trasferimento tecnologico: il caso della regione Piemonte in Rolfo S. (eds) Innovazione e piccole imprese in Piemonte, Franco Angeli Editore, Milano (Italy).

Coccia, M., Rolfo, S. (2008). Strategic change of public research units in their scientific activity, Technovation, 28(8), 485-494. doi. 10.1016/j.technovation.2008.02.005

Coccia, M., Wang, L. (2015). Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy, Technological Forecasting & Social Change, 94(1), 155–169. doi. 10.1016/j.techfore.2014.09.007

Coccia, M., Wang, L. (2016). Evolution and convergence of the patterns of international scientific collaboration, Proceedings of the National Academy of Sciences of the United States of America, 113(8), 2057-2061. doi. 10.1073/pnas.1510820113

Coccia, M., Watts, J. (2020). A theory of the evolution of technology: technological parasitism and the implications for innovation management, Journal of Engineering and Technology Management, 55(2020), 101552. doi. 10.1016/j.jengtecman.2019.11.003

Cooper, B.S., Pitman, R.J., Edmunds, W.J., & Gay, N.J. (2006). Delaying the international spread of pandemic influenza. PLoS Med, 2006(3), e212.

Cooper, G.S., & Stroehla, B.C. (2003). The epidemiology of autoimmune diseases. Autoimmun. Rev. 2(3), 119-125.

Crutzen, P.J., & Stoermer, E.F. (2000). The ‘‘Anthropocene’’. IGBP Newsletter, 41(1) 17–18.

Darrow, L.A., Mitchel, K., Flanders, W.D., Mulholland, J.A., Tolbert, P.E., & Strickland, M.J. (2014). Air pollution and acute respiratory infections among children 0–4 years of age: an 18-year time-series study. Am. J. Epidemiol. 180, 968–977. doi. 10.1093/aje/kwu234

Das, P., & Horton, R. (2017). Pollution, health, and the planet: time for decisive action. Lancet 391, 407–408.

Daszak, P., Olival, K. J., & Li, H. (2020). A strategy to prevent future epidemics similar to the 2019-nCoV outbreak, Biosafety and Health, doi. 10.1016/j.bsheal.2020.01.003

De Roos, A.J., Koehoorn, M., Tamburic, L., Davies, H.W., & Brauer, M. (2014). Proximity to traffic, ambient air pollution, and community noise in relation to incident rheumatoid arthritis. Environ. Health Perspect. 122(10), 1075.

De Serres, G., Lampron, N., La Forge, J., Rouleau, I., Bourbeau, J., Weiss, K. et al. (2009). Importance of viral and bacterial infections in chronic obstructive pulmonary disease exacerbations. J Clin Virol, 46, 129–33.

Deal, E.C., McFadden, E.R., Ingram, R.H., Breslin, F.J., & Jaeger, J.J. (1980). Airway responsiveness to cold air and hyperpnea in normal subjects and in those with hay fever and asthma. Am J Respir Dis, 121, 621-628.

Després, V., Huffman, J.A., Burrows, S.M., Hoose, C., Safatov, A., Buryak, G., et al., (2012). Primary biological aerosol particles in the atmosphere: a review. Tellus B, 64, 145-153.

Dong, E., Du, H., & Gardner L. (2020). An interactive web-based dashboard to track COVID-19 in real time 10.1016/S1473-3099(20)30120-1

Dowell, S.F., Whitney, C.G., Wright, C., Rose, C.E., & Schuchat A. (2003). Seasonal patterns of invasive pneumococcal disease. Emerging Infect Dis, 2003; 9:573e9.

EIU, (2020). COVID-19 to send almost all G20 countries into a recession, 26th Mar 2020.

Ellis, E.C., Kaplan J.O., Fuller D.Q., Vavrus S., Goldewijk K.K., Verburg P.H. 2013. Used planet: a global history. Proceedings of the National Academy of Sciences, doi. 10.1073/pnas.1217241110

ESA (2020). European Space Agency Coronavirus: nitrogen dioxide emissions drop over Italy, www.esa.int, Mar 13, 2020 Accessed march 2020. [Retrieved from].

European Centre for Disease Prevention and Control. (2020). Public health management of persons having had contact with novel coronavirus cases in the European Union. European Centre for Disease Prevention and Control, 2020. Accessed Feb 2, 2020. [Retrieved from].

European Centre for Disease Prevention and Control. (2020a). Risk assessment guidelines for diseases transmitted on aircraft. Part 2: Operational guidelines for assisting in the evaluation of risk for transmission by disease. 2011. Accessed Feb 6, 2020. [Retrieved from].

Farhat S.C., Silva C.A., Orione M.A., Campos L.M., Sallum A.M., & Braga A.L., (2011). Air pollution in autoimmune rheumatic diseases: a review. Autoimmun. Rev. 11 (1), 14-21.

Flint R. 1884. Vico, William Blackwood and sons, Edinburgh and London.

Foley S. F., Gronenborn D., Andreae M. O., Kadereit J.W., Esper J., Scholz D., Pöschl U., Jacob D. E., Schöne B. R., Schreg R., Vött A., Jordan D., Lelieveld J., Weller C. G., Alt K. W., Gaudzinski-Windheuser S., Bruhn K. C., Tost H., Sirocko F., Crutzen P. J. (2013). The Palaeoanthropocene: the beginnings of anthropogenic environmental change. Anthropocene, 3, 83–88.

Fong M.W., Gao H., Wong J.Y., et al.2020. Nonpharmaceutical measures for pandemic influenza in nonhealthcare settings—social distancing measures. Emerg Infect Dis 2020; published online Feb 6. doi.10.3201/eid2605.190995

Fraser C., Riley S., Anderson R.M., Ferguson N.M. 2004. Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci USA; 101: 6146–51.

Friedman M.S., Powell K.E., Hutwagner L., Graham L.M., Teague W.G.2001. Impact of changes in transportation and commuting behaviors during the 1996 Summer Olympic Games in Atlanta on air quality and childhood asthma. JAMA; 285: 897–905.

Fröohlich-Nowoisky J., Kampf C.J., Weber B., Huffman J.A., & Pöschl U. (2016). Bioaerosols in the Earth system: climate, health, and ecosystem interactions. Atmos. Res. 182, 346-376.

Funk S., Ciglenecki I., Tiffany A., et al. (2017). The impact of control strategies and behavioural changes on the elimination of Ebola from Lofa County, Liberia. Philos Trans R Soc Lond B Biol Sci, 372: 20160302.

Gao, J.F., Fan, X.Y., Li, H.Y., & Pan, K.L., (2017). Airborne bacterial communities of PM2.5 in Beijing-Tianjin-Hebei megalopolis, China as revealed by Illumina MiSeq sequencing: a case study. Aerosol. Air. Qual. Res. 17.

Ghio A.J., M.S. Carraway, M.C. & Madden, (2012). Composition of air pollution particles and oxidative stress in cells, tissues, and living systems, J. Toxicol. Environ. Health B Crit. Rev. 15 (1) (2012) 1–21.

Glasser J.W., Hupert N., McCauley M.M., & Hatchett R. (2011). Modeling and public health emergency responses: lessons from SARS. Epidemics 2011; 3: 32–37.

Glencross Drew A., Tzer-Ren Ho, Nuria Camina, Hawrylowicz Catherine M., Pfeffer P. E. 2020. Air pollution and its effects on the immune system, Free Radical Biology and Medicine, in press. doi. 10.1016/j.freeradbiomed.2020.01.179

Glikson A. 2013. Fire and human evolution: The deep-time blueprints of the Anthropocene. Anthropocene 3, 89–92.

Gorse G.J., O'Connor T.Z., Young S.L., Habib M.P., Wittes J., Neuzil K.M., et al. (2006). Impact of a winter respiratory virus season on patients with COPD and association with influenza vaccination. Chest, 130:1109–16.

Grant W. B. (2002). An ecologic study of dietary and solar Ultraviolet-B links to breast carcinoma mortality rates. Cancer 94(1):272–281

Groulx N., Urch B., Duchaine C., Mubareka S., & Scott J. A. (2018). The Pollution Particulate Concentrator (PoPCon): A platform to investigate the effects of particulate air pollutants on viral infectivity, Science of the Total Environment 628–629 (2018) 1101–1107, doi. 10.1016/j.scitotenv.2018.02.118

Guo L., aJiaLuoaManYuanaYapingHuangaHuanfengShenbTongwenLib (2019). The influence of urban planning factors on PM2.5 pollution exposure and implications: A case study in China based on remote sensing, LBS, and GIS data. Science of The Total Environment 659, 1 April 2019, Pages 1585-1596, doi. 10.1016/j.scitotenv.2018.12.448

Hao J., Zhiyi Yang, Shuqiong Huang, Wenwen Yang, Zhongmin Zhud, Liqiao Tian, Yuanan Luf, Hao Xiang, Suyang Liu (2019). The association between short-term exposure to ambient air pollution and the incidence of mumps in Wuhan, China: A time-series study. Environmental Research 177, 108660, doi. 10.1016/j.envres.2019.108660

Hellewell J., Abbott S., Gimma A., Bosse N. I., Jarvis C. I., Russell T. W., Munday J.D., Kucharski A.J., Edmunds W. J., (2020). Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Sebastian Funk, Eggo R. M 2020. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, Lancet Glob Health 2020, doi. 10.1016/S2214-109X(20)30074-7

Hoang T.T.T., Nguyen V.N., Dinh N.S., et al. (2019). Active contact tracing beyond the household in multidrug resistant tuberculosis in Vietnam: a cohort study. BMC Public Health 2019; 19: 241.

Hoek G., Krishnan R.M., Beelen R., Peters A., Ostro B., Brunekreef B., & Kaufman J.D., (2013) Dec. Long-term air pollution exposure and cardiorespiratory mortality: a review. Environ. Health, 12 (1), 43.

Il meteo (2020). Medie e totali mensili. Accessed March 2020. [Retrieved from].

Istituto Superiore Sanità, (2020). Nuovo coronavirus SARS-CoV-2. Caratteristiche dei pazienti deceduti positivi a COVID-19 in Italia, Accessed 1 April, 2020. [Retrieved from].

Jalaludin B.B., O'Toole B.I., & Leeder S.R., (2004). Acute effects of urban ambient air pollution on respiratory symptoms, asthma medication use, and doctor visits for asthma in a cohort of Australian children. Environ. Res. 95, 32–42. doi. 10.1016/S0013-9351(03)00038-0

Jansen A.G.S.C., Sanders E.A.M., Van Der Ende A., Van Loon A.M., Hoes A.W., Hak E. (2008). Invasive pneumococcal and meningococcal disease: association with influenza virus and respiratory syncytial virus activity? Epidemiol Infect, 136:1448e54.

Jaspers I., Ciencewicki J.M., Zhang W.L., Brighton L.E., Carson J.L., Beck M.A., et al. (2005). Diesel exhaust enhances influenza virus infections in respiratory epithelial cells. Toxicol Sci, 85:990-1002.

Jin, L., Luo, X., Fu, P., Li, X., (2017). Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts. Natl. Sci. Rev. 593, 610.

Johns Hopkins Center for System Science and Engineering, 2020. Coronavirus COVID-19 Global Cases, Accessed in April 2020. [Retrieved from].

Jones A.M., & Harrison, R.M., (2004). The effects of meteorological factors on atmospheric bio aerosol concentrations-a review. Sci. Total Environ. 326, 151e180

Jung C.R., Hsieh, H.Y., & Hwang, B.F., (2017). Air pollution as a potential determinant of rheumatoid arthritis: a population-based cohort study in Taiwan. Epidemiology 28, S54-S59.

Kampa M., & Castanas E., (2008). Human health effects of air pollution. Environ. Pollut. 151 (2), 362-367.

Kang M., Song T., Zhong H., et al. 2016. Contact tracing for imported case of Middle East respiratory syndrome, China, 2015. Emerging Infect Dis 216, 22: 9.

Kim P.E., Musher D.M., Glezen W.P., Rodriguez-Barradas M.C., Nahm W.K., Wright C.E. (1996). Association of invasive pneumococcal disease with season, atmospheric conditions, air pollution, and the isolation of respiratory viruses. Clin Infect Dis, 22:100e6.

Ko F.W.S., Chan P.K.S., Chan M.C.H., To K.W., Ng S.S.S., Chau S.S.L., et al. (2007). Viral etiology of acute exacerbations of COPD in Hong Kong. Chest, 132:900–8.

Ko F.W.S., Tam W., Wong T.W., Chan D.P.S., Tung A.H., Lai C.K.W. et al. (2007a). Temporal relationship between air pollutants and hospital admissions for chronic obstructive pulmonary disease in Hong Kong. Thorax, 62:779e84.

Kucharski A.J., Camacho A., Checchi F. et al. (2015). Evaluation of the benefits and risks of introducing Ebola community care centers, Sierra Leone. Emerg Infect Dis 2015; 21: 393–99.

Kucharski Adam J, Timothy W Russell, Charlie Diamond, Yang Liu, John Edmunds, Sebastian Funk, Rosalind M Eggo, on behalf of the Centre for Mathematical Modelling of Infectious Diseases COVID-19 working group* 2020. Early dynamics of transmission and control of COVID-19: a mathematical modelling study Lancet Infect Dis 2020 Published Online March 11, 2020 doi. 10.1016/S1473-3099(20)30144-4

Langrish J. P., & Mills N. L. (2014). Air pollution and mortality in Europe, Lancet, vol. 383, doi. 10.1016/S0140-6736(13)62570-2

Legambiente (2019) Mal’aria 2019, il rapporto annuale sull’inquinamento atmosferico nelle città italiane. Access March 2020. [Retrieved from].

Lewtas J. (2007). Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutation Research, 636(1), 95-133, doi. 10.1016/j.mrrev.2007.08.003

Li J., Sun S., Tang R., Qiu H., Huang Q., Mason T.G., & Tian L. (2016). Major air pollutants and risk of COPD exacerbations: a systematic review and meta-analysis, Int. J. Chronic Obstr. Pulm. Dis. 11, 3079–3091.

Li Q., Guan X., Wu P., et al. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; published online Jan 29. doi. 10.1056/NEJMoa2001316

Liao C.-M., Nan-Hung Hsieh, Chia-Pin Chio (2011). Fluctuation analysis-based risk assessment for respiratory virus activity and air pollution associated asthma incidence. Science of the Total Environment, 409, 3325–3333, doi. 10.1016/j.scitotenv.2011.04.056

Lim H.S. et al. (2006). Cancer survival is dependent on season of diagnosis and sunlight exposure. Int J Can 119:1530–1536

Linstone H.A. (1999). Decision making for technology executives, Artech House, Boston-London

Liu H., Zhang X., Zhang H., Yao X., Zhou M., Wang J., et al., (2018). Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environ. Pollut. 233, 483-493.

Liu M., Huang Y., Ma Z., Jin Z., Liu X., Wang H., et al., (2017). Spatial and temporal trends in the mortality burden of air pollution in China: 2004-2012. Environ. Int. 98, 75-81.

Ma Y., Zhao Y., Liu J., He X., Wang B., Fu S., Yan J., Niu J., Zhou J., & Luo B. (2020). Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China, Science of The Total Environment,138226, doi. 10.1016/j.scitotenv.2020.138226

Manuell M-E, & Cukor J. (2011). Mother Nature versus human nature: public compliance with evacuation and quarantine. Disasters, 35: 417–42.

McCullers JA. (2006). Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev, 19:571e82.

Medina-Ramón M., Zanobetti A., & Schwartz J. (2006). The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study. Am J Epidemiol, 163:579e88.

Ministero della Salute (2020). Covid-19 - Situazione in Italia. Accessed March 2020. [Retrieved from].

Mochitate K., Katagiri K., & Miura T. (2001). Impairment of microbial billing and superoxide-producing activities of alveolar macrophages by a low level of ozone. J Health Sci, 47: 302–09.

Murdoch D. R., & Jennings Lance C. (2009). Association of respiratory virus activity and environmental factors with the incidence of invasive pneumococcal disease, Journal of Infection, 58, 37-46, doi: 10.1016/j.jinf.2008.10.011

Murphy K.R., Eivindson A., Pauksens K., Stein W.J., Tellier G., Watts R. et al. (2000). Efficacy and safety of inhaled zanamivir for the treatment of influenza in patients with asthma or chronic obstructive pulmonary disease — a double-blind, randomised, placebo controlled, multicentre study. Clin Drug Invest, 20:337–49.

Myllykangas-Luosujäarvi R., Aho K., Kautiainen H., & Isomäki H., (1995). Shortening of life span and causes of excess mortality in a population-based series of subjects with rheumatoid arthritis. Clin. Exp. Rheumatol. 13(2), 149-153.

nCoV-2019 Data Working Group. (2020). Epidemiological data from the nCoV-2019 outbreak: early descriptions from publicly available data. 2020. Accessed Feb 13, 2020. [Retrieved from].

Nel A. (2005). Air pollution-related illness: effects of particles. Science, 308:804–6.

Nenna R., Evangelisti M., Frassanito A., Scagnolari C., Pierangeli A., Antonelli G., Nicolai A., Arima S., Moretti C., Papoff P., Villa M. P., & Midulla F. (2017). Respiratory syncytial virus bronchiolitis, weather conditions and air pollution in an Italian urban area: An observational study. Environmental Research, 158(2017) 188–193, doi. 10.1016/j.envres.2017.06.014

Neu U., Mainou B.A. (2020). Virus interactions with bacteria: Partners in the infectious dance. PLoS Pathog 16(2): e1008234. doi. 10.1371/journal.ppat.1008234

Oh E.-Y., Ansell C., Nawaz H., Yang C.-H., Wood P. A., & Hrushesky W.J. M. (2010). Global breast cancer seasonality, Breast Cancer Res Treat, 123:233–243. doi. 10.1007/s10549-009-0676-7

Orellano P., Quaranta N., Reynoso J., Balbi B., & Vasquez J. (2017). Effect of outdoor air pollution on asthma exacerbations in children and adults: systematic review and multilevel meta-analysis, PloS One 12(3) (2017) e0174050.

Peak C.M., Childs L.M., Grad Y.H., Buckee C.O. (2017). Comparing nonpharmaceutical interventions for containing emerging epidemics. Proc Natl Acad Sci, 114: 4023–28.

Pike A. 2009. De-Industrialization. Elsevier Ltd. All rights reserved.

Pope C.A. (1989). Respiratory disease associated with community air pollution and a steel mill. Utah Val Am J Public Health, 79: 623–28.

Pope C.A. (1996). Particulate pollution and health: a review of the Utah valley experience. J Expo Anal Environ Epidemiol; 6: 23–34.

Pope C.A. Ezzati M., Dockery D.W. 2009. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 2009; 360: 376–86.

Prem K., Liu Y., Russell T. W., Kucharski A.J., Eggo R. M., Davies N. et al., (2020). The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study, The Lancet Public Health, March 25, 2020. doi. 10.1016/S2468-2667(20)30073-6

Public Health England, (2019). MERS-CoV close contact algorithm. Public health investigation and management of close contacts of Middle East Respiratory Coronavirus (MERS-CoV) cases (v17 29 January 2019). 2019. Accessed Feb 6, 2020. [Retrieved from].

Public Health England, (2020). Novel coronavirus (2019-nCoV) – what you need to know. 2020. Accessed Jan 31, 2020. [Retrieved from].

Quilty B., Clifford S. CCMID nCoV working group, Flasche S, & Eggo RM. (2020). Effectiveness of airport screening at detecting travelers infected with 2019-nCoV. 2020. Accessed Feb 5, 2020. [Retrieved from].

Raaschou-Nielsen O., Andersen Z.J., Beelen R., et al. (2013). Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 2013; 14: 813–22.

Rahman I., & MacNee W. (2000). Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J, 16: 534–54.

Riley S, Fraser C, Donnelly CA, et al. (2003). Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 300: 1961–66.

Riou J., & Althaus C.L. (2020). Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill 2020; 25: 2000058.

Ségala C., Poizeau D., Mesbah M., Willems S., Maidenberg M., (2008). Winter air pollution and infant bronchiolitis in Paris. Environ. Res. 106, 96–100. doi. 10.1016/j.envres.2007.05.003

Shankardass K., McConnell R., Jerrett M., Milam J., Richardson J., & Berhane K. (2009). Parental stress increases the effect of traffic-related air pollution on childhood asthma incidence. Proc Natl Acad Sci USA; 106:12406–1

Shepherd A., Mullins J. T. 2019. Arthritis diagnosis and early-life exposure to air pollution, Environmental Pollution 253 (2019) 1030-1037, doi. 10.1016/j.envpol.2019.07.054

Simoni M., Baldacci S., Maio S., Cerrai S., Sarno G., & Viegi G., (2015). Adverse effects of outdoor pollution in the elderly. J. Thorac. Dis. 7, 34–45. doi. 10.3978/j.issn.2072-1439.2014.12.10

Smets W., Morett, S., Denys S., & Lebeer S. (2016). Airborne bacteria in the atmosphere: presence, purpose, and potential. Atmos. Environ. 139, 214e221

Sun, Y., Xu, S., Zheng, D., Li, J., Tian, H., & Wang, Y., (2018). Effects of haze pollution on microbial community changes and correlation with chemical components in atmospheric particulate matter. Sci. Total Environ. 637e638, 507.

Swanson K.C., Altare C., Wesseh C.S., et al. (2018). Contact tracing performance during the Ebola epidemic in Liberia, 2014–2015. PLoS Negl Trop Dis 2018; 12: e0006762.

Talbot T.R., Poehling K.A., Hartert T.V., Arbogast P.G., Halasa N.B., Edwards K.M., et al. (2005). Seasonality of invasive pneumococcal disease: temporal relation to documented influenza and respiratory syncytial viral circulation. Am J Med, 118: 285-91.

The Italian National Institute of Statistics (ISTAT, 2020). Popolazione residente al 1° gennaio, [Retrieved from].

U.S. Census Bureau 2020. U.S. and World Population Clock, Accessed April, 2020. [Retrieved from].

Van Leuken, J.P.G., Swart A.N., Havelaar A.H., Van Pul A., Van der Hoek W., & Heederik D. (2016). Atmospheric dispersion modelling of bio aerosols that are pathogenic to humans and livestock - a review to inform risk assessment studies. Microb. Risk. Anal. 1, 19-39.

Vandini S., Bottau P., Faldella G., Lanari L. (2015). Immunological, viral, environmental, and individual factors modulating lung immune response to respiratory syncytial virus. Biomed. Res. Int. 2015, 875723. doi. 10.1155/2015/875723

Vandini S., Corvaglia L., Alessandroni R., Aquilano G., Marsico C., Spinelli M., Lanari M., & Faldella G., (2013). Respiratory syncytial virus infection in infants and correlation with meteorological factors and air pollutants. Ital. J. Pediatr. 39, 1. doi. 10.1186/1824-7288-39-1

Wang C., Horby P.W., Hayden F.G., & Gao G.F. (2020). A novel coronavirus outbreak of global health concern. Lancet 2020; 395: 470–73.

Wang G., Zhang R., Gomez M.E., Yang L., Zamora M.L., Hu M., Lin Y., Peng J., Guo S., Meng J., & Li J. (2016). Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. 113 (48), 13630e13635.

Ward DJ, & Ayres JG. (2004). Particulate air pollution and panel studies in children: a systematic review. Occup Environ Med; 61: e13.

Wei M., Houfeng Liu, Jianmin Chen, Caihong Xu, Jie Li, Pengju Xu, & Ziwen Sun (2020). Effects of aerosol pollution on PM2.5-associated bacteria in typical inland and coastal cities of northern China during the winter heating season, Environmental Pollution 262 (2020) 114188, doi. 10.1016/j.envpol.2020.114188

Wei, K., Zou, Z., Zheng, Y., Li, J., Shen, F., Wu, C.Y., et al., (2016). Ambient bio aerosol particle dynamics observed during haze and sunny days in Beijing. Sci. Total Environ. 550, 751e759.

Weinmayr G., Romeo E., De Sario M., Weiland S.K., & Forastiere F. (2010). Short term effects of PM10 and NO2 on respiratory health among children with asthma or asthma-like symptoms: a systematic review and meta-analysis. Environ Health Perspect; 118:449–57.

Wells C. R., Sah P., Moghadas S. M., Pandey A., Shoukat A., Wang Y., Wang Z., Meyers L. A., Singer B. H., Galvani A. P. (2020). Impact of international travel and border control measures on the global spread of the novel 2019 coronavirus outbreak. Proceedings of the National Academy of Sciences Mar 2020, 202002616; doi. 10.1073/pnas.2002616117

WHO 2019. Coronavirus disease 2019 (COVID-19). Situation report 24. February 13, 2020. Geneva: World Health Organization, 2020.

WHO 2020. Novel coronavirus (2019-nCoV) situation report 16. World Health Organization, 2020. Accessed Feb 5, 2020. [Retrieved from].

WHO 2020a. Novel coronavirus (2019-nCoV) situation report 2. World Health Organization, 2020. Accessed Jan 22, 2020. [Retrieved from].

WHO 2020b. Implementation and management of contact tracing for Ebola virus disease. World Health Organization. 2015. Accessed Feb 4, 2020. [Retrieved from].

WHO 2020c. Who Director-General’s opening remarks at the media briefing on COVID-19. March 3, 2020. Accessed March 6, 2020. [Retrieved from].

Wilder-Smith A., Chiew C.J., & Lee V.J. (2020). Can we contain the COVID-19 outbreak with the same measures as for SARS? Lancet Infect Dis 2020; published online March 5. doi. 10.1016/S1473-3099(20)30129-8

Wong C.M., Yang L., Thach T.Q., Chau P.Y.K., Chan K.P., Thomas G.N., et al. (2009). Modification by influenza on health effects of air pollution in Hong Kong. Environ Health Perspect; 117:248–53.

Wooding D.J., Ryu M.H., Huls A., Lee A.D., Lin D.T.S., Rider C.F., Yuen A.C.Y., & Carlsten C. (2019). Particle depletion does not remediate acute effects of traffic-related air pollution and allergen. A randomized, double-blind crossover study, Am. J. Respir. Crit. Care Med. 200 (5) (2019) 565–574.

Wu J.T., Leung K., & Leung G.M. (2020). Now casting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet 2020; 395: 689–97.

Xie Z.S., Fan C.L., Lu R., Liu P.X., Wang B.B., Du S.L., et al. (2018). Characteristics of ambient bio aerosols during haze episodes in China: a review. Environ. Pollut. 243, 1930e1942.

Xu B., Kraemer Moritz U.G. (2020). Open access epidemiological data from the COVID-19 outbreak, The Lancet Infectious Diseases, doi. 10.1016/S0140-6736(20)30371

Yao X., Ye F., Zhang M., et al. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; published online March 9. DOI:10.1093/cid/ciaa237

Zhai Y., Li X., Wang T., Wang B., Li C., & Zeng G., (2018). A review on airborne microorganisms in particulate matters: composition, characteristics and influence factors. Environ. Int. 113, 74e90.

Zhang Q., Zheng Y., Tong D., Shao M., Wang S., Zhang Y., Xu X., Wang J., He H., Liu W., Ding Y., Lei Y., Li J., Wang Z., Zhang X., Wang Y., Cheng J., Liu Y., Shi Q., Yan L., Geng G., Hong C., Li M., Liu F., Zheng B., Cao J., Ding A., Gao J., Fu Q., Huo J., Liu B., Liu Z., Yang F., He K., Hao J. 2019a. Drivers of improved PM2.5 air quality in China from 2013 to 2017, Proceedings of the National Academy of Sciences Dec, 116 (49) 24463-24469; DOI: 10.1073/pnas.1907956116

Zhang T., Li X., Wang M., Chen H., & Yao M., (2019). Microbial aerosol chemistry characteristics in highly polluted air. Sci. China Chem. 62. doi. 10.1007/s11426-11019-19488-11423

Zhang Y., Ding A., Mao H., We, N., Zhou D., Liu L. et al., (2016). Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980e2013. Atmos. Environ. 124, 119e128

Zheng X.Y., H. Ding, L.N. Jiang, S.W. Chen, J.P. Zheng, M. Qiu, Y.X. Zhou, Q. Chen, & W.J. Guan, (2015). Association between air pollutants and asthma emergency room visits and hospital admissions in time series studies: a systematic review and meta-analysis, PloS One, 10(9) (2015) e0138146

Zhong J., Zhang X., Dong Y., Wang Y., Wang J., Zhang Y., et al., (2018). Feedback effects of boundary-layer meteorological factors on explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016. Atmos. Chem. Phys. 18, 247e258.

Zhou W. et al (2005). Vitamin D is associated with improved survival in early-stage non-small cell lung cancer patients. Cancer Epidemiol Biomarkers Prev 14(10):2303–2309

Zhu N., Zhang D., Wang W., et al. (2020). A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med, 2020; published Feb 20. doi. 10.1056/NEJMoa2001017

Zhu Y., & Xie J. (2020). Association between ambient temperature and COVID-19 infection in 122 cities from China, Science of the Total Environment, doi. 10.1016/j.scitotenv.2020.138201

Creative Commons License
This article licensed under Creative Commons Attribution-NonCommercial license (4.0)

Downloads

Download data is not yet available.